
SMTSampler: Efficient Stimulus Generation from Complex SMT Constraints

Rafael Dutra, Jonathan Bachrach and Koushik Sen
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{rtd,jrb,ksen}@cs.berkeley.edu

ABSTRACT

Stimulus generation is an essential part of hardware verification,
being at the core of widely applied constrained-random verifica-
tion techniques. However, as verification problems get more and
more complex, so do the constraints which must be satisfied. In
this context, it is a challenge to efficiently generate random stimuli
which can achieve a good coverage of the design space. We de-
veloped a new technique SMTSampler which can sample random
solutions from Satisfiability Modulo Theories (SMT) formulas with
bit-vectors, arrays, and uninterpreted functions. The technique uses
a small number of calls to a constraint solver in order to generate
up to millions of stimuli. Our evaluation on a large set of complex
industrial SMT benchmarks shows that SMTSampler can handle a
larger class of SMT problems, outperforming state-of-the-art con-
straint sampling techniques in the number of samples produced
and the coverage of the constraint space.

CCS CONCEPTS

•Hardware→ Test-pattern generation and fault simulation;
Theorem proving and SAT solving; Semi-formal verification;

KEYWORDS

constrained-random verification, stimulus generation, sampling,
SMT, arrays, bit-vectors, uninterpreted functions

ACM Reference Format:

Rafael Dutra, Jonathan Bachrach and Koushik Sen. 2018. SMTSampler:
Efficient Stimulus Generation from Complex SMT Constraints. In IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD
’18), November 5–8, 2018, San Diego, CA, USA. ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/3240765.3240848

1 INTRODUCTION

Constrained-random verification (CRV) [12] is one of most widely
used verification techniques in industry. At the core of CRV, a
stimulus generator is responsible for generating multiple inputs
that satisfy some user-specified constraints. Those inputs are then
used to drive the design under test, in an attempt to cover the design
space and trigger faults.

The constraints used in CRV can be manually specified by the
verification engineer, taking into account preconditions required

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240848

by the hardware and other domain-specific knowledge [11, 15].
However, the constraints are increasingly being synthesized by
automated formal methods. Such methods can generate constraints
from a high-level specification of the hardware interfaces [13].
Such constraints can be large and complex, involving higher-order
theories, such as arrays and bit-vectors.

These constraints obtained from formal specification of hardware
interfaces can be specified in the framework of Satisfiability Modulo
Theories (SMT), using high-level theories such as bit-vectors, arrays
and uninterpreted functions. The problem of finding one solution to
SMT constraints is well studied, with off-the-shelf constraint solvers
available [5]. There is also a standardized library SMT-LIB with
multiple SMT benchmarks for different solvers to use [1]. However,
the problem of generating multiple diverse solutions from one SMT
constraint is much less studied in literature.

One big challenge to generating random stimuli from such con-
straints is that they can be quite complex, involving linear and
non-linear arithmetic over a large number of bit-vectors, arrays
and uninterpreted functions. When solutions are sparse and non-
linearly distributed, traditional techniques such as MCMC samplers
do not perform well, while techniques that use constraint solvers
to obtain each solution become too expensive.

Another challenge is making sure the solutions are diverse and
cover a large portion of the solution space. A good stimulus gen-
erator should avoid generating solutions which are only trivially
different, because those are less likely to trigger new behaviors
in the circuit. For example, if we have a constraint of the form
x > 5 ∨ ϕ, where x is a 32-bit integer and ϕ is a complex SMT
formula possibly involving x and other variables, there are billions
of possible values for x which satisfy this constraint by simply
satisfying the sub formula x > 5. However, producing billions of
solutions which only differ in the value of x while ignoring other
variables will likely not lead to new coverage and faults.

We developed a technique SMTSampler which can efficiently
sample millions of solutions from a SMT formula. SMTSampler
works by computing simple atomic mutations that can be applied
to a satisfying assignment while preserving the satisfiability of
the formula. Those mutations represent minimal sets of bits that
can be flipped from the SMT variables of the formula to trans-
form one solution into another solution to the formula. The key
insight is that several such mutations can be merged together to
produce valid solutions with high probability. We collect as many
atomic mutations as possible and then adaptively combine subsets
of those mutations together, while avoiding invalid samples and
enabling the generation of a large number of valid solutions to the
formula. SMTSampler works for SMT formulas including theories
of bit-vectors, arrays and uninterpreted functions. We define atomic
mutations for variables of each of those types, along with opera-
tions to combine them. Our evaluation shows that SMTSampler

1

https://doi.org/10.1145/3240765.3240848
https://doi.org/10.1145/3240765.3240848

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Dutra et al.

can typically generate millions of solutions, using only hundreds
of calls to the constraint solver.

In order to evaluate the coverage of the constraint space, we
define a metric for the internal coverage of a SMT formula. The
metric is defined by regarding the formula as a circuit, so that it
can serve as a proxy for the coverage that would be obtained in the
design under test.

Our main contributions are:

• Develop a technique SMTSampler and implement it in an
open source tool for efficient sampling from SMT formulas.
• Evaluate SMTSampler against existing techniques on a large
set of complex benchmarks from SMT-LIB.
• Define a metric for internal coverage of SMT formulas and
use it in evaluating different sampling algorithms.

The paper is organized as follows. Section 2 presents the existing
work in hardware stimulus generation and sampling from logical
constraints. Section 3 defines the constraint format and Section 4
describes how our technique SMTSampler produces samples from
those constraints. Finally, Section 5 evaluates it in terms of samples
generated and coverage, and Section 6 concludes the results.

2 RELATEDWORK

There is a large body of work in sampling solutions to Boolean
satisfiability (SAT) formulas [9]. In principle, methods to sample
solutions to SAT formulas can also be applied to SMT, as there are
techniques for eager encoding of SMT formulas into SAT. However,
one limitation of this conversion is the loss of the higher-level
structure of the formula, which could be leveraged to generate
samples more efficiently and also to ensure the samples are diverse.
In SMTSampler, we have found that working at the SMT level
without converting the formula into SAT leads to a larger number
and diversity of samples.

One important class of sampling techniques is based on Markov
Chain Monte Carlo (MCMC) methods [7, 8]. They generate samples
from a probability space by applying some form of random walk
through the solution space, using techniques such as simulated
annealing and Metropolis-Hastings. With MCMC, it is possible to
guarantee that the distribution of samples will eventually converge
to the desired distribution (such as the uniform one). However,
in practice, this convergence is too slow for real-world problems,
and heuristics are also applied which make the sampling more bi-
ased [8, 14]. One common approach is combining Metropolis moves
with a random walk through the assignments of the formula [14].
MCMC is the basis of most constrained-random verification tech-
niques [7, 8, 12, 15]. MCMC techniques are typically effective for
linear constraints, where the space of solutions is composed of poly-
topes which can be efficiently covered with randomwalks [8]. How-
ever, they are not so effective on arbitrary non-linear constraints,
that lead to a more sparse distribution of solutions. SMTSampler,
on the other hand, is designed to be applied even to arbitrary, com-
plex non-linear constraints.

A different strategy for sampling is using a constraint solver to
produce each sample. The internal search heuristics of the solver can
be modified to generate more diverse samples [10]. An important
limitation of this approach is that it requires one constraint solver

call per each sample produced, which is expensive. SMTSampler,
on the other hand, generates several samples per solver call.

On the more theoretical side, there are techniques based on
universal hashing which can sample solutions from SAT formu-
las with a provably uniform distribution, such as UniGen [4] and
UniGen2 [2]. However, these techniques are expensive, as they
require solving constraints which include complex hash functions
that are hard to solve. In addition, the goal of sampling uniformly
from the solution space does not necessarily lead to the best cov-
erage of the constraint space. We designed SMTSampler with the
goals of quickly generating samples and achieving the best possible
coverage of the design space.

Following the universal hashing approach, SMTApproxMC [3]
is an approximate model counter for SMT formulas. It is applicable
only to formulas in the bit-vector theory and works similarly to
UniGen [4] and UniGen2 [2], but using different hash functions
that work at the word level. Although SMTApproxMC is a model
counter, it can be adapted to work as a random sampler of bit-
vector solutions, by outputting the solutions in a given cell, after
the solution space is uniformly partitioned into cells. In contrast
to SMTApproxMC, SMTSampler is designed to be more efficient
and to also work with formulas containing the theories of arrays,
uninterpreted functions and bit-vectors.

A recent technique developed to sample solutions to SAT for-
mulas is QuickSampler [6]. It works by computing some simple
patterns of bit-flips, called atomic mutations, which can be ap-
plied to a valid solution to generate another valid solution to the
formula. QuickSampler produces samples by combining k such
atomic mutations together, for each k ≤ 6. Those samples are
not guaranteed to be solutions for the formula, but they were so-
lutions with high probability on hundreds of SAT benchmarks.
Our technique SMTSampler also uses the same idea of comput-
ing atomic mutations and combining them to generate samples.
However, SMTSampler is adapted to work over the higher-level
theories of bit-vectors, arrays, and uninterpreted functions, produc-
ing and combining mutations over those data types directly. This
leads to more efficient solving, while also eliminating the cost to
convert the SMT formula into SAT. We show in our experimental
evaluation section that on most benchmark programs SMTSampler
outperforms a naïve approach that converts a SMT formula to SAT
and then appliesQuickSampler. Moreover, unlikeQuickSampler,
SMTSampler only outputs valid samples and adaptively increases
the number k of atomic mutations combined based on the accuracy
in the samples that are tried.

3 CONSTRAINT SPECIFICATION

SMTSampler works over any constraints in the QF_AUFBV logic
of SMT, which are quantifier-free formulas over the theories of bit-
vectors, bit-vector arrays, and uninterpreted functions. We define
the set of variables in the formula as V = Bool ∪ BV ∪ Array ∪ UF ,
where Bool, BV , Array, and UF are the sets of variables of type
Boolean, bit-vector, array, and uninterpreted function, respectively.

A SAT formula is a logical formula constructed from only
Boolean variables and operators from combinatorial logic, such
as ∧,∨,¬. A SMT formula, on the other hand, is a logical formula
with terms (variables, constant symbols and function symbols) orig-
inated not only from the SAT logic, but also from different theories.

2

SMTSampler: Efficient Stimulus Generation from Complex SMT Constraints ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

Table 1: Types of variables allowed

Type Example Value

b ∈ Bool b = False
v ∈ BV v = 01100111

a ∈ Array a[x] =


if x = 001 : 0110
if x = 011 : 1001
if x = 101 : 0101
otherwise : 0010

f ∈ U F f (x, y) =


if x = 0 ∧ y = 10 : 10
if x = 1 ∧ y = 00 : 01
otherwise : 11

For example, the formula select(a, 011)+v > 0110 contains an array
variable a and a bit-vector variablev , two bit-vector constants 011
and 0110, an array function select, a bit-vector function +, and a
bit-vector predicate >.

One of the theories that is commonly used in an SMT formula is
the theory of fixed-size bit-vectors. Here, we denote by BV [n] the
sort of bit-vectors of size n. The theory of bit-vectors includes the
customary arithmetical and logical operations on bit-vectors, such
as additions, comparisons and bit-wise operations. Another theory
common in SMT formulas is the theory of arrays, which consists
of two functions select and store that satisfy the usual axiom

select(store(a,x ,y),x ′) =

{
y, if x ′ = x

select(a,x ′), otherwise.

Here, x ,x ′ ∈ BV [sx] are bit-vectors of a certain size sx and y ∈
BV [sy] is a bit-vector with a possibly different size sy . a is an array
of domain BV [sx] and range BV [sy]. The function select returns
the value at a given index from the array, while store produces an
array with a new value assigned to the given index. The theory
of uninterpreted functions is a free theory, so it does not add any
new axioms. Nothing is known a priori about the result of applying
such a function to its arguments.

Table 1 shows example values for variables of each type. Bold
names b,v,a, f are used for variable names, while b,v,a, f repre-
sent concrete instances that can be assigned to those variables in a
given solution. Let S be the set of all possible assignments to the
variables inV . Given an assignment σ ∈ S and a variablev ∈ V we
denote by σJvK the concrete assignment tov under σ .

Variables in BV are fixed-size bit-vectors, such as the variable
v ∈ BV [8]. Arrays must have bit-vector domains and ranges, such
as the array a, with domain BV [3] and range BV [4]. Uninterpreted
functions can have any arity. The example shows the function
f : BV [1] × BV [2] → BV [2], of arity 2. A concrete instance a for
an array a is constructed by defining its value for a finite set of
indices I (a) and defining a default value d(a) for all other indices.
In the example shown, I (a) = {001, 011, 101} and d(a) = 0010.
Typically, only a small number of indices will be relevant when
solving a constraint, even for array domains such as BV [64], which
allows 264 possible indices. An analogous construction is used for
uninterpreted functions, where its value is defined for a finite set
of argument tuples.

4 SMTSAMPLER ALGORITHM

SMTSampler uses a small number of calls to an off-the-shelf con-
straint solver in order to generate a large number of solutions. The
core idea is to learn interesting ways that the solutions of a formula
can be modified minimally to generate new solutions. We call those
modifications atomic mutations, which are minimal changes that
can be applied to a solution in order to obtain another neighboring
solution to the formula. We then define a combination function
which can be used to merge the effects of several distinct atomic
mutations. It generates a compound mutation and applies it to the
original solution, producing a possibly new solution. The combina-
tion function can be leveraged to generate millions of samples from
just a few hundreds of atomic mutations. The samples generated
by the combination function are assignments which may or may
not satisfy the formula. However, our experiments show that they
have a high probability of satisfying the formula, even on large and
complex industrial benchmarks. Moreover, SMTSampler checks
each generated sample for validity and only outputs valid solutions.

Next we present the full details of the algorithm. In §4.1 we
describe the main sampling procedure of SMTSampler. Next, we
explain in §4.2 how one base solution is chosen for each epoch, and
in §4.3 how we discover a set of neighboring solutions to the base
solution. Finally, in §4.4, we describe how those solutions are used
to generate new samples.

4.1 Main SMTSampler Algorithm

Algorithm 1 presents the main SMTSampler procedure, which
takes as input a SMT formula ϕ. The SMTSampler algorithm works
over several epochs. In each epoch, we first sample one initial
solution σ to the formula, which we call a base solution. This is
done by generating a random assignment σ ′ to the variables of
the formula in line 3 and then calling findClosestSolution to
obtain the solution σ which is closest to σ ′ in line 4. The details
of this procedure are given in §4.2. Then, in line 6, we use the
function computeNeighboringSolutions to compute a set Σ1σ of
neighboring solutions for σ . This function will be described in §4.3.

The mutations that can be applied to σ in order to produce
neighboring solutions are called atomic mutations. Our key idea
to producing new samples is by defining a combination function
Ψ : S × S × S → S , where S is the space of all possible assignments
to the variables V in the formula. We denote by Ψσ (σa ,σb) the
application of the combination function to the base solution σ and
two other solutions σa and σb . Intuitively, the combination function
Ψ computes the mutations which can be applied to σ to generate
σa and σb , then merges those two mutations together to produce a
new assignment. The assignment returned by Ψ is not guaranteed
to satisfy the formula, but in practice it is a valid solution with
high probability. This is because the atomic mutations capture the
minimal changes that preserve the satisfiability of the formula, and
we designed Ψ to combine those changes in an additive way. The
full definition of Ψ is given in §4.4.

We next describe how function combine uses Ψ to generate new
samples. We denote by Σ1σ the set of neighboring solutions to σ
obtained from computeNeighboringSolutions. Starting from Σ1σ ,
our goal is to compute sets Σkσ which will contain solutions gener-
ated by combining k atomic mutations, for 1 ≤ k ≤ 6. Throughout

3

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Dutra et al.

Algorithm 1 SMTSampler algorithm
1: function SMTSampler(ϕ)
2: while not done do
3: σ ′ ← generateRandomAssignment(ϕ)
4: σ ← findClosestSolution(ϕ, σ ′)
5: output({σ })
6: Σ1σ ← computeNeighboringSolutions(ϕ, σ)
7: output(Σ1σ)
8: α ← 1, k ← 1, Σσ ← Σ1σ
9: while α ≥ αmin ∧ k < 6 do
10: (Σk+1σ , α, Σσ) ← combine(Σkσ , Σ1σ , Σσ , ϕ)
11: output(Σk+1σ)
12: k ← k + 1
13:
14: function computeNeighboringSolutions(ϕ, σ)
15: Cσ ← getConditions(ϕ, σ)
16: Σ1σ ← {}
17: for c in Cσ do

18: Σ1σ ← Σ1σ∪ findNeighboringSolution(ϕ, c, Cσ)
19: return Σ1σ
20:
21: function combine(Σkσ , Σ1σ , Σσ , ϕ)
22: valid ← 0, checks← 0
23: for (σa, σb) in Σkσ × Σ

1
σ do

24: σ̃ ← Ψσ (σa, σb)
25: if σ̃ < Σσ then

26: Σσ ← Σσ ∪ {σ̃ }
27: checks← checks + 1
28: if isValidSolution(σ̃ , ϕ) then
29: Σk+1σ ← Σk+1σ ∪ {σ̃ }
30: valid ← valid + 1
31: return (Σk+1σ , valid/checks, Σσ)

the current epoch, we maintain a set Σσ of samples which were
computed so far, both valid and invalid. Initially, Σσ = Σ1σ .

Now assume that we already constructed a set Σkσ . We can in-
ductively build the set Σk+1σ as follows. For each pair of samples
σa ∈ Σkσ and σb ∈ Σ1σ , we apply the combination function Ψ to
generate a new sample σ̃ = Ψσ (σa ,σb). If σ̃ is an element of Σσ , it
has already been checked and is discarded. Otherwise, we add it to
Σσ and check if it is a valid solution to the formula. This checking
is relatively fast, as it only needs to evaluate the formula using the
assignments in σ̃ . If σ̃ is a valid solution, it is then added to Σk+1σ .

During the construction of Σk+1σ from Σkσ , we keep statistics
on which fraction α of the checked samples were valid. If this
fraction is below a certain threshold αmin , such as 0.1, we do not
generate Σk+2σ and instead just proceed to the next epoch. This
adaptive generation of samples allows us to avoid trying out too
many invalid samples.

All the samples which are ultimately output by SMTSampler
are the ones in ∪0≤k≤6Σkσ , where we define Σ0σ = {σ }. Those are
all valid solutions to the formula, as the ones which were produced
by the combination function for 2 ≤ k ≤ 6 have been checked for
validity. We have found that this adaptive generation of samples
is essential in some SMT formulas to avoid the generation of large
number of invalid samples. We always use valid solutions as argu-
ments to the combination function, which enables it to generate
valid solutions with high probability.

Table 2: Example conditions to be flipped

Type Example Condition

b ∈ Bool b = False
v ∈ BV extract(v, 5) = 1
a ∈ Array extract(a[011], 3) = 1
f ∈ U F extract(f (0, 10), 1) = 0

4.2 Computing the Base Solution

Now, we describe how the initial base solution σ for the epoch
is obtained. We first generate a random assignment σ ′ by choos-
ing values to the Boolean and bit-vector variables in the formula
uniformly at random. We do not assign values to the arrays and
uninterpreted functions in σ ′, because we do not know initially
which indices will be relevant for those variables. After generating
σ ′, we choose σ as a solution which is as close as possible to σ ′.
This is done to explore as much of the solution space as possible,
generating base solutions σ from different parts of the space.

The problem of finding a solution σ which is as close as possible
to σ ′ can be encoded as a MAX-SMT optimization problem to
be solved by the constraint solver. The MAX-SMT optimization
problem is the problem of finding a solution to an SMT formula
that must satisfy a set of hard constraints and should also satisfy
the maximum possible number of soft constraints. We encode the
MAX-SMT query as follows. We add one hard constraint stating
the the formula ϕ must be satisfied. For each bit-vector variable
v , we add one soft constraintv = σ ′JvK stating that thev should
have the same value that it had in σ ′. Analogously, we add one soft
constraint b = σ ′JbK for each Boolean variable b.

4.3 Computing Atomic Mutations

After generating a base solution σ , we compute neighboring solu-
tions of the base solution σ , so that their atomic mutations can be
combined to generate new samples. The first step is collecting the
set of conditionsCσ which are true for σ . Then, MAX-SMT queries
are used to produce new neighboring solutions. Each MAX-SMT
query attempts to flip one condition, while maintaining the remain-
ing conditions valid, if possible. We specify a maximum time budget
allowed for this phase, such as 20 minutes. If the time budget is
enough to solve queries flipping each of the conditions in Cσ , then
all those queries will be made. Otherwise, we select randomly and
uniformly a maximum subset of the conditions to be flipped and
solved in MAX-SMT queries within the time limit.

Constructing Cσ . Function getConditions produces Cσ by col-
lecting conditions for each variable in the formula. Table 2 shows
one example condition for each of the variables types. Those are
conditions that are valid for the example values from Table 1. Here,
extract is a function that takes a bit-vectorv and an integer index i
and returns the value of the bit at index i inv .

The conditions are generated as follows. For each Boolean vari-
able, we add one condition b = σJbK asserting that the variable has
the same value as in the base solution. For each bit-vector variable,
we add one condition for each of its bits. The condition is of the
form extract(v, i) = extract(σJvK, i), asserting that, when extract-
ing the given bit from the bit-vector, we obtain the same value that
would be obtained from the base solution.

4

SMTSampler: Efficient Stimulus Generation from Complex SMT Constraints ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

v : 1 1 0 0 0 1 0 1
δa = v ⊕ va : 1 0 0 0 0 1 1 0

va : 0 1 0 0 0 0 1 1
δb = v ⊕ vb : 0 0 0 1 0 1 0 0

vb : 1 1 0 1 0 0 0 1
(δa ∨ δb) : 1 0 0 1 0 1 1 0

ψv (va, vb) = v ⊕ (δa ∨ δb) : 0 1 0 1 0 0 1 1

Figure 1: Combining two mutations overv ∈ BV [8].

For each array a, we look at each of the indices I
(
σJaK

)
assigned

in the concrete instance of the array σJaK. For each such index x , we
consider the concrete bit-vector σJaK[x] returned by the array on
such index and we add one condition for each bit in this bit-vector,
such as extract (a[x], i) = extract

(
σJaK[x], i

)
. The procedure for

uninterpreted functions is analogous. For each argument tuple
that is assigned a value in the base solution, we recursively add
conditions according to the value type.

Computing Σ1σ . After collecting the fine-grained conditions in
Cσ , we want to compute neighboring solutions by picking one
condition c ∈ Cσ and using the constraint solver to find a solution
toϕ∧¬c , whereϕ is the original formula. However, the neighboring
solution should be as similar as possible to σ . We express such
constraint by requiring that the new solution should satisfy the
maximum possible number of the remaining conditions in Cσ \{c}.
Those requirements can be specified as a MAX-SMT optimization
problem, by defining a set of hard constraints and soft constraints.
We specify two hard constraints {ϕ,¬c}, stating that we want a
valid solution that does not satisfy c . And we also specify as soft
constraints the |Cσ | −1 conditions inCσ \{c}, so that the maximum
number of those conditions is preserved.

One challenge in solving such optimization problems is that they
are expensive when the number of soft constraints is too large. For
this reason, as an alternative, SMTSampler also allows the strat-
egy of specifying only one soft constraint per bit-vector variable,
instead of one for each bit in a bit-vector. For example, one would
specify one condition asv = 00100111, instead of 8 different con-
ditions such as extract(v, 0) = 0 and extract(v, 1) = 0. We evaluate
this strategy in addition to our original strategy in Section 5. This
alternative approach only changes the soft constraints that are
added to the MAX-SMT query. For the hard constraint ¬c , we chose
to always use conditions on the individual bits of each bit-vector,
because we found that this is important to generate a larger number
of atomic mutations and consequently a larger number of samples.

4.4 Combining Mutations

Now we define the combination function Ψ which we use to gener-
ate new samples. Assume that we already know the base solution
σ and two additional solutions to the formula σa and σb , which are
close to σ . Those additional solutions can be obtained by calling
computeNeighboringSolutions or they could be already gener-
ated by an application of the Ψ function.

The combination function Ψ, which combines entire solutions, is
constructed by defining a methodψ to combine the values of each
of the variables in the formula. We define

Ψσ (σa ,σb)JvK = ψσ JvK
(
σaJvK,σb JvK

)
.

This means that, in order to produce the assignment Ψσ (σa ,σb), we
simply useψ to combine the assignments for each variablev ∈ V .

Next, we define how the combinationmethodψ is applied to each
of the variable types. We first present the procedure for bit-vector
variables and then generalize it to the other types. Letv ∈ BV be a
bit-vector variable in the formula. We use the notations v,va ,vb to
represent the values assigned to variablev in each of the solutions
σ ,σa ,σb , i.e. we define v = σJvK,va = σaJvK,vb = σb JvK.

Consider the bit-vectors presented in Figure 1. Given the values
ofv ,va andvb , we define the differencesδa = v⊕va andδb = v⊕vb
computed by a bit-wise XOR. Those differences δa and δb indicate
exactly which bits differ between the base value and each of the
additional values. One can think of those differences as mutations
that can be applied to the base value in order to produce a different
value. For example, we can compute va as v ⊕ δa , where the XOR
operator is used to apply mutation δa to v .

The insight that allows the generation of a large number of
samples is that such mutations can be combined together. For bit-
vectors, we define a combined mutation through the OR operator,
producing (δa ∨ δb). This resulting mutation can be applied to
the base value v , producing a new value v ⊕ (δa ∨ δb). Thus, for
bit-vectors,ψ is defined as

ψv (va ,vb) = v ⊕ ((v ⊕ va) ∨ (v ⊕ vb)).

Now we generalize the definition ofψ to other types of variables.
For Boolean values, we use the same technique:ψb (ba ,bb) = b ⊕
((b ⊕ ba) ∨ (b ⊕ bb)). This way, Boolean values behave the same as
bit-vectors of size 1.

Now we define how to apply the combination method ψ to a
base array a = σJaK and two neighboring arrays aa = σaJaK and
ab = σb JaK. Remember that our array models only define explicit
values for a finite set of indices. Assume that array a has explicitly
defined values for indices in the set I (a), and a default value d(a)
for all other indices. Arrays aa and ab are constructed analogously,
with possibly different sets of assigned indices I (aa) and I (ab). We
define the combination function for arrays as

ψa (aa ,ab)[x] =

{
ψa[x] (aa [x],ab [x]) , if x ∈ I (a) ∪ I (aa) ∪ I (ab)
ψd (a) (d(aa),d(ab)) , otherwise.

This means that the assigned indices of the generated array will
be I = I (a) ∪ I (aa) ∪ I (ab), the union of the assigned indices of
each of the three arrays. If x ∈ I , then x may or may not have a
non-default value assigned for each of the three arrays, while if
x < I , we know that x has a default value assigned for all the arrays.
This definition keeps the generated array model ψa (aa ,ab) sim-
ple, with explicitly defined values only for the set of indices I . For
uninterpreted functions, the combination function is defined analo-
gously, with the set of assigned argument tuples being the union of
the assigned tuples for the base solution and the two neighboring
solutions. This completes the definition ofψ and, consequently, Ψ.

Themotivation for this definition ofΨσ (σa ,σb) is that it attempts
to obtain the mutation that generates σa from σ and the mutation
that generates σb from σ and then combine those two mutations in
an additive way. If σa and σb are neighboring solutions obtained
from a MAX-SMT query, those mutations are atomic mutations,
which represent a minimal set of bits that can be flipped and still
preserve the satisfiability of the formula. Therefore, it is likely that

5

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Dutra et al.

Table 3: Z3 tactics for conversion into SAT

Tactic Description

simplify Simplify the formula
bvarray2uf Encode arrays as UFs
ackermannize_bv Apply Ackermann’s encoding to UFs
bit-blast Bit-blast the bit-vector variables

there exist some clauses in the formula which establish a strong
dependence between those bits. Since in the resulting sample we
flip the bits which were flipped by either of the two atomic mu-
tations, it is likely that such clauses would still be satisfied. Our
experiments demonstrate that this combination of mutations is
effective at generating valid solutions, not only for SAT formulas,
but also for such complex SMT formulas.

We note that the combination functions are commutative and as-
sociative with respect to the atomic mutations applied. More explic-
itly, we have Ψσ (σa ,σb) = Ψσ (σb ,σa) and Ψσ (Ψσ (σa ,σb),σc) =

Ψσ (σa ,Ψσ (σb ,σc)). In SMTSampler, the samples generated in Σkσ
can be seen as the combination of k atomic mutations.

5 EVALUATION

We have implemented SMTSampler as an open source tool1 in C++.
We used Z3 [5] as the constraint solver, which natively supports
MAX-SMT queries. Each benchmark is run in one core, with a
maximum virtual memory of 4GB and a time budget of 1 hour. We
stop each execution after generating 1 million solutions or reaching
the timeout of 1 hour, whichever occurs first. The experiments
were run on a machine with a 64-core Intel Xeon CPU E5-4640 and
264GB of memory. For each epoch, we establish a maximum time
budget of 20 minutes for the generation of all neighboring solutions.
We also set a timeout of 5 seconds for each individual MAX-SMT
solver call. If the call cannot be completed in 5 seconds, we remove
the MAX-SMT soft constraints and retry the call with only the hard
constraints (such as the condition to flip one bit in a bit-vector) for
5 more seconds. This allows us to still make progress and obtain
some solutions in case the MAX-SMT problems are too expensive.

We compare two versions of SMTSampler. The first, abbrevi-
ated SMTbv, uses one soft constraint per bit-vector. The second,
abbreviated SMTbit, uses soft constraints for each bit inside a bit-
vector. As a baseline, we use a technique abbreviated SAT, which
works by bit-blasting the SMT formula to convert it into a SAT
formula and then sampling solutions from the SAT formula. This
would be similar to applying the QuickSampler [6] to the prob-
lem, although still taking advantage of our adaptive combination
of mutations. The goal is to evaluate the advantage of operating
directly over high-level SMT formulas, as opposed to bit-blasting.
We did not compare against techniques such as the MCMC-based
approach from Ambigen [7] because those are only applicable over
constraints which are linear on each variable and would not be
able to handle the general SMT-LIB benchmarks. Moreover, experi-
mental evaluation ofQuickSampler showed thatQuickSampler
is 1000× faster than MCMC-based approaches on SAT problems.
SMTSampler focuses on enabling the sampling of solutions from
complex SMT formulas, which are generally non-linear.

1The source code is available at https://github.com/RafaelTupynamba/SMTSampler.

For the baseline bit-blasting approach, the
expand_select_store rewriter option is used to replace
select(store(. . .), . . .) patterns by if-then-else terms. In addition,
the Z3 tactics from Table 3 are applied to encode arrays as
uninterpreted functions, apply Ackermann’s encoding to those
functions, and bit-blast bit-vectors. In our experiments, we chose
not to encode the SAT problem into conjunctive normal form
(CNF) because we found that this conversion lead to slower solving
due to the introduced auxiliary variables. Our conversion approach
enables the conversion of most benchmarks into SAT, as long as
they do not use the theory of arrays with extensionality, including
equality comparisons between arrays.

5.1 Coverage Metric

When sampling from SMT formulas, we noticed that the number
of unique solutions generated is an incomplete metric for cover-
age. Sometimes, it is easy to sample a large number of solutions
which are only trivially different and thus not interesting inputs for
verification. For example, if a bit-vector variable x of size 32 in a
formula is only constrained by a condition such as x > 5, there are
billions of values for x that would satisfy this constraint. However,
enumerating all those possibilities would probably not generate
interesting inputs and a better strategy would be mutating other
variables in the formula.

To better evaluate the coverage of the constraint space, we pro-
pose the use of a different coverage metric. We notice that the SMT
formula has an abstract syntax tree (AST) structure where internal
nodes better consolidate higher-level information than the leaf vari-
able nodes. Thus, as a coverage metric we use coverage statistics
about the internal nodes of the formula. For each internal node
of type Boolean, we remember whether this node ever received
the values of True or False in the generated solutions. Additionally,
for internal nodes of type bit-vector, we remember if each of its
bits ever received the values 1 or 0 in the generated solutions. The
coverage metric is the number of such internal Booleans and bits
which received both possible values among the set of generated
solutions.

This metric can be thought of as a measure of the coverage of a
circuit that evaluates the constraint. One could synthesize a circuit
that takes as inputs assignments to the variables of the formula and
produces a Boolean output of True or False indicating whether the
formula is satisfied. The values computed by the internal nodes of
the formula correspond to the intermediate values computed by the
internal wires of this circuit. In this sense, the coverage metric we
defined is equivalent to the coverage of internal wires in this circuit,
when it is exercised by the generated solutions. Therefore, we use
this metric as a proxy for the coverage that could be obtained when
executing the design under test with the generated stimuli.

5.2 Experimental Results

Our benchmarks are obtained from SMT-LIB [1], specifically the
problems in the logic QF_AUFBV and its sublogics, such as QF_ABV,
and QF_BV. The benchmarks include problems from the verifica-
tion of hardware and software, bounded model checking, symbolic
execution, static analysis and others.

6

https://github.com/RafaelTupynamba/SMTSampler

SMTSampler: Efficient Stimulus Generation from Complex SMT Constraints ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

lo
g

1
0
(R

a
te

S
M

T
b
v
/R

a
te

S
A
T
)

Benchmarks

Unique Solutions per Time: SMTbv vs. SAT

log10(RateSMTbv/RateSAT)

Figure 2: Speed comparison between SMTbv and SAT

We have tried all techniques on benchmarks from each directory
available from those logics of SMT-LIB. Some directories had bench-
marks which were inadequate for the problem, so we discarded
them from the results. Those are cases where the formula is unsat-
isfiable, or the number of unique solutions that can be produced
is less than 100, or where no coverage can be obtained. We ran
the experiments over the remaining 22 directories, by randomly
choosing 15 benchmarks from each, when there were at least 15
benchmarks available. A total of 274 benchmarks were chosen fol-
lowing this procedure. From those, we excluded the benchmarks
for which none of the techniques were able to produce more than
one solution, leaving a final set of 213 benchmarks.

Table 4 shows the directories of benchmarks used, along with
average statistics from the benchmarks in each directory. We first
list the number n of benchmarks which were used from each di-
rectory. All other values in the table are averages computed over
those n benchmarks in a directory. We list the number of internal
nodes in the SMT formula, as a measure of the benchmark size. We
also list the number of variables from each type Array, BV , Bool ,
UF . The ‘bits’ column represents the total number of bits in all the
bit-vector and Boolean variables in the formula.

The next columns present average results from the experiments
with the three techniques. First, we list the number of unique solu-
tions produced, then the ratio of unique solutions over time and,
finally, the total coverage obtained. When computing the rate of
unique solutions over time, we only include the time spent execut-
ing Z3 API calls. This is to ensure that the result is fair and not
influenced by our implementation of the methods to store, process
and combine solutions. In those Z3 API calls we include the time
for solving constraints, checking the validity of solutions and con-
verting solutions from SAT into SMT format. We do not include
the time spent computing the coverage achieved by the solutions,
as the coverage computation is done only for evaluation and is not
required to apply the techniques.

Overall, we see that the SMT-based techniques tend to perform
better than the bit-blasting approach. For a more thorough evalua-
tion, we present graphs representing the rate of solution generation
and the coverage on all 213 benchmarks.

Figure 2 compares the rate of generation of unique solutions for
the techniques SMTbv and SAT. Figure 3 is the analogous graph
comparing SMTbit and SAT. The rates are defined as the number
of unique solutions produced divided by the time spent in calls to

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

lo
g

1
0
(R

a
te

S
M

T
b
it
/R

a
te

S
A
T
)

Benchmarks

Unique Solutions per Time: SMTbit vs. SAT

log10(RateSMTbit/RateSAT)

Figure 3: Speed comparison between SMTbit and SAT

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(C

o
v

S
M

T
b
v
/C

o
v

S
A
T
)

Benchmarks

Coverage: SMTbv vs. SAT

log10(CovSMTbv/CovSAT)

Figure 4: Coverage comparison between SMTbv and SAT

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(C

o
v

S
M

T
b
it
/C

o
v

S
A
T
)

Benchmarks

Coverage: SMTbit vs. SAT

log10(CovSMTbit/CovSAT)

Figure 5: Coverage comparison between SMTbit and SAT

the Z3 APIs. The y axis represents the logarithm in base 10 of these
rates for both techniques. Higher bars indicate that the SMT-based
approach performed better than the SAT-based approach on that
benchmark. For 23 benchmarks, the SAT approach was unable to
produce any solutions because of a solver timeout. In these cases,
the logarithm would be +∞. Those are represented by bars that
reach the top of the graph.

Figures 2 and 3 show that, in general, the approaches that work
over SMT formulas can generate more unique solutions in a given
time budget, compared to bit-blasting. There were some bench-
marks for which the SAT approach was able to generate more
samples, such as some of the benchmarks from QF_ABV/egt and
QF_ABV/bench_ab. Analyzing those benchmarks, we found that
they were mostly composed of Boolean operations from combinato-
rial logic, with very few bit-vector operations. It is natural that, in

7

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Dutra et al.

Table 4: Average Results Over the Benchmarks

Unique solutions Unique solutions per second Coverage
Benchmarks n nodes |Array | |BV | |Bool | bits |U F | SMTbv SMTbit SAT SMTbv SMTbit SAT SMTbv SMTbit SAT

QF_AUFBV/ecc 4 291 1 42 12 2785 1 209535 26860 49087 579 748 680 407 856 596
QF_ABV/bmc-arrays 3 855 1 1 0 53 0 807570 1229174 1096836 1347 1757 1085 3090 3480 3134
QF_ABV/stp_samples 15 1139 1 24 0 192 0 258440 437702 287537 179 309 220 4484 4768 4035
QF_ABV/dwp_formulas 5 613 3 32 0 428 0 898530 1300388 319558 746 989 259 1276 1016 377
QF_ABV/egt 15 90 1 0 0 0 0 769975 916283 1333783 879 1093 2114 138 136 140
QF_ABV/bench_ab 15 317 1 0 0 6 0 181716 341169 689368 761 1295 2621 129 129 114
QF_ABV/platania/...member 12 4152 36 463 0 14816 0 2085 113046 0 558 515 0 83 44 0
QF_BV/bmc-bv 10 782 0 13 0 422 0 439867 1250125 297913 6161 7011 5604 98 94 95
QF_BV/bmc-bv-svcomp14 8 7518 0 205 1055 7607 0 40809 5915 131089 194 212 153 3081 3108 3655
QF_BV/spear/zebra_v0.95a 9 571 0 185 0 2012 0 196822 18633 35 858 1319 216 530 534 28
QF_BV/RWS 9 1086 0 21 0 3628 0 4776 476 201 31 71 23 4766 4766 2517
QF_BV/gulwani-pldi08 5 1146 0 130 0 950 0 167745 153184 127868 268 305 279 2113 2150 2107
QF_BV/stp_samples 14 793 0 22 0 200 0 505214 501507 438752 375 373 399 1426 1331 969
QF_BV/brummayerbiere2 3 632 0 2 0 149 0 263405 531815 712535 362 625 857 224 187 224
QF_BV/tacas07 3 8812 0 345 588 16620 0 33928 2444 28465 165 183 112 1520 12535 4781
QF_BV/bench_ab 13 23 0 2 0 41 0 1109129 3385658 2783503 7797 10677 10143 11 11 10
QF_BV/sage/app2 13 240 0 25 0 211 0 218827 213889 217598 162 159 180 861 289 433
QF_BV/sage/app9 8 271 0 35 0 391 0 1137172 1984923 1495072 1301 1616 1595 466 464 465
QF_BV/sage/app8 15 978 0 93 0 1047 0 389719 543033 260763 202 375 317 1515 1523 1506
QF_BV/sage/app5 12 269 0 29 0 355 0 1146022 1397666 1008205 1351 1638 1657 391 205 261
QF_BV/sage/app1 10 117 0 21 0 271 0 243452 509655 527177 1171 2421 2362 281 294 267
QF_BV/sage/app12 12 247 0 31 0 358 0 470245 847513 334077 1168 1322 844 313 298 201

those cases, a SAT representation for the formula is more efficient
and can be solved faster.

However, we also noticed that for many of those formulas, the
larger number of solutions produced by SAT did not give any in-
crease in the coverage metric. This reinforces our hypothesis that
the speed to generate unique solutions is an incomplete metric
and we should also be analyzing the coverage obtained by the dif-
ferent approaches. Figures 4 and 5 present the graphs comparing
the coverage obtained by the SMT-based approaches and the SAT-
based approach. Here, we see even more noticeable differences
in favor of the SMT-based approaches, especially SMTbit. On the
benchmarks from QF_ABV/bmc-arrays, QF_ABV/dwp_formulas,
QF_BV/stp_samples and QF_BV/tacas07, for example, those ap-
proaches obtained significantly more coverage than SAT.

Overall, we see that the SMT-based approaches proposed by
SMTSampler perform better than the baseline bit-blasting ap-
proach. They are more robust, being able to produce solutions
and obtain coverage on a larger range of benchmarks, while also
obtaining a higher constraint coverage and generating solutions at a
higher speed inmost cases. Between the two SMT-based approaches,
we could not identify a clear winner. We noticed that the fine-grain
soft constraints from SMTbit approach can help obtaining more
precise atomic mutations and produce higher coverage. However,
SMTbv tends to be more robust on formulas where the MAX-SMT
queries are harder to solve, since it uses a smaller number of soft
constraints.

6 CONCLUSION

We proposed a technique SMTSampler for efficient stimulus gen-
eration from SMT constraints. SMTSampler works by learning
atomic mutations over the SMT solutions and combining those
mutations to generate new samples. Our evaluation over a large
set of industrial SMT benchmarks shows that working over SMT
solutions allows SMTSampler to be effective on a larger set of for-
mulas, generate more unique samples and obtain a better coverage
of the constraint space.

ACKNOWLEDGMENTS

Research partially funded2 by Brazilian SwB CAPES 13245/13-9; NSF grants
CCF-1409872 and CCF-1423645; DARPA CRAFT HR0011-16-C-0052; Intel
Science and Technology Center for Agile Design; and ADEPT Lab industrial
sponsors and affiliates Intel, Google, Siemens and SK Hynix.

REFERENCES

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org. (2016).

[2] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and
Moshe Y Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation.. In
TACAS. 304–319.

[3] Supratik Chakraborty, Kuldeep S Meel, Rakesh Mistry, and Moshe Y Vardi. 2016.
Approximate Probabilistic Inference via Word-Level Counting.. In AAAI, Vol. 16.
3218–3224.

[4] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2014. Balancing scala-
bility and uniformity in SAT witness generator. In Design Automation Conference
(DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 1–6.

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[6] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Efficient
Sampling of SAT Solutions for Testing. In ICSE’18.

[7] Nathan Kitchen and Andreas Kuehlmann. 2007. Stimulus generation for con-
strained random simulation. In Computer-Aided Design, 2007. ICCAD 2007.
IEEE/ACM International Conference on. IEEE, 258–265.

[8] Nathan Boyd Kitchen. 2010. Markov Chain Monte Carlo Stimulus Generation for
Constrained Random Simulation. University of California, Berkeley.

[9] Kuldeep S Meel. 2014. Sampling techniques for boolean satisfiability. Master’s
thesis (2014).

[10] Alexander Nadel. 2011. Generating Diverse Solutions in SAT.. In SAT. Springer,
287–301.

[11] Reuven Naveh and Amit Metodi. 2013. Beyond feasibility: CP usage in
constrained-random functional hardware verification. In International Conference
on Principles and Practice of Constraint Programming. Springer, 823–831.

[12] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s
Marcu, and Gil Shurek. 2007. Constraint-based random stimuli generation for
hardware verification. AI magazine 28, 3 (2007), 13.

[13] O Padon, KL McMillan, A Panda, M Sagiv, and S Shoham. 2016. Ivy: interactive
verification of parameterized systems via effectively propositional reasoning.
PLDI. ACM (2016).

[14] Wei Wei, Jordan Erenrich, and Bart Selman. 2004. Towards efficient sampling:
Exploiting random walk strategies. In AAAI, Vol. 4. 670–676.

[15] Yanni Zhao, Jinian Bian, Shujun Deng, and Zhiqiu Kong. 2009. Random stimulus
generation with self-tuning. In Computer Supported Cooperative Work in Design,
2009. CSCWD 2009. 13th International Conference on. IEEE, 62–65.

2Any opinions, findings, conclusions, or recommendations in this paper are solely
those of the authors and do not necessarily reflect the position or the policy of the
sponsors.

8

	Abstract
	1 Introduction
	2 Related Work
	3 Constraint Specification
	4 SMTSampler Algorithm
	4.1 Main SMTSampler Algorithm
	4.2 Computing the Base Solution
	4.3 Computing Atomic Mutations
	4.4 Combining Mutations

	5 Evaluation
	5.1 Coverage Metric
	5.2 Experimental Results

	6 Conclusion
	Acknowledgments
	References

