
Credibility and Incentives in Gradual Dutch Auctions

Kshitij Kulkarni
UC Berkeley

ksk@eecs.berkeley.edu

Matheus V. X. Ferreira
Harvard University

matheus@seas.harvard.edu

Tarun Chitra
Gauntlet

tarun@gauntlet.network

January 2023

Abstract

Gradual dutch auctions (GDAs) are a class of auctions that have been proposed
when an auctioneer would like to sell a batch of illiquid items. They function by making
available a fraction of the items for sale at every time, and starting a new auction whose
price decays as time passes. This has the effect of allowing a seller to cater to buyers
who may not want to purchase the entire batch of items at a single time. We analyze
the incentives of participating in GDAs. First, we consider the seller’s incentives in
running a GDA. We show that the seller can deviate from truthfully running a GDA
via an attack in which she initially buys a fraction of the supply available in each dutch
auction, forcing buyers to fill their demand with later (more expensive) auctions. This
attack is a form of multi-block maximal extractable value (MEV), extending previous
work on lending protocols and decentralized exchanges. Next, we consider buyers’
incentives in participating in a GDA, and consider an interdependent values setting
in which the history of the auction is allowed to affect buyers’ values in the future.
We show conditions in which GDAs are ex post incentive compatible and individually
rational for buyers.

1 Introduction

Non-Fungible Tokens (NFTs) are a popular form of digital asset on blockchains that have
had a large uptake in usage since late 2020. These assets have been used to represent digital
art, collectibles, blockchain representations of real-world assets, and claims on future returns
from decentralized finance protocols [2, 47]. One of the key features of NFTs is that a
single collection of NFTs can have a fixed, discrete supply that cannot be modified post
deployment. This allows for the representation of scarce, indivisible digital objects, which
lie in contrast to fungible tokens which can be split and recombined arbitrarily (up to the
minimum asset size).

Decentralized trade and exchange mechanisms for these assets, however, can be quite a
bit more complex than those of fungible tokens. For fungible tokens, mechanisms such as
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constant function market makers (CFMMs) provide decentralized means of trade that are
synchronized via arbitrage [4, 5, 6]. These mechanisms utilize continuous supply and demand
curves, which only make sense for arbitrarily divisible assets, such as fungible tokens.1 NFTs,
much like fine art, are often better suited to direct auction mechanisms versus continuously
traded vehicles. This is because the restricted supply of NFTs effectively places a cap on the
frequency of transfer of an NFT while also ensuring that there is a well-defined minimum
value for a collection of NFTs (the so-called ‘floor price’).

The lack of continuous trading of NFTs, however, makes price discovery significantly
more complex [28, 40, 46]. When a creator of an NFT collection consisting of n items wants
to sell these items, they have a number of different auction mechanisms to choose from. For
instance, the creator could sell each item individually and in a sequential fashion or try to sell
arbitrary sub-bundles as atomic units. As is well-known in combinatorial auctions, this space
of possible auctions for multi-item exchange is exponential in the number of items to sell and
without a careful choice for the bidding language, could be #P-complete [36, 43]. Moreover,
it has been demonstrated that collusion resistant auctions have impossibility results for
even single item NFTs auctions [31]. As such, it is also difficult for bidders to accurately
participate in the price discovery process (which is perhaps one hypothesis for the excess
wash trading found in the NFT market [46]).

Ideally, one would want to prove a stronger property for NFT auctions, that of credibil-
ity [3], where it is incentive compatible for the auctioneer to follow the stated auction rules.
The results of [31] suggest that it will be difficult to get perfectly credible mechanisms for
NFT auctions. However, approximately credible mechanisms and posted price mechanisms
have been studied in the blockchain context before when analyzing fee auctions [14, 17, 16].
One goal of this paper is to provide examples of seller incentive compatibility in NFT auc-
tions in order to construct credible (or approximately credible) NFT auctions that have
properties similar to those of fee auctions.

Practical Auction Mechanisms. Combined, these results show that designing approxi-
mately optimal mechanisms for computationally bounded auctioneers (e.g. sellers of an NFT
collection) and bidders is tantamount to making price discovery efficient. There have been
a number of proposals for such auctions, such as the equilibrium-truthful auction of Milio-
nis, et. al [31] and the Gradual Dutch Auction (GDA) [18]. The former auction relies on
traditional auction theory [21], where one makes the assumption that the bidders valuation
distributions are independent and that the auctioneer has oracle access to bidders’ valuation
distributions.2 In practice, this is a difficult feat to accomplish, even with historical data,
as NFT auction data is extremely sparse (especially when compared with online ad auction

1We note that while one can fractionalize an NFT (e.g. create 100 shares that each own 1% of an NFT),
there is often a loss in governance and/or voting rights when this is done. Suppose that an NFT refers to a
share of a stock that is allowed to vote on board member selection. Technically, only the address holding NFT
has the right to vote and the fractional shareholders often do not get this right passed along to them. As such,
price discovery for the fractional shares and the underlying NFT can be quite different, as noted here [34].

2Note that there has been some work on inferring the ironed (concave majorant) valuation distributions
from sequential data [41]. These results are difficult to apply to NFTs as they have poor sample complexity.
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data). As such, auctions with heuristic guarantees, such as the GDA, have been preferably
implemented in practice on networks such as Ethereum.3

Moreover, another issue with applying traditional auction design to the blockchain world
is the lack of true private valuations. The classical Vickrey and/or Myerson optimal auctions
assume that users of a system have distinct private valuation distributions that are sampled
independently. In the blockchain environment, however, a user’s valuation can be far from
private as the user has to submit transactions through the network, leaking some information
about the their valuation prior to their bid being processed by the smart contract running
the auction. This is further complicated by the fact that sequential auctions (like those
implemented by GDAs) ask bidders to purchase items over time; a buyer that enters later
in the auction therefore may use the public history of the auction to modify their valuation.
Milionis, et. al [31] points out this issue for NFT auctions, but provides a model that is
analyzed in the private valuation world. Moreover, the fact that NFT valuations often have
a common value component [25, 48] suggests that auctions deemed optimal in the private,
independent valuation model are insufficient for practice auctions with guarantees.

Finally, blockchain environments are communication and bandwidth constrained. This
means that iterative auctions with many rounds of interaction are likely to fail. For instance,
MEV bots can snipe early bids (which was mentioned in the original GDA post [18]) and
dramatically change the revenue and incentives of an auction. Dutch auctions (and descend-
ing price auctions, in general) notably have reduced communication complexity relative to
both ascending price and sealed-bid auctions. The communication complexity of allocation
mechanisms in which many items need to be allocated to multiple agents (roughly the size
of the messages any agent must send to the mechanism designer) can be exponential in the
number of items when the allocation mechanism is direct revelation, in which the mechanism
designer seeks to elicit truthful reports of agents’ valuations) [37]. Even in the case of an
ascending price auction, the auctioneer needs to query every bidder in every round to ask
whether the bidder would like to increase their bid to stay in the auction, which can be pro-
hibitive in decentralized systems. Therefore, buyers in an ascending price auction may need
to speak an unbounded number of times. Alternatively, in descending price auctions, the
auctioneer can simply publicly broadcast the current price of the auction to all the bidders.
While all auctions can be shown in different communication models to have worst case expo-
nential communication complexity, indirect revelation mechanisms (e.g. mechanisms where a
buyer’s bidding behavior depends on the entire price process and bid sequence) tend to have
much lower communication complexity [24, 39]. Moreover, Vickrey-Clarke-Groves optimality
results can be extended to descending price auctions [32] and one can view our results in
this paper as an extension of this work. Finally, we note that [16] also notes that descending
price auctions are significantly safer to design in blockchain environments (and is one reason
fee mechanisms resemble descending price auctions).

Gradual Dutch Auctions. The Gradual Dutch Auction (GDA) was introduced in [18]
as a mechanism for allowing sellers to not have to price bundled items all at once. As an

3There are daily auctions using GDAs with the total auction volume generating $4-5M of revenue for
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example, suppose that an NFT collection has 10,000 elements for sale. Simultaneously selling
each of the 10,000 items works as a clearing mechanism if there are at least 10,000 items
demanded by the market. If there are less than X < 10, 000 items demanded (as is the case
for illiquid assets), then the sequential auction is suboptimal, as the expected clearing price
of the auction will decay after X items are sold. In such a case, the seller (auctioneer) will
benefit from bundling items, i.e. selling sets or bundles of items atomically. However, the
question of how to choose the size of the bundle(s) to sell is a difficult question (indeed, at
least NP-hard in many scenarios [36]). GDAs can be viewed as a heuristic mechanism that
allows buyers (as opposed to the seller) to select the size of bundles to purchase.

The main idea behind GDAs is that they auction off each item sequentially, but with
a dynamic price that updates as a function of how long a set of items has not been sold.
We can view a GDA as constructing a sequence of auctions A1, . . . , An such that the price
tendered by auction Ai is ai ∈ R+ at the time of auction initialization ti. Moreover, the
price of the ith auction at time t, pi(t), satisfies two conditions:

1. Price Initialization. pi(0) = ai

2. Strictly Decaying Price. pi(t) < pi(t
′) for all t, t′ > ti and t > t′.

3. Strictly Increasing Initialization. pi(0) = ai < aj = pj(0) if i < j

In a sense, the price is monotonically decreasing for an individual auction as t → ∞, similar
to a classical dutch auction. However, the initial price of each auction, ai, can depend on
the price of previous auctions a1, . . . , ai−1 and is usually chosen such that ai is a strictly
increasing sequence of prices.

There are a few different ways to view GDAs that are helpful for constructing some
intuition for how they work. First, one can view GDAs as encoding a Bayesian prior of
users’ valuation and bundle size distributions within the auction mechanism. The particular
prices that the auction initializes to and the rate of decay of price over time represents
a weak prior distribution on the demand of the bidders in the auction. Once can view
the GDA as analogous to a Bayesian posted price mechanism albeit with decaying posted
prices (which, for a single auction and single bidder, is not strategyproof [15, 21, 22]). For
completeness, we note that descending price clock auctions (which have been proposed for
spectrum auctions) have been analyzed [35], but their strategyproofness (or lack thereof)
was not established. GDAs are also tightly related to the literature on efficient dynamic
auctions, which considers incentive compatibility conditions very similar to ours, albeit with
more general price mechanisms [8, 7].

Secondly, we can view a GDA as a form of a descending price candle auction. Candle auc-
tions are auctions with random stopping times [19], where the auction terminates randomly.
Since an auction terminates the moment a bid arrives (akin to a posted price mechanism),
the stopping time of the auction is equivalent to the bid arrival time. Each descending price
auction Ai can be viewed as a candle auction that terminates whenever a bidder places a bid.
In the case of random, but strategic bidders, this will be stochastic like the original candle
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auction. As a simple model for a candle auction, one may assume that buyers arrive at the
auction according to a Poisson process, and buy up the cheapest auctions. Then, with high
probability, every auction will eventually terminate (since the expected bid arrival time is
finite for homogeneous Poisson processes [44]). On the other hand, our attack in §4 shows
that the auctioneer can act as an adversarial (and not stochastic) player who manipulates
the final clearing auction price by buying up early auctions.

Note that the interaction between auctions makes the model of bidders’ valuation func-
tions significantly different than a classical dutch auction, and in particular, cause the bid-
ders’ valuations to be interdependent, both on each other and on the history of the auction.
We will first illustrate this with an example:

Example of interdependent values in GDAs. Consider a GDA with the following
pricing:

• t = 1: Offering a single item in the first auction with a1 = p1(0) = $1

• t = 2: Offering a single item in the first auction for p1(2) = $0.10 and a single item in
the second auction for a2 = p2(0) = $1.50

• t = 2.5: Offering a single item in the first auction for $0.05 and a single item in the
second auction for $1.05

Now consider two bidders. They have nominal valuations for the items in the first round of
$0.01 and $1 (that are unknown to each other). The first bidder has the following contingent
valuation: if bidder 2 purchases the first auction in round 1 at $1, then bidder 1 raises his
value for the item in round 2 to $1.05. Else, he keeps his value the same. Bidder 2 has
a contingent valuation that if bidder 1 buys in round 1, he will raise his value to $1.5. In
round 1, bidder 2 buys at $1, and bidder 1 raises to $1.05. Now, in round 2, neither buyer
buys because both values are less than $1.5. Finally, in round 2.5, bidder 1 buys the second
auction at $1.05. By the virtue of the presence of bidder 2, bidder 1 has incurred a ‘regret’
of $0.05. He could have bought the first auction for $1, but instead chose to buy the second
auction for a higher price because his valuation depended on the other party buying.

Auctions with Interdependent Valuations. The theory of auctions with interdepen-
dent valuations was first established in the systematic study of Milgrom and Weber in
1982 [30]. Most modern studies of interdependent valuations still follow Milgrom and We-
ber’s model, where each bidder’s valuation vi is viewed as being a function of some signals
si ∈ R for i ∈ [k], the number of bidders. These signals, in the case of art auctions for
a single item, for example, represent private information that each bidder has about the
value of the art and the function vi(s) is the ith bidder’s valuation for an item given signals
s. In the case where the auctioneer is selling many identical items at different prices over
time (as is the case in GDAs), of which buyers can pick bundles (or amounts to buy), this

auctioneers and resales of auctioned items generating $50-60M in trading volume since November 2022 [38]
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interdependence can be even more pronounced, as in the above example. In this case, each
bidder also sees the history of the auction, and can use this publicly available information
to alter her valuation. For instance, in the example above, along with their private signals
si, each bidder at time 2.5 might see indicators ŝj of whether the jth auction up to time 2
was purchased or not, e.g. ŝj ∈ {0, 1}. In this case, the valuation of bidder 1 for the items,
v1(s, ŝ) is given by the following:

v1(0.01, 1, 1, 0) = 1.05

v1(0.01, 1, 0, 0) = 0.01

v2(0.01, 1, 1, 0) = 1.5

v2(0.01, 1, 0, 0) = 1

The signals encode the conditional dependence between the bidders in an interdependent
auction.

Interdependent auctions are known to have unique clearing prices4 when what is known
as the single-crossing condition is satisfied [42]. Moreover, with the single-crossing condition
and a matroid condition, one can approximate the optimal revenue in an interdependent
auction via a modified VCG mechanism [9, 27]. Colloquially, the single-crossing condition
states that a user’s valuation changes more from their own signals than those of any other
bidders. Single-crossing conditions therefore allow the multi-dimensional interdependent
valuation setting to be reduced to something akin to the one-dimensional private values
world. GDAs turn out to have conditions analogous to single-crossing conditions that depend
on the price trajectories pi(t) (See §2).

This Paper. There are two natural questions that one might wish to ask about GDAs.
First, from the perspective of the buyer, is it preferable to purchase an item at the true value
that the buyer has for the item? This is the question of incentive compatibility. We ask this
question in two settings: one, where a buyer is allowed to wait in a GDA for arbitrarily
long periods of time, and another, where buyers sequentially arrive to each round of the
auction, and are asked to either buy or not buy the currently available items, and then
leave the auction. Second, from the perspective of a seller, is it preferable to run a GDA
in earnest, without participating in the auction, or otherwise manipulating information to
bidders? This is the question of credibility. To summarize, we ask two questions about GDAs
that we center the subsequent discussion on:

Q1: Are GDAs incentive compatible for buyers?
Q2: Are sellers in GDAs credible?

Our Results. In this paper, we formalize discrete and continuous time GDAs. We first
consider the scenario where one is selling many copies of the same item. In such a setting,

4Note that [12, 13] are able to analyze interdependent auctions without the single crossing condition but
show that single crossing is necessary for an exact optima. They provide means for approximate equilibria
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the sequence of GDA auctions should be viewed as creating a supply curve, pS(q, T ) that
provides the prices that one would need to pay to get q units of the item. We then first
analyze the expected revenue of the auction for the exponential price curves of [18] (which
we term exponential GDAs).

By analyzing simpler auctions explicitly, like exponential GDAs, we can discern what
properties are needed for generic GDAs. This leads to the construction of an attack against
exponential GDAs where the auctioneer can artificially inflate the price paid by bidders
by purchasing the first r auctions. We construct a profitability condition for this attack
(which depends on the demand distribution pD(q) and demonstrate a geometric condition
that relates r to pD(q). Note that we assume that pD(q) is time-independent and leave
analysis of dynamic demand functions for future work. In particular, we show that the
maximum gradient of pD(q) controls the minimum number of rounds that the auctioneer
needs to purchase in order to be profitable. Finally, we conclude by showing that if the
auctioneer runs an infinite number of auctions, this attack ceases to be profitable.

We note that to implement our attack in practice, an adversarial auctioneer will need to
utilize maximal extractable value (MEV) auctions for multiple blocks to ensure their early
transactions are not front run. These multi-block forms of MEV have been studied before
in on-chain oracles [29] and on-chain lending [10]. There are additional costs realized by the
auctioneer for entering these auctions which are not discussed here and left for future work.

Subsequently, we generalize exponential GDAs (e.g. where pi(t) is a sum of exponentials
with increasing initial prices) to the setting of more generic pricing functions pi(t). These
single-dimensional auctions dramatically expand the space of GDAs beyond the exponential
pricing setting (which was described in the initial GDA post [18] and in the subsequent post
on variable rate GDAs [1]5. In this setting, we find sufficient conditions for a GDA pricing
trajectories pi(t) to avoid the attack that is described for exponential GDAs. Moreover, we
are able to generalize the condition for the number of rounds that a malicious auctioneer
would need to cheat to the generic pricing function setting. This expansion of the space of
single-dimensional GDAs suggests that the family of single-dimensional GDAs is a tuneable
family of interdependent valuation auctions that can provide some credibility guarantees.

With these generalized GDAs, we are able to analyze buyers’ incentives in an interde-
pendent values setting, where the history of the auction that a buyer sees may affect the
value of the currently available items to that buyer. In particular, we map generalized GDAs
to the set of interdependent VCG auctions and utilize results of [9, 27] to show that GDAs
achieve ex post incentive compatibility and individual rationality. These conditions involve
a single-crossing condition and the construction of sufficient conditions for the set of winners
in a GDA to form a matroid.

Our results generalize the known understanding of GDAs, analyze their security (and
demonstrate attacks that remove auctioneer credibility), and generalize to the multi-dimensional

without single crossing; this paper will focus on exact and not approximate equilibria.
5In the language of the sequel, variable rate GDAs simply correspond to irregular auction start

times, i.e. ti − tj ̸= C|i − j|. The blog post [1] uses a square-root time scale, e.g. ti − tj = Θ(
√
i− j) and

logistic time scale ti − tj = Θ( 1
1+e−|i−j | ), both of which are intended to slow down the frequency of auction

while ensuring that the initial price increases.
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setting. As a heuristic auction mechanism that is easy to implement in practice, GDAs are
promising as a mechanism for blockchain-based auctions. We hope our results expand the
universe of mechanisms that can be used safely on-chain.

2 Model and Background

Our setting begins with an auctioneer, and m indivisible identical items for sale. A new
buyer enters the auction at every discrete time i. Each buyer has a private signal si ∈ R.
We assume si is drawn from a distribution Fi. Signals represent the private information a
buyer users are able to discern about other participants in order to construct their valuation.
Such models of private signals are common in art auctions (auctions which are similar to
selling NFTs), where si might be the private value of a piece of art to a bidder. Upon
realizing that other bidders have a high signal for a piece of art, a bidder infers a higher
value for the art.

Buyer Model If bidder i has complete information about the signal s−i = (s1, . . . , si−1, si+1, . . . , sn)
for all other bidders, then bidder i has value ṽi(si, s−i) ∈ R for the item. In practice, bidder
i knows si, but only observes a proxy for s−i. In GDA, the proxy for s−i will be the price
paid by other bidders. To be precise, let pj,k ∈ R be the price agent j paid for item k with
pj,k = 0 if agent j paid nothing. Then the value of bidder i for the item is vi(si, p) where
p ∈ Rn,m is the matrix of payments.

Example 1. Continuing the above analogy to art auctions, one may be interested in sit-
uations where the history of the auction affects the valuation of bidders for items that are
identical. In this case, the valuation might take the form vi(si, p) = si +

1
n−1

∑n
j=1

∑m
k=1 pj,k.

In this case, the value of the bidder for the item equals their private signal plus the average
price paid by other bidders.

Further, the buyer a time n has available to her all the auctions that have started up to
time n that have not been purchased by previous buyers. Crucially, as observed in NFT and
other art markets [42, 48], we seek to model the fact that a buyer’s valuation for the items
may depend on both the public history of the auction (the purchase prices of items in the
past) and the on private beliefs that other buyers have about the value of the items. This
leads us to consider an interdependent values model for the buyers.

Auctioneer Model The auctioneer will sell the items sequentially, at prices for each item
that decay over time. We therefore denote discrete time by n ∈ N and continuous time by
t ∈ R+. At every n = 1, . . . , N , the auctioneer makes available one of the items for sale, with
a predefined and public price function for each item pn(t), which denotes the price of the
item t units of time after the discrete time n. The item is available until a buyer purchases
it. An example price function is the exponential price that will be studied in the following
section, which takes the form:

pn(t) = kαne−λt
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where kαn is the initial price of the nth auction, and λ is a decay rate. This price function
defines a discrete-time GDA. Intuitively, this means that the sequence of auctions get more
expensive over time, but each have a price that decays at the same rate as the time since
each auction’s start passes. One can significantly generalize this price function to generic
GDAs, which incorporate a large class of price functions:

Generic GDAs. A discrete time, single-dimensional GDA is defined by a sequence of
pricing functions pi : R → R+, a sequence of auction times ti ∈ N that is distinct (e.g. ti ̸= tj
for all i, j ∈ N). We will define three properties of a sequence of pricing functions that will
allow us to prove results similar to the exponential GDA. A sequence of pricing functions
{pi}i∈N is admissible to a set of auction times {ti}i∈N if for all i ∈ N, pi(t) = 0 for all t < ti
and pi(t) < pi(t

′) for all t > t′ > ti. We say that a sequence of pricing functions is adapted
if for all finite subsets A,B ⊂ N such that A ∩B = ∅ and maxA ≤ minB we have

min
i∈A

pi(t) ≤ min
i∈B

pi(t)

for all t ≥ 0. Finally, we say that a sequence of pricing functions is time translation invariant
if there exists a function p̂ : R → R+ and values ai ∈ R+ such that for all i ∈ N and t > 0
we have

pi(t) = aip̂(t− ti)

Perpetual Buyers. First, we present a model of buyers that manifestly leads to GDAs
that are not incentive compatible, and is hence a negative result for Q1. A single buyer
enters a GDA at time T , and has the choice of waiting for arbitrarily long periods of time
without purchasing an auction. We call such a buyer perpetual. Suppose the buyer has a
fixed valuation v ∈ R for one item. Then, by the admissibility of prices for generic GDAs,
we have pT (t

′) < pT (t) for any t′ > t. Therefore, exists a time t′ large enough such that
pT (t

′) < v. The buyer, having no constraints on how long she is allowed to wait in the
auction, can therefore purchase the item for a price strictly smaller than her value. This
implies that GDAs are not incentive compatible for perpetual buyers. A potential remedy
for this is to have a random stopping time for each item sold in a GDA, which forces buyers
to not wait arbitrarily long before purchasing the items. We leave this as future work.

Defining the Mechanism. Having defined the signals and the information environment
for the buyers, we now formally define GDAs as mechanisms, comprising of an action space
for each buyer, and allocation and pricing mechanisms:

1. Allocation mechanism. The functions xij : Ri×j → [0, 1] returns the probability of
an item being allocated to the ith bidder in the jth auction. The allocation rule
xi,j(si, s−i) denotes the function with the ith bidder’s signal first. An allocation rule is
deterministic if xi,j ∈ {0, 1} for all i, j.

2. Actions. For any buyer at time n, we define the action space recursively as An =
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An−1 ∪ {0, 1} \ Sn−1 and A1 = {0, 1}1, S1 = {0, 1} if xi1 = 1 for some i ∈ B1 and
Sn = {0, 1} if xin = 1 for some i ∈ Bn. That is, bidders at time n have the option to
either buy or not buy all the auctions that have started up to time n, which have not
been purchased by other bidders in the past.

3. Pricing Mechanism. A pricing mechanism pik(si, s−i) maps signals to the price tendered
to the ith bidder for item k. Note that for GDAs, our pricing mechanism is determin-
istic and follows a GDA’s pricing curve, e.g. pik(si, s−i) = aikpik(t(si, s−i)− ti), where
t(si, s−i) is the time that the auction is purchased by the ith bidder given the signals
s = (si, s−i).

Desiderata for Sellers. We analyze the seller’s incentives in the next section via the
inverse demand function, denoted by pD(q) of a buyer. For a single ephemeral buyer that
enters a GDA at time T , this function denotes the willingness-to-pay of the buyer for each
quantity of the items that the buyer purchases. This function is implicitly a function of
the valuation of the bidder for the items available at that time. The question, then, for the
seller, is: if the inverse demand of a buyer is fixed and known to the seller, is it always in the
seller’s best interest to run a GDA in earnest? We provide a negative result by constructing
an explicit deviation in which the seller initial buys some of the supply of the items, and
leaves the buyer to purchase later items and is able to extract more revenue from the auction
than by running a GDA naively.

As a concrete example of pD(q), suppose there are T items available (one for each auction
started since n = 1), and the buyer has values vi ∈ R+ for each item, i = 1, . . . , T (these
values are therefore ordered from oldest available auction to the most recent one). Then, we
can define the inverse demand function pD(q) =

∑q
i=1 vi. In what follows, we do not explicitly

specify the dependence of the demand on valuation in a parametric manner. Instead, we
analyze the inverse demand function pD(q) = pD(q|v1, . . . , vn) only based on global properties
such as Lipschitz gradients and/or convexity. The corresponding demand curve is its inverse
denoted qD(p) = qD(p|v1, . . . , vn). Notationally, we will supress the explicit dependence of
the demand function on valuation. We analyze the inverse demand function to simplify the
analysis of seller incentives, as the seller’s disincentives to participate honestly in the auction
are a function of the aggregate behavior rather than individual value functions.

Desiderata for Buyers. An allocation mechanism xij, valuation functions vi, and pricing
mechanism pi are said to be ex post incentive compatible if

xin(s, s−i)vi(s, s−i)− p(s, s−i) ≥ xi(s̃i, s−i, ŝ)vi(s, s−i)− pi(s̃i, s−i)

holds for all i, true private and public signals s and ŝ, and false (adversarially reported)
signals s̃. An allocation mechanism is said to be ex post individually rational if for all i and
signals s the following holds:

xin(s, s−i)vi(s, s−i)− p(s, s−i) ≥ 0
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Informally, in our setting, a mechanism is ex post incentive compatible if no agent can
increase their welfare (measured by their expected value from allocation less the price they
pay) by misreporting a signal and is ex post individually rational if the agent does not incur
negative utility as a result of participating in the auction, having seen the prices that items
were purchased for in the past. This implies that agents must truthfully report their private
values for the items, even if the price history of the past suggests that many bidders have
bought at higher prices.

The standard dutch auction is known to be revenue equivalent to the sealed-bid first price
and second price auctions (a result going back to Vickrey [45]). However, as mentioned be-
fore, the interdependence inherent in buyer valuations in NFT markets on public blockchains
and the correlation between the many auctions in a GDA makes this analysis insufficient.
One natural question to ask is if it is possible for GDA’s to be incentive compatible and
individually rational. We will briefly review the necessary auction theory to state this result
and then demonstrate that GDAs can be constructed to be ex post incentive compatible and
individually rational. Further details on the precise definitions and properties of ex post
properties can be found in [42]. Note that we will write functions of bidders private data
as functions of the vector (si, s−i) where si is the ith bidder’s private data and s−i is the
private data of all other bidders.

3 Exponential and Generic GDAs

The GDA with an exponential pricing function was first introduced in [18] and (partially)
formally analyzed in [33]. The analyses of these papers is incomplete from an auction theory
standpoint as there is no analysis of a malicious auctioneer who manipulates the price by
purchasing early auctions. In this section, we formally define the supply and demand curves
proffered by a GDA and then analyze such an attack by a malicious auctioneer which deems
the exponential GDA auction not credible in the sense of [3].

3.1 Discrete Time

To recap, a discrete time GDA is an auction in which a seller would like to set illiquid
items like non-fungible tokens (NFTs) that must be sold in integer quantities. In discrete
time GDAs, the auctioneer starts an auction to sell a single item at every discrete time
n = 1, 2, . . . , and the price of that auction t seconds in the future is given by the price
function pn(t). The exponential price function that will be studied in this section takes the
following form:

pn(t) = kαne−λt

where kαn is the initial price of the nth auction, and λ is a decay rate. Intuitively, this
means that the sequence of auctions get more expensive over time, but each have a price
that decays at the same rate as the time since each auction’s start passes.
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Inverse Demand In this section, we assume that the auctioneer is faced with a single
buyer with a fixed and known inverse demand curve, which we denote by pD : N → R+.
This is a function of the quantity of items, q, where pD(q) denotes the price that the buyer
is willing to purchase q items at. Recall from Section 2 that this inverse demand curve
can be constructed from the valuation of the buyer for the items. We further make the
assumptions that the inverse demand curve is convex, differentiable, non-increasing, and
has Lipschitz gradients. These assumptions ensure that if the quantity of items the buyer
purchases changes, the price the buyer is willing to purchase the new amount of items at
bounded by a linear factor. This ensures that the auctioneer is able to extract sufficient
revenue from the auction. We denote the demand curve corresponding to pD(q) as qD(p),
such that qD ◦ pD = pD ◦ qD = id.

Inverse Supply Now, given the the auctioneer’s price schedule pn(t), we can define the
inverse supply curve pS : N×R → R+, which denotes the price of each available amount of
the items for sale at any time T . Since the buyer has available all the auctions that started
since n = 1, and will purchase them in order from cheapest (oldest) to most expensive
(newest), we can assign the lowest price to pS(1, T ) and ascending prices to more supply.
Therefore, the inverse supply curve is an increasing function of the quantity. In particular,
from the price function pn(t), we can write:

pS(q, T ) =

q∑
n=1

pn(T − n)

As an example, if pn(t) = kαne−λt, then the inverse supply curve takes the form:

pS(q, T ) =

q∑
n=1

kαne−λ(T−n)

=
kαeλ−λT (αqeλq − 1)

αeλ − 1

This shows that as the buyer is interested in purchasing more and more items, the price of
the items exponentially grows (as a result of the fact that the oldest auctions have a price
that is exponentially smaller than the most recent auction).

Auctioneer’s Revenue In order to determine how many auctions the buyer will purchase,
and consequently how much revenue the auctioneer will collect, we use the fact that the
quantity that the buyer will purchase should set equal the inverse demand curve of the
buyer with the inverse supply curve of the available auctions. In words, this means that the
buyer will purchase an amount of items such that That is, the market clearing quantity of
items the buyer will purchase at time T , q⋆(T ), satisfies:

pD(q
⋆) = pS(q

⋆, T )
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Note that q⋆ is a always a function of T , but we will drop the time-dependence when it is
clear from context. Given this quantity, we define the revenue of the auctioneer at time T
as:

R(q⋆, T ) =

q⋆∑
n=1

pn(T − n)

This revenue adds up the prices of each of the auctions purchased by the buyer, up to
the market clearing quantity q⋆. Given our example supply curve pn(t) = kαne−λt, and a
quantity q⋆, the revenue at time T is therefore:

R(q⋆, T ) =
kαeλ−λT (αq⋆eλq

⋆ − 1)

αeλ − 1
(1)

3.2 Continuous Time

We briefly give an introduction to continuous time gradual dutch auctions (GDA), which
occur when a seller wants to sell a batch of fungible tokens, but does not want to make them
all available at the same time. We will not analyze the incentive properties of such auctions,
although they are very similar to discrete time GDAs. In this case, the seller decides an
emissions rate ρ, of the number of tokens she will sell per minute starting at time t = 0. At
every time t ≥ 0, a new auction starts with a price:

p(t) = ke−λt

where k is the initial price and λ is the decay constant. Note that this means that at any
time T in the future, a buyer will have access to all the auctions started at t ≤ T , and will be
able to buy them at their corresponding price. Concretely, the buyer will receive the lowest
price for the tokens by participating in the oldest available auctions. That is, at time T , the
buyer can purchase all the auctions from the oldest available auction at p(T ), to the auction
that corresponds to price p(T − q

ρ
). Once again, we assume that the seller is faced with a

buyer with a fixed and known inverse demand curve pD(q).

Inverse Supply Once again, given the auctioneer’s price function p(t), we can define the
inverse supply curve pS : R×R → R+, which is the price of each available amount of items
at any time T . Note now that the inverse supply function is a function of a real-valued
variable in its first argument, because the items are fungible and no longer sold in integer
quantities. Therefore, given the price function p(t), we can write:

pS(q, T ) =

∫ q/ρ

0

p(T − t)dt

This can be seen by noting that the oldest available (and hence cheapest) auction has price
p(T ), and at every time, ρ units of the tokens are emitted. Therefore, to buy q total units
of tokens, a buyer must purchase all the auctions from t = 0 to t = q/ρ. This generates the
inverse supply curve pS(q, T ).
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Auctioneer’s Revenue Once again, the revenue the auctioneer collects will depend on
the clearing quantity of the auction, which is found by setting equal the inverse demand and
supply curves. Therefore, the market clearing quantity once again satisfies:

pD(q
⋆) = pS(q

⋆, T )

Given this quantity, the revenue of the auctioneer at time T in the continuous-time GDA is
once again:

R(q⋆, T ) =

∫ q⋆/ρ

0

p(T − t)dt

Given the example price function p(t) = ke−λt, and a quantity q⋆, the revenue at time T is
therefore:

R(q⋆, T ) =
ke−λT (eλq

⋆/ρ − 1)

λ

Future Work. In the remainder of this paper, we will focus on discrete time results. Note
that most of the results carry over to the continuous time setting with some extra technical
work (e.g. correctly taking limits and adding in extra regularity conditions). Given that this
does not provide direct insight into the basic mechanics of GDAs, we leave further continuous
time analysis for future work.

3.3 Generic Single-Dimensional GDAs

In the previous section, we focused on exponential pricing mechanisms. These mechanisms
have the benefits of allowing for an analytical formulation, allowing for easier practical
implementations [33]. However, as we demonstrated, these auctions are not credible in that
a malicious auctioneer can deviate from honest behavior and cause a loss to buyers. This
section aims to close this gap by defining a large family of single-dimensional GDAs (e.g. the
auctioneer is selling multiple copies of a single object) that can be formally analyzed. Given
the generic GDAs defined in Section 2, for adapted, admissible, and time translation invariant
pricing functions, we can define the manipulation cost C(r), the manipulation revenue R(q̂, t)
(both defined in the next section), and the equilibrium revenue R(q⋆, t) analogously to the
exponential case:

C(r) =
r∑

i=1

ai

R(q̂, t) =

q̂+r+1∑
i=r+1

aip̂(t− ti)

R(q⋆, t) =

q⋆∑
i=1

aip̂(t− ti)
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The quantities q̂, q⋆, r are defined analogously to the exponential scenario. Explicitly, the
equilibrium quantity q⋆ satisfies:

pD(q
⋆) = pS(q

⋆, T )

4 Sellers’ Incentives in GDAs

Let pn(t) denote a particular instance of a discrete time GDA and pD(q) a buyer’s demand
curve. Then, as above, denote R(q⋆, T ) to be the revenue earned the auctioneer by running
the auction truthfully, where the buyer purchases q⋆ units of items at time T . We now
demonstrate that the naive GDAs considered in the previous section are not revenue optimal
for the seller, in the sense that the seller can deviate from truthfully running a GDA by
participating in the auction and therefore incurring a revenue larger than R(q⋆, T ). This
attack by the seller proceeds by buying up some amount of the supply of items in the first
few auctions, therefore forcing the buyer to buy more of the tokens in later auctions, which
come at higher prices. If the inverse demand curve of the buyer is not too sensitive to changes
in quantity, we show that this deviation by the seller can be profitable, and thus the seller
would choose to not truthfully run the GDA. We note that our deviation is one example
of a class of deviations where the seller makes initial items unavailable (for a cost) to force
buyers to purchase later items. The deviation can be modified to change the sequence of
items that the seller makes unavailable, and also can be made to depend on the valuation of
a sequence of buyers, as opposed to a single buyer as we consider subsequently.

The seller’s deviation We now demonstrate the seller’s deviation. Assume for simplic-
ity that the seller chooses to run a discrete time exponential GDA with a price curve of
pn(t) = kαne−λt. The seller purchases r of the first auctions at the instant they start. In
particular, this means that the buyer is forced to start buying only auctions after r + 1,
whose initial price is higher. The cost to the seller of purchasing these is C(r) =

∑r
i=1 kα

i.
We now show that the seller can set r with respect to the buyer’s inverse demand curve
pD(q) such that this attack is profitable provided benign conditions on the rate of decay of
the demand.

Now, suppose the buyer buys at time T > r and attempts to fill her demand with respect to
the inverse demand curve pD(q). The auctions that haven’t been bought by the auctioneer are
available at times r+1, r+2, ..., T , and have prices kαr+1e−λ(T−r+1), kαr+2e−λ(T−r+2), . . . , kαT .
In order to construct the supply curve, we see that the following quantities and prices of the
items are available, from cheapest to most expensive:

1. Quantity 1 at price kαr+1e−λ(T−r+1)

2. Quantity 2 at price kαr+1e−λ(T−r+1) + kαr+2e−λ(T−r+2)

3. . . .
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4. Quantity T − r + 1 at price
∑T

n=r+1 kα
ne−λ(T−n)

Therefore, the modified inverse supply curve available to the buyer at time T , p̂s(q, T ) for
q < T is the function:

p̂s(q, T ) =

max(q+r+1,T )∑
n=r+1

kαne−λ(T−n)

Note that when q = T , the last term of ps(T ) is kαT e−λ(T−T ) = kαT , which is the initial
price of the latest, and hence most expensive auction. However, as the first r auctions were
purchased by the auctioneer, these are not available to the buyer. The price of the cheapest
auction has been increased to kαr+1e−λ(T−r+1).

Auctioneer’s Revenue To determine the amount of items the buyer is willing to purchase
given the new supply curve, and therefore the auctioneer’s revenue, we again use the fact that
the buyer will attempt to intersect pD(q) with the modified inverse supply curve p̂S(q, T ).
Alternatively, the market clearing quantity q̂ satisfies:

pD(q̂(T )) = p̂S(q̂(T ), T )

Again, note that q̂(T ) is explicitly a function of T , but we will drop the dependence for
notational simplification when the context is clear. Correspondingly, the revenue to the
auctioneer from devitating to the supply curve p̂S(q, T ) is given by:

R(q̂, T ) =

q̂+r+1∑
i=r+1

αie−λ(T−i) =
αeλ−λT (αq̂+r+1eλ(q̂+r+1) − αreλr)

αeλ − 1

which allows us to write the PNL to the auctioner of deviating:

PNL(q̂, T, r) = R(q̂, T )− C(r)

=

q̂+r+1∑
n=r+1

kαne−λ(T−n) −
r∑

n=1

kαn

=
kαeλ−λT (αq̂+r+1eλ(q̂+r+1) − αreλr)

αeλ − 1
− kα(αr − 1)

α− 1

Note that by construction, q̂ < q⋆ (we formally show this in Appendix B).

When is the deviation profitable? We now show conditions on the buyer’s inverse
demand curve pD(q) such that the above deviation is profitable, that is, PNL(q̂, T, r) >
R(q⋆, T ). The intuition behind showing profitability is to show conditions on the inverse
demand curve such that the demand does not decrease too quickly if the price becomes higher.
We first give explicit conditions on how q̂ depends on r that guarantees the profitability of

16



the deviation. To lighten notation, define b = αeλ. Then note that we have:

R(q̂, T )−R(q⋆, T ) =
kαeλ(1−T )(αq̂+r+1eλ(q̂+r+1) − αreλr)

αeλ − 1
− kαeλ(1−T )(αq⋆eλq

⋆ − 1)

αeλ − 1

=
kαeλ(1−T )

αeλ − 1
(αq̂+r+1eλ(q̂+r+1) − αreλr − αq⋆eλq

⋆

+ 1)

=
kαeλ(1−T )

αeλ − 1
(αreλr(αq̂+1eλ(q̂+1) − 1)− αq⋆eλq

⋆

+ 1)

=
kb(1−T )

b− 1
(br(bq̂+1 − 1)− bq

⋆

+ 1)

which then yields

R(q̂, T )−R(q⋆, T )− C(r) =
kb(1−T )

b− 1
(br(bq̂+1 − 1)− bq

⋆

+ 1)− kα(αr − 1)

α− 1

=
kb(1−T )

b− 1

(
br(bq̂+1 − 1)− bq

⋆

+ 1− (αr − 1)(b− 1)

eλ(1−T )(α− 1)

)
Our attack is profitable if the right-hand side of the above is positive, which holds when

bq̂+r+1 ≥ bq
⋆

+ br − 1 +
(αr − 1)(b− 1)

eλ(1−T )(α− 1)

Taking logarithm and simplifying gives the condition

(q̂ + r + 1) log b ≥ log

(
bq

⋆

+ br − 1 +
(αr − 1)(b− 1)

eλ(1−T )(α− 1)

)
= q⋆ log b+ log

(
1 + b−q⋆Λ(r, λ, T )

)
(2)

where we define

Λ(r, λ, T ) = br − 1 +
(αr − 1)(b− 1)

eλ(1−T )(α− 1)
(3)

In Appendix A, we show the following claim:

Claim 1. If qD(p) is Lipschitz, then bq
⋆ ≤ C(λ, T ) where C is a constant only dependent on

λ and T (not r)

If we define C”(λ, T ) = Λ(r,Λ,T )

bq⋆ (αr−1)
then (2) simplifies to

q̂ + r + 1 ≥ q⋆ +
1

log b
log(1 + (αr − 1)C ′(λ, T ))

or

r + 1 ≥ (q⋆ − q̂) +
1

log b
log(1 + (αr − 1)C ′(λ, T )) (4)
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Note that log(1 + AB) ≥ logA + logB for A,B ≥ 1 and that log(αr − 1) ≥ k(logα)r for a
positive constant k < 1. These two facts combined give

r + 1 ≥ (q⋆ − q̂) +
k logα

log b
r +

logC ′(λ, T )

log b

or

r

(
1− k logα

log b

)
≥ (q⋆ − q̂) +

logC ′(λ, T )

log b
− 1 (5)

Note that log b > logα, so that 1 − k logα
log b

> 0, so our bound on the number of rounds for
profitability is always positive.

Interpreting (5). How can we interpret equations (4) and (5)? These equations show that
the number of rounds to reach profitability is lower bounded by an affine function of (q⋆− q̂).
This implies that the larger the deviation from a natural equilibrium q⋆, the more we have
to compensate by buying earlier rounds (to push the price up enough to be profitable).

Similarly, recall that pD is convex, differentiable, non-increasing, and has Lipschitz gra-
dients, so that the difference pD(q

⋆)− pD(q̂) has a linear lower bound of the form

pD(q
⋆)− pD(q̂) = Θ(q⋆ − q̂)

The linear lower bound for r combined with the fact that pD is non-increasing and q̂ ≤ q⋆

implies that r = Ω(pD(q
⋆)−pD(q̂)). This can be viewed as saying that the difference quotients

and gradients of pD control the number of rounds that have to be bound. If pD has small
difference quotients and/or gradients (e.g. decays gently), then the seller does not have to
purchase many initial auctions to be profitable. On the other hand, if demand decays quickly
(e.g. the diffence quotients are large), then the auctioneer needs to compensate in a manner
proportional the the maximum change in demand over the region of quantities tendered.

Unprofitability as T → ∞. We now consider the limit in which T , the time at which
the buyer enters the auction, becomes very large. As this time grows, the buyer has access
to more and more auctions whose price is exponentially smaller than the price of the most
recent auction, and correspondingly, the auctioneer must purchase more of them to maintain
the profitability of the deviation. Formally, we show that in the T → ∞ limit, the above
deviation is not profitable for any reasonable inverse demand curve.

The simplest way to prove this is to simply note that in equation (3), Λ(r,Λ, T ) = Ω(cT )
for some c > 1 as α, b > 1. This implies that C ′(λ, T ) = Ω(cT ) so that we equation (4)
becomes

r + 1 ≥ (q⋆ − q̂) +K log(1 + cT ) ≥ (q⋆ − q̂) +K ′T

for some positive constants K,K ′ > 0 since log(1 + cT ) ≥ log cT ≥ T log c. As T → ∞, this
implies that the number of auctions that the auctioneer has to buy to be profitable goes to
infinity and hence the strategy is not profitable.
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0 1 2 · · · r · · ·q̂ + r + 1· · · q⋆

R(q⋆, T )

R(q̂, T )

0 1 2 · · · r · · · q⋆ · · · q̂ + r + 1

R(q⋆, T )

R(q̂, T )

Figure 1: Case 1 (left) and Case 2 (right). The intervals represent the support (e.g. set of indices
of non-zero terms contributing to R) of the two values. When the red and blue intervals overlap,
those terms in the sum cancel. In case 1, the support of R(q̂, t) is contained within the support of
R(q⋆, t), which gives us the negative value. On the other hand, Case 2 only has an overlap between
r and q⋆

Seller Incentives in Generic GDAs In Appendix B, we proved that q̂ ≤ q⋆ for adapted,
admissible, time translation invariant pricing function. Moreover, we also know that r < q⋆.
We will first look at R(q̂, T ) − R(q⋆, T ). This can be broken down into two cases (see
Figure 1):

1. q̂ + r + 1 ≤ q⋆

2. q̂ + r + 1 > q⋆

For case 1, we have (based on Figure 1):

R(q⋆, T )−R(q̂, T ) =
r∑

i=1

aip̂(T − ti) +

q⋆∑
i=q̂+r+2

aip̂(T − ti) ≥ 0 (6)

which implies that the attack is never profitable if q⋆ ≥ q̂ + r + 1. On the other hand, for
case 2, we have for t > maxi ti

R(q̂, T )−R(q⋆, T ) =

q̂+r+1∑
i=q⋆+1

aip̂(T − ti)−
r∑

i=1

aip̂(T − ti)

≥ ((q̂ + r + 1)− q⋆)

(
min

q⋆+1≤i≤q̂+r+1
aip̂(T − ti)

)
− r

(
min
i∈[r]

aip̂(T − ti)

)
= r(M1 −M2) + ((q̂ − q⋆) + 1)M1 (7)

where

M1 = min
q⋆+1≤i≤q̂+r+1

aip̂(t− ti) ≥ 0

M2 = min
i∈[r]

aip̂(T − ti) ≥ 0

The lower bound in eq. (7) is positive if

r ≥ ((q⋆ − q̂) + 1)
M1

M1 −M2
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By the definition of adapted pricing functions, we have M1 > M2 so that the round com-
plexity is lower bounded by q̂⋆ − q̂. If we have a positive cost C(r), we have

PNL(q̂, t, r)−R(q⋆, t) = R(q̂, t)−R(q⋆, t)− C(r)

≥ r(M1 −M2) + ((q̂ − q⋆) + 1)M1 − C(r)

which is only positive if

r ≥ M1

M1 −M2

(q̂ − q⋆)− M1 − C(r)

M1 −M2

(8)

The two results, equations (6) and (8) demonstrate two key insights into designing pricing
functions pi(t):

• If a mechanism designer knows enough about the demand curve pD to enforce q̂ +
r + 1 ≤ q⋆ by adjusting initial prices ai, they can ensure that auctioneer deviation is
unprofitable

• If a mechanism designer aims to design a mechanism in a prior-free manner (e.g. with-
out knowledge of pD), they can use (8) to increase the cost of deviation by adjusting
the pricing function

These two observations demonstrate that optimal design of pricing functions can lead to
dramatically better social welfare for participants relative to the exponential GDA.

Unprofitability as T → ∞. In order to recover the unprofitability result of §4, we need
to constrain the temporal dependence of the pricing functions, i.e. p̂(t). To find a sufficient
condition on p̂(t) such that the unprofitability result continues to hold, we need to rewrite (8)
as

r ≥ M1

M1 −M2

(q̂ − q⋆) +
C(r)−M1

M1 −M2

=
M1

M1 −M2

(
(q̂ − q⋆) +

C(r)−M1

M1

)
=

M1

M1 −M2

(
(q̂ − q⋆) +

C(r)

M1

− 1

)
Firstly, note that all of the time dependence of this term is in the M1,M2 terms. Secondly,
this form shows that6 if M1(t) = ω(1) as t → ∞, then r → ∞ as t → ∞. Therefore, our
goal is to find sufficient conditions for M1(t) = ω(1).

Let I(q⋆, q̂, r) = {i : q⋆ + 1 ≤ i ≤ q̂ + r + 1}, note the following elementary inequality

M1 = min
i∈I(q⋆,q̂,r)

aip̂(t− ti) ≥
(

min
i∈I(q⋆,q̂,r)

ai

)(
min

i∈I(q⋆,q̂,r)
p̂(t− ti)

)
6Recall that a function f(t) ∈ ω(g(t)) if limt→∞

f(t)
g(t) = ∞
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Furthermore, since p̂ is non-increasing we have

min
i∈I(q⋆,q̂,r)

p̂(t− ti) = p̂

(
max

i∈I(q⋆,q̂,r)
(t− ti)

)
= p̂

(
t− min

i∈I(q⋆,q̂,r)
ti

)
Therefore, as long as there exists a function f(t) such that limt→∞ f(t) = ∞ such that for
all intervals I(q⋆, q̂, r) and time t ̸= ti, we have

p̂

(
t− min

i∈I(q⋆,q̂,r)
ti

)
≥ f(t)(

mini∈I(q⋆,q̂,r) ai
)

then we achieve asymptotic unprofitability in a manner analogous to the exponential GDA.

5 Buyers’ Incentives in GDAs

We now turn to the incentives of the buyer in a GDA. We seek to understand cases in which
a buyer is incentivized to purchase items in alignment with her true value for the items.
Having provided a negative result for buyers that allowed to stay perpetually in the auction,
we now demonstrate conditions under which GDAs are incentive compatible for ‘ephemeral’
buyers who enter at a single time in the auction, but whose value for the items can depend
on private signals of other buyers. That is, these buyers buy items that match their true
value, even in the presence of competition at different times. In the case of such ephemeral
bidders, we consider an interdependent model of bidder values that has been considered for
art auctions (which NFT auctions resemble) [9, 27, 42]. Frequently, in art auctions, the
value of a buyer depends on the resale value of the art, which depends on how many other
buyers are willing to purchase the item. GDAs present an ideal environment to study this
kind of interdependence, because many identical copies of the item can be sold over time,
which allows potential buyers in the future to adjust their values for an item by observing
the history of the auction. For ephemeral buyers, we show conditions under which GDAs
are incentive compatible.

Prior Work on Interdependent Auctions. There are a number of papers on analyzing
optimal auctions for interdependent auctions. Roughgarden and Talgam-Cohen [42] demon-
strated a necessary and sufficient condition for both ex post properties that is analogous to
the classical Myerson Lemma. On the other hand, Li [27] found a combinatorial classifica-
tion for interdependent values and provided an ascending auction that achieved incentive
compatibility. Finally, Chawla, et. al [9] provide explicit bounds on revenue maximization.
We note that Li’s condition for being ex post incentive compatible and individually rational
is the most directly connected to GDAs.

There are three concepts we need to state to describe Li’s results (for more details, see
the original paper [27]). The single crossing condition states that if t′i > ti then vi(si, s−i) ≥
vj(si, s−i) implies vi(s

′
i, s−i) ≥ vj(s

′
i, s−i). Colloquially, this states that changes to individual

agents’ valuations are dominated by their signal si more than any other signal from another
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agent sj. Secondly, recall that a matroid on a base set [n] is a set of subsets M ⊂ 2[n] such
that the following two conditions hold

• Downward Closed. If S ⊂ T and T ∈ M, then S ∈ M

• Basis Expansion. If A,B ∈ M with |A| < |B| then there exists i ∈ B − A such that
A ∪ {i} ∈ M

Finally, Li defines a VCG-L mechanism as a standard Vickrey-Clarke-Groves (VCG) mech-
anism with particular (bidder-specific) monopoly reserve prices ri(s−i) for each user i. The
mechanisms used by Roughgarden and Chawla, et. al are subsets of this mechanism for
ri(s−i); see [27] for more details. Li proves the following:

Theorem 1. [9, Lemma 2.2], [27, Thm. 1] Suppose that M is a matroid on the set of
bidders and vi satisfies the single crossing condition for all i. Then VCG-L are ex post
incentive compatible and individually rational.

We will define VCG-L mechanisms shortly and show that the GDAs can be viewed as
a form of VCG-L mechanism. Therefore, if we can construct a sequence of auctions that
satisfies the matroid constraint and valuations that satisfy the single crossing condition, we
can achieve ex post incentive compatibility for GDAs. In order to utilize this theorem, we
will first need to construct signals, valuations, and allocation rules to analyze.

Valuation and Allocation. It is well-known that NFT auctions suffer from the “winner’s
curse” [48], which is a well-known phenomena within interdependent auctions [20]. These
phenomena are often due to the existence of common values — my valuation for the item
depends on the valuations that others have, and in fact knowing that another player values
the item more increases my value for the item. As such, we will model the valuation of a
GDA participant as the sum of two components:

vij(si,j, s−i,j) = vPi,j(sij) + vCij(sij, s−i,j)

where vPi is a private valuation drawn from a fixed distribution (independent of vPj ) and vCi
is a common value that depends on all agents’ signals. We will be focused on constructing vCi
while leaving vPi unspecified as classical auction theory can handle the private components.

At time t, we define the jth auction’s price to be pj(t) = aj p̂(t−tj)1t≥tj . We can treat the
demand function pD(q) as the average demand of a user, such that if there exists a bidder
k with si(t) > pD(q), then bidder i can realize si(t) − pD(q) in value. Since the demand
is connected to pj(t) via the supply-demand clearing equation p̂S(q, T ) = pD(q, T ), we can
simply look if the jth auction provides a profit, e.g. si(t) ≥ pj(t). As such, we can define

vCij(sij, s−i,j) = max(si(t)− pj(t), 0)

Therefore, bidder i has positive value if

vi(si, s−i) = vPi (si) + max(si(t)− pj(t), 0) ≥ pj(t)
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which implies the condition
si(t) ≥ 2pj(t)− vPi (si)

This intuitively says that as long as the price is high enough to be worth more than my
private valuation but simultaneously low enough that there is another agent who demands
the item, then there is positive value. This suggests the following deterministic allocation
rule

xij(si, s−i) = 1si(t)≥2pj(t)−vPi (si)

Finally, we will remark on when these valuations are single-crossing. For differentiable
valuations, the single crossing condition becomes ∂sivij(s) > ∂skvij(s) for all k ̸= i. This
holds here as long as ∂siv

P (si) > ∂sj max(sj(t) − pj(t), 0) which is a condition that can be
enforced by adjustment of maximum posted prices ai.

Vickrey-Clarke-Groves mechanisms. We will briefly describe the generalized Vickrey-
Clarke-Groves (VCG) mechanisms of [9, §2] and [27, §3], which will be used for understanding
incentive compatibility. Such a mechanism first relies on constructing a family of subsets of
possible winners, M. If we have had T auctions by discrete time T ∈ N, an element of M
will be an element of [n]× [T ], where n is the number of bidders. More formally, we define a
set of valid auction outcomes to be M ⊂ 2[n]×[T ]. We will slightly abuse notation and define
M ⊂ 2[T ] if there is only one bidder. Finally, note that if M is a matroid then we can utilize
Theorem 1.

Given a set of admissible allocations M, VCG mechanisms do three things:

1. Construct a set of winners. W (s) = argmaxA∈M
∑

(i,t)∈A vit(s)

2. Compute threshold signal. The threshold signal for agent i, i∗ is defined as

s∗i (s−i) = inf
si
{∃j such that (i, j) ∈ argmax

A∈M

∑
(l,m)∈A

vlm(si, s−i)}

3. Compute the payment. The VCG payment for agent i is defined as pV CG
i (s, T ) =∑

j∈[T ] vij(s
∗
i , s−i)

A VCGmechanism with lazy reserve prices (VCG-L) functions takes as input a vector r ∈ Rn
+

and performs an auction as follows:

• Agents report signals si

• The mechanism chooses a subset W (s) = argmaxA∈M
∑

(i,j)∈A vij(s)

• Each bidder is given a take-it-or-leave-it posted price of max(ri, p
V CG
i (s))

The prices ri are known as reserve prices and are tuned to provide particular guarantees. In
the case of a GDA, we can view the current price represented by the inverse supply curve
as a posted price. We take advantage of the fact that the GDA is effectively a posted price
mechanism to construct ri and M that achieve incentive compatibility.
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Incentive compatibility for ephemeral buyers. We now consider the case of an ephemeral
bidder that enters the auction at time T ∈ N (and must either purchase a subset of the auc-
tions available, or leave the auction). Recall that this buyer has a private signal si ∈ R and
can see the history of the auction, using the public signals pij which denotes the price that
item i was sold for in auction j. We demand ex-post incentive compatibility and individual
rationality over the entire sequence of signals (s1, . . . , sn).

Suppose that the set of admissible auctions, indexed by time, is M ⊂ 2[T ] The subset
of auctions purchased by this bidder (who we will denote by i) will be a set K(s, T ) ∈ M
defined as

K(s, T ) = argmax
A∈M

∑
t∈A

vit(s)− pt(T )

This is analogous to the bidder purchasing a number of auctions that matches supply to
demand. Following [9, §2], we define the threshold signal s∗i for the ith bidder as

s∗i = inf
s≥0

{
argmax

A∈M

∑
t∈A

(vit(s, s−i)− pt(T )) ≥ 0

}

Recall single ephemeral bidder either realizes positive value at time T or drops out and
therefore the social welfare of the bidder is max(K(s, T ) −K(s∗i , s−i, T ), 0). Note that this
formulation constructs a VCG-L mechanism with reserve prices ri(A) =

∑
(i,j)∈A pj(T ) for a

set A ∈ M. Theorem 1 shows that this mechanism, which a VCG mechanism is incentive
compatible if M is a matroid and vi,j are single crossing. In §5.1, we explicitly construct
a matroid that provides conditions that depend on the valuation and the pricing function
parameters that achieves this bound. We note that if the auctioneer and/or mechanism
designer know the value function vi,j, then they can construct GDA initial prices aj and
decay functions p̂(t) such that A ∈ M always holds. This holds for an ephemeral buyer at
any time, and therefore, the auction is ex post incentive compatible provided that M is in
fact a matroid, which we show next.

5.1 Matroid Construction

In this section, we construct a matroid using the GDA pricing functions that holds only if
particular conditions relating the pricing functions to bidder valuations are satisfied. This
matroid naturally represents the set of possible winning bundles and the conditions are
related to the gap between the buyers’ valuation and the current purchase price. Our condi-
tions can likely be relaxed (constructing a larger matroid or even a general downward closed
set) and mainly serve to illustrate that it is possible to achieve ex post incentive compati-
bility and individual rationality with GDAs. Given that the construction of a matroid M
is tantamount to achieving incentive compatibility, the existence of this matroid for a given
set of GDAs demonstrates that a mechanism designer can construct price curves pj(t) to
achieve ex post incentive compatibility and individual rationality.

We construct a matroid M on the base set [n] × [T ] where n is the number of bidders
and T is the number of auctions. M is constructed recursively using pricing functions p̂(t),
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initial prices ai, and valuations vi as follows:

M1 = {(i, 1) : vi(si1) ≥ a1}
Mk = {S ∪ {(i, ℓ)} : ℓ ≤ k, S ∈ Mk−1, ̸ ∃i′ such that (i′, ℓ) ∈ S,

vi(sik) ≥ aℓp̂(tk − tℓ)∑
(j,r)∈S

vj(sjk) + vi(sik) ≥ aℓp̂(tk − tℓ) +
∑

(j,r)∈S

arp̂(tk − tr)

vi(sik)− aℓp̂(tk − tℓ) ≥ min
S⊂Mk

∑
(j,r)∈S

arp̂(tk − tr)− vj(sjk)}

Informally, the conditions in the matroid do the following:

• vi(sik) ≥ aℓp̂(tk − tℓ): This ensures that the agent winning the kth auction has non-
negative welfare

•
∑

(j,r)∈S vj(sjk)+vi(sik) ≥ aℓp̂(tk− tℓ)+
∑

(j,r)∈S arp̂(tk− tr): This ensures that at time

tk (when the kth auction is run), then total social welfare of all elements of the set
(including those added previously whose prices have decayed) are still positive

• vi(sik)− aℓp̂(tk − tℓ) ≥ minS⊂Mk

∑
(j,r)∈S arp̂(tk − tr)− vj(sjk): This condition ensures

that the welfare realized at the kth round is at least the minimum total social welfare
of the previous round (and is needed for the basis expansion property). Note that the
right hand side of this condition can only be positive if the the majority of the values
vj(sjk) decayed faster than the fixed prices arp̂(tk − tr) did (which only occurs if the
gradients of vj are larger than those of p̂). Finally, we note that this can be viewed as
a ‘no-regret’ condition (in the sense of the example in the introduction).

In Appendix D, we prove that M = ∪kMk satisfies the downward closed and basis ex-
pansion properties and hence is a matroid. We note that the valuations vi constructed in
the previous section are single crossing under mild conditions (see §2). Therefore, the results
of [9, 27] demonstrate that if a GDA satisfies these matroid conditions, then it achieves ex
post incentive compatibility and individual rationality. In particular, this matroid construc-
tion shows that even if buyers change their valuations based on expectations of future resale
value (using the is

6 Conclusion and Future Work

In this paper, we provided the first formal description of gradual dutch auctions and analyzed
seller and buyers incentives in these auctions. While showed that the exponential GDA
of [18] still has issues with seller and buyer incentives (especially for buyers that remain in
the auction over time), there exist other ways to provide auctioneer credibility and incentive
compatibility for GDAs. By constructing a more generalized version of the GDA, we were
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able to provide sufficient conditions for these desiderata. This suggests that the mechanism
design space for GDAs is more rich than initially described in [18].

This work only scratched the surface on the close relationship between GDAs, posted
prices, and clock auctions. There are a number of open questions about GDAs to answer, es-
pecially with regards to their efficiency and/or the trade-off between computational efficiency
and revenue achieved. Below we will highlight a few directions for future inquiry.

Connection to Clock Auctions and Deferred Revelation Auctions. Combinatorial
clock auctions [26], which are used in spectrum auctions, and deferred revelation auctions [11]
both involve price clocks (analogous to our price functions) that buyers respond to. These
auctions, which can also be indirect revelation mechanisms, have a number of similarities to
GDAs and it is likely that GDAs inherit their strong strategyproofness properties.

Multiple type extensions of Single Crossing. We note that the single-crossing condi-
tion for single dimensional signals does not carry over cleanly to signals for multiple types of
items. Since our model only auctions one type of items, we were able to construct single di-
mensional signals for each buyer. We note, however, that there do exist sufficient conditions
for auctions with bidders of multiple types and multiple item types. These conditions [23]
have not been adapted to the interdependent auction setting and we believe this is a worth-
while future endeavor (partial results for adapting this condition to interdependent auction
can be found in [13]).

Multidimensional GDAs. Extending the analysis of this paper to multi item, multidi-
mensional auctions is still an open problem. One could consider a multidimensional extension
of GDAs in which a seller wants to sell batches of different items simultaneously. Suppose
there are m types of items, each with Ni number of items to be sold, where i = 1, . . . ,m.
The auctioneer sells each of the items at discrete times n, with a price curve pin(t) for the
ith type of item. We once again assume that a buyer has an inverse demand curve, pD(q),
where now q ∈ Rm

+ denotes the vector of types of item purchased by the buyer. Under what
conditions do we recover the round complexity lower bound of §4 and the ex post incentive
compatibility and/or individual rationality of §2? We suspect that further assumptions on
the valuations and the demand are needed to handle this case.

Approximate Revenue Optimality. In [9], the authors demonstrate that VCG-L mech-
anisms can be approximately revenue optimal. In order to do this, they add an extra con-
straint upon the value function that is likely satisfies in our scenario. However, we suspect
that the precise approximation ratio is worse for the common plus private valuation we use
and leave this for future work.
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[19] Sascha Füllbrunn and Abdolkarim Sadrieh. 2012. Sudden termination auctions—An
experimental study. Journal of Economics & Management Strategy 21, 2 (2012), 519–
540.

[20] William N Goetzmann and Matthew Spiegel. 1995. Private value components, and the
winner’s curse in an art index. European Economic Review 39, 3-4 (1995), 549–555.

[21] Jason D Hartline. 2013. Mechanism design and approximation. Book draft. October
122, 1 (2013).

[22] Jason D Hartline et al. 2013. Bayesian mechanism design. Foundations and Trends®
in Theoretical Computer Science 8, 3 (2013), 143–263.

[23] Philippe Jehiel and Benny Moldovanu. 2001. Efficient design with interdependent val-
uations. Econometrica 69, 5 (2001), 1237–1259.

[24] Jayant Kalagnanam and David C Parkes. 2004. Auctions, bidding and exchange design.
In Handbook of quantitative supply chain analysis. Springer, 143–212.

[25] Peyman Khezr and Vijay Mohan. 2021. Property rights in the Crypto age: NFTs and
the auctioning of limited edition artwork. Available at SSRN 3900203 (2021).

[26] Jonathan Levin and Andrzej Skrzypacz. 2016. Properties of the combinatorial clock
auction. American Economic Review 106, 9 (2016), 2528–51.

[27] Yunan Li. 2017. Approximation in mechanism design with interdependent values. Games
and Economic Behavior 103 (2017), 225–253.

[28] Kristof Lommers, Jack Kim, and Mohamed Baioumy. 2022. Market Making in NFTs.
Available at SSRN 4226987 (2022).

[29] Torgin Mackinga, Tejaswi Nadahalli, and Roger Wattenhofer. 2022. TWAP Oracle
Attacks: Easier Done than Said? Cryptology ePrint Archive (2022).

28

https://www.paradigm.xyz/2022/04/gda


[30] Paul R Milgrom and Robert J Weber. 1982. A theory of auctions and competitive
bidding. Econometrica: Journal of the Econometric Society (1982), 1089–1122.

[31] Jason Milionis, Dean Hirsch, Andy Arditi, and Pranav Garimidi. 2022. A Framework
for Single-Item NFT Auction Mechanism Design. In Proceedings of the 2022 ACM CCS
Workshop on Decentralized Finance and Security. 31–38.

[32] Debasis Mishra and David C Parkes. 2009. Multi-item vickrey–dutch auctions. Games
and Economic Behavior 66, 1 (2009), 326–347.

[33] Pablo Misirov, Devansh Batham, and Hrishikesh Bhat. 2022. Spearbit Art Gobblers
Security Review. https://github.com/spearbit/portfolio/blob/master/pdfs/

ArtGobblers-Spearbit-Security-Review.pdf

[34] Mayukh Mukhopadhyay and Kaushik Ghosh. 2021. Market Microstructure of Non
Fungible Tokens. arXiv preprint arXiv:2112.03172 (2021).

[35] Tri-Dung Nguyen and Tuomas Sandholm. 2014. Optimizing prices in descending clock
auctions. In Proceedings of the fifteenth ACM conference on Economics and computation.
93–110.

[36] Noam Nisan. 2006. Bidding languages. Combinatorial auctions (2006), 400–420.

[37] Noam Nisan and Ilya Segal. 2002. The communication complexity of efficient allocation
problems. Draft. Second version March 5th (2002), 173–182.

[38] User: @pandajackson42. 2023. Gobblers NFT: General Stats. https://dune.com/

pandajackson42/art-gobblers

[39] David Christopher Parkes. 2001. Iterative combinatorial auctions: Achieving economic
and computational efficiency. University of Pennsylvania.

[40] Andrei-Dragos Popescu. 2021. Non-Fungible Tokens (NFT)–Innovation beyond the
craze. In 5th International Conference on Innovation in Business, Economics and Mar-
keting Research.

[41] Tim Roughgarden and Okke Schrijvers. 2016. Ironing in the dark. In Proceedings of the
2016 ACM Conference on Economics and Computation. 1–18.

[42] Tim Roughgarden and Inbal Talgam-Cohen. 2013. Optimal and near-optimal mecha-
nism design with interdependent values. In Proceedings of the fourteenth ACM confer-
ence on Electronic commerce. 767–784.

[43] Tuomas Sandholm. 2000. Issues in computational Vickrey auctions. International Jour-
nal of Electronic Commerce 4, 3 (2000), 107–129.

[44] Galit Shmueli, Ralph P Russo, and Wolfgang Jank. 2007. The BARISTA: A model for
bid arrivals in online auctions. The Annals of Applied Statistics 1, 2 (2007), 412–441.

29

https://github.com/spearbit/portfolio/blob/master/pdfs/ArtGobblers-Spearbit-Security-Review.pdf
https://github.com/spearbit/portfolio/blob/master/pdfs/ArtGobblers-Spearbit-Security-Review.pdf
https://dune.com/pandajackson42/art-gobblers
https://dune.com/pandajackson42/art-gobblers


[45] William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of finance 16, 1 (1961), 8–37.

[46] Victor von Wachter, Johannes Rude Jensen, Ferdinand Regner, and Omri Ross. 2022.
NFT Wash Trading: Quantifying suspicious behaviour in NFT markets. arXiv preprint
arXiv:2202.03866 (2022).

[47] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-fungible token (NFT):
Overview, evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447
(2021).

[48] Z John Zhang. 2022. Cryptopricing: Whence Comes the Value for Cryptocurrencies
and NFTs? International Journal of Research in Marketing (2022).

A Proof of Claim 1

From the defining equation pD(q
⋆) = pS(q

⋆, T ) and the smoothness of pD, we can use the
implicit function theorem to write

q⋆ = qD(pS(q
⋆, T )) = p−1

D (K(λ)(bq
⋆ − 1)) ≤ LK(λ)(bq

⋆ − 1)

The first equality used the fact that pS(q
⋆, T ) = kb1−T

b−1
(bq

⋆ − 1) = K(λ)(bq
⋆ − 1) from eq. 1

and the inequality used the fact that Lipschitz p−1
D (p) is Lipschitz for some constant L > 0

and limp→∞ qD(p) = 0. The above equation can be rewritten as

Abq
⋆ − q⋆ ≥ A

where A = LK(λ). In terms of the Lambert W function, the solution for Aeq log b − q = A
this can be written as

q⋆ = −
W

(
−A log b

bA

)
+ A logB

log b
= −

W
(
−A log b

bA

)
log b

+ A

Thus provided that −A log b
bA

is in the domain of the Lambert W function, which holds imme-
diately from b ≥ 1, A > 0, we have the conclusion of the claim.

B Proof of q̂ < q⋆ for Generic GDAs

We show here that for generic GDAs with price functions pn(t) = aip̂(t − ti), the modified
clearing quantity under the attack q̂ and the equilibrium quantity q⋆ satisfy q̂ < q⋆. Note
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that q̂ and q⋆ satisfy:

pD(q
⋆) =

q⋆∑
n=1

pn(T − n)

pD(q̂) =

q̂+r+1∑
n=r+1

pn(T − n)

where for brevity we denote pn(T − n) = aip̂n(T − n). Assume for the sake of contradiction
that q̂ > q⋆. This implies that pD(q̂) − pD(q

⋆) > 0. We have two cases: q̂ + r + 1 ≤ q⋆ and
q⋆ < q̂ + r + 1. In the first case, when q̂ + r + 1 ≤ q⋆. Then:

pD(q̂)− pD(q
⋆) =

q̂+r+1∑
n=r+1

pn(T − n)−
q⋆∑
n=1

pn(T − n)

= −
q⋆∑

n=q̂+r+1

pn(T − n)−
r∑

n=1

pn(T − n) < 0

which is a contradiction. On the other hand, when we have q⋆ < q̂ + r + 1, when we have:

pD(q̂)− pD(q
⋆) =

q̂+r+1∑
n=r+1

pn(T − n)−
q⋆∑
n=1

pn(T − n)

=

q̂+r+1∑
n=q⋆+1

pn(T − n)−
r∑

n=1

pn(T − n)

We can bound this as

q̂+r+1∑
n=q⋆+1

pn(T − n)−
r∑

n=1

pn(T − n) ≤ pq̂+r+1(T − q̂ + r + 1)(q̂ − q⋆ + r + 1)− rp1(T − 1)

where we use the fact that ai is non-decreasing and p̂(t) is decreasing in t, so pn(T − n) is
non-decreasing in n. As the right hand side is less than or equal to zero (which has to be
true since pD is non-increasing and by assumption q̂ > q⋆) this implies that

q̂−q⋆ <
rp1(T − 1)

pq̂+r+1(T − q̂ + r + 1)
−r−1 = r

(
p1(T − 1)

pq̂+r+1(T − q̂ + r + 1)
− 1

)
−1 < r

(
a1

aq̂+r+1

− 1

)
−1

Since the ai are non-decreasing, the right hand side is negative, implying that q̂ − q⋆ < 0 or
q̂ < q⋆.
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C Proof that r < q⋆ for general GDAs

We now show that r < q⋆, having proved in the last section that q̂ < q⋆. We immediately
see that if r > q̂, then

PNL(q̂, T ) = R(q̂, T )− C(r)

=

q̂∑
n=r+1

pn(T − n)−
r∑

n=1

an < 0

because
∑q̂

n=r+1 pn(T − n) = 0 due to the fact that r + 1 > q̂. That is, if r > q̂, the revenue
from the deviation is immediately negative, and thus no rational seller would choose this.
Therefore, r < q̂ < q⋆.

D M is a matroid

We now show that the pair ([n]× [T ],M) is a matroid. First, note that that M is downward
closed by construction. This is because we incrementally add admissible auction winners
to existing sets. We will show basis expansion via contradiction. Suppose that the basis
expansion property doesn’t hold and there are sets A,B ∈ M such that |B| > |A| but there
is no (i, ℓ) such that A ∪ {(i, ℓ)} ∈ M. Since (i, ℓ) ∈ B ∈ M, we know that vi(si1, . . . sik) ≥
aℓp̂(tk − tℓ). Since A ∪ {(i, ℓ)} /∈ M, we must have

∑
(j,r)∈A arp̂(tk − tr)− vj(sj1, . . . , sjk) >

vi(si1, . . . , sik)− aℓp̂(tk − tℓ)..But since A ∈ Mk, we have∑
(j,r)∈A

vj(sj1, . . . , sjk) ≥
∑

(j,r)∈A

arp̂(tk − tr)

so vi(si1, . . . , sik)− aℓp̂(tk − tℓ) ≤ 0, a contradiction for the first condition.
To see that the second condition cannot be violated, note that since (i, ℓ) ∈ B − A we

have ∑
(j,r)∈B

vj(sj1, . . . , sjk) ≥
∑

(j,r)∈B

arp̂(tk − tr)

or

vi(si1, . . . , sik)− aℓp̂(tk − tℓ) ≥
∑

(j,r)∈B−{(i,ℓ)}

arp̂(tk − tr)− vj(sj1, , . . . , sjk)

≥ min
S⊂Mk

∑
(j,r)∈S

arp̂(tk − tr)− vj(sj1, . . . , sjk)

sinceM is downward closed. Therefore there must exist (i, ℓ) ∈ B such that A∪{(i, ℓ)} ∈ M
and M is a matroid.
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