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Abstract—Automatic program repair techniques offer the possibility of
reducing, or even eliminating, the substantial manual effort that currently
goes into the patching of software defects. However, current repair
techniques take minutes or hours, to generate rather simple repairs,
severely limiting their practical applicability. Search-based program
repair represents a popular class of automatic repair techniques. Patch
compilation and test case execution are the dominant contributors to
runtime in this class of repair techniques. In this work we propose
two complementary techniques, namely Location Selection and Test-Case
Pruning, to improve the efficiency of search-based repair techniques.
Location Selection reduces the number of repair candidates examined in
arriving at a repair, thereby reducing the number of patch compilations
as well as the overall number of test case evaluations during the repair
process. Test-Case Pruning, on the other hand, optimizes the number of
test cases executed per examined candidate. We implement the proposed
techniques in the context of SPR, a state-of-the-art search-based repair
tool, evaluate them on the GenProg benchmarks and observe that the
proposed techniques provide a 3.9X speed-up, on average, without any
degradation in repair quality.

I. INTRODUCTION

Debugging and patching of software defects is a laborious, largely
manual activity, consuming a disproportionately large fraction of
software development resources [1]. The relatively nascent body of
research on automatic program repair (APR) [2–4] offers the promise
of reducing the manual burden associated with patching bugs. How-
ever, current repair techniques take on the order of tens of minutes
if not hours to find a repair and in several cases cannot completely
search the space of fairly simple, one-line repairs even in 12 hours
of compute time [3–5]. This factor alone limits expanding the scope
of APR techniques to richer repair spaces and indeed the viability
of APR techniques in real-world debugging scenarios. Therefore, we
believe that in order for APR techniques to have practical impact we
need to dramatically improve the efficiency of automatic program
repair. This paper makes a contribution in that direction. Specifically,
we propose techniques in the context of SPR [6], a state-of-the-art
search-based repair tool. Our proposed techniques provide a 3.9X
speed-up, on average, without any degradation in repair quality.

Search-based program repair techniques, or generate-and-validate
(G&V) repair techniques as they are sometimes called [6], represent a
popular class of automatic repair techniques. Given a buggy program
P , failing at least one test in a test suite T , the repair tool searches the
space of mutations to P , defined by a given set of repair templates
(generate phase) for one that allows the mutated program to pass
all the tests in T (validate phase). We present our approach in the
context of this class of repair techniques.

Several researchers have raised the issue of the efficiency of current
APR techniques [5–7], in particular, the fact that test case execution
dominates the runtime of G&V repair techniques [8, 9]. However,
in order to establish our own empirical basis for our research we
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performed the following study. We did the study using the SPR
repair tool [6], a reasonably recent representative of G&V repair
techniques for C programs, on a sample of 7 bugs from the GenProg
benchmarks [2]. We chose one bug each from 7 of the 8 subject
systems in the benchmarks (except fbc, which does not work on 64-
bit systems), randomly chosen from the set of instances for each
subject system, where SPR produced a patch. We profiled the SPR
runs for the fraction of the runtime consumed by various facets
of repair (excluding fault localization), such as test case execution,
compilation of patched program instances, etc. The data shows that
the runtime is dominated by the time for patch compilations and test
executions, which consume, respectively, 4.4—49.8% and 20.9—
91.9% of the runtime. Furthermore, the relative distribution varies
significantly with subject systems (e.g., lighttpd-1948-1949 used
4.4% and 91.9% for compilations and test executions, respectively,
while libtiff-d13be7c-ccadf48a used 49.8% and 39.8% for compila-
tions and test executions, respectively). Thus, an effective strategy
for accelerating repair should address the compilation time as well
as the time for test executions.

In this work we propose two complementary techniques, namely
Location Selection and Test-Case Pruning, to improve the efficiency
of G&V program repair techniques. Location Selection reduces the
number of repair candidates examined in arriving at a repair, thereby
reducing the number of patch compilations as well as the overall
number of test case evaluations during the repair process. Test-Case
Pruning, on the other hand, optimizes the number of test cases exe-
cuted per examined candidate. Of course, much of the previous work
in search-based APR directly or indirectly improves the underlying
efficiency of repair as well. However, with a few exceptions [8],
the focus of previous work has been to maximize the fix-rate of
the technique, i.e., the number of instances in which patches are
produced, by using different search algorithms [2, 10], specialized
schemas [11, 12], better orchestrations of those schemas [6], or by
re-organizing the search space [3, 5]. More recent work addresses
patch quality [13, 14]. By contrast, repair efficiency is the singular,
driving concern of this work. In fact, the optimizations we propose
are largely complementary to previous work on G&V program repair
and arguably generic enough to work with any search-based APR
technique.

Our Location Selection optimization is based on a heuristic state
comparison. The intuitive reasoning behind our technique is as
follows. Assuming a failing test case trace exhibits partially incorrect
behavior (i.e., it is incorrect at some of the program locations it
executes), the locations at which the behavior is actually correct, may
not be good candidate locations for affecting a repair. Further, if we
assume that passing test case traces represent substantially correct
behavior, program locations at which failing test cases and passing
test-cases, in aggregate, exhibit substantially similar behavior, are the
locations that are poor candidates for repair. Our proposed technique



uses a heuristic comparison of program states at a given location,
under failing and passing tests, to identify such poor repair locations,
and de-prioritize them for repair. Our Location Selection optimization
is loosely inspired by the work on Delta Debugging [15–17], which
views a bug as an “infection” or corruption in the program state.
By iteratively and systematically mutating the program state under
a failing test case and comparing it with that of a passing test at
the same location, delta debugging attempts to precisely localize a
defect as well as the input or state variables responsible for it. Our
optimization employs state comparisons too but in a different manner,
and for the purpose of accelerating program repair.

Our Test-Case Pruning technique is motivated by classical regres-
sion test selection (RTS) [18–22], a somewhat natural idea to pursue,
given that G&V repair entails repeated executions of a test suite.
However, current APR techniques typically evaluate several hundreds
of repair candidates in a single repair run, each of which is typically
a single-statement modification. Standard RTS techniques, which are
designed to work with arbitrary program changes, would either be
too coarse—it may track changes at source file or method level—or
too expensive, to be useful in the current context. Our technique of
Test-Case Pruning tracks test-case-to-source dependencies at a source
line level which allows it to effectively prune test cases. Further, it
derives this dependency information, with minimal overhead, from
the fault localization step that typically precedes the repair run.

The main contributions of this paper are as follows:
• Observation: We make an empirical-study driven observation

that patch compilation and test executions together dominate the
runtime of modern G&V repair tools, partially corroborating the
claims of previous research [8, 9].

• Optimizations: We propose two complementary techniques, Loca-
tion Selection and Test-Case Pruning, to accelerate G&V program
repair techniques, by reducing the time spent on compilation and
test-case executions.

• Implementation: We implement the proposed techniques in the
context of SPR [6], a state-of-the-art G&V repair tool.

• Evaluation: We evaluate the proposed techniques on 43 bugs
from the GenProg benchmarks [2] and observe that the proposed
techniques provide a 3.9X speed-up, on average, without any
degradation in repair quality.

II. MOTIVATING EXAMPLE

To describe the Location Selection and Test-Case Pruning tech-
niques, we first describe the behavior of generate and validate (G&V)
program repair, and then the specific ways in which our techniques
improve this behavior. To make the descriptions of this behavior
concrete, we use a motivating example, described next.

A. Benchmark

During the development of our techniques, we focused on the
runtime devoted to compilation and the runtime devoted to test case
evaluation over several benchmarks. We use the benchmark php-
307846-307853 as a motivating example to illustrate the proposed
techniques. Figure 1 presents the source code where the correct patch
is applied. The bug is in the function date isodate set. In this
function, a date object is constructed incorrectly: the implementation
does not appropriately initialize some of the fields. The bug fix
is to initialize all fields to zero with a memset. The code for the
buggy date isodate set function is provided with the bug fix in
a comment on the appropriate line. The implementation of our
techniques produces a correct patch, as does the unmodified G&V
program repair system we are implemented on top of.

1 PHP_FUNCTION(date_isodate_set)
2 {
3 zval *object;
4 php_date_obj *dateobj;
5 long y, w, d = 1;
6
7 if (zend_parse_method_parameters(/* ellided */,

&object , date_ce_date , &y, &w, &d) == FAILURE) {
8 RETURN_FALSE;
9 }

10 dateobj = (php_date_obj *)
zend_object_store_get_object(object TSRMLS_CC);

11 DATE_CHECK_INITIALIZED(dateobj ->time , DateTime);
12 dateobj ->time ->y = y;
13 dateobj ->time ->m = 1;
14 dateobj ->time ->d = 1;
15 // Bug fix: memset (&dateobj ->time ->relative , 0,

sizeof(dateobj ->time ->relative));
16 dateobj ->time ->relative.d =

timelib_daynr_from_weeknr(y, w, d);
17 dateobj ->time ->have_relative = 1;
18
19 timelib_update_ts(dateobj ->time , NULL);
20
21 RETURN_ZVAL(object , 1, 0);
22 }

Fig. 1. Buggy function from php-307846-307853

B. Generate & Validate Program Repair

To understand how our techniques accelerate the repair process,
we must first discuss a generic G&V program repair system. G&V
program repair systems operate in three phases: fault localization,
generation, and validation.

The first stage of G&V repair systems is fault localization: the
process of determining locations where the bug may reside. Generally
this is performed by profiling specific characteristics of locations dur-
ing test case evaluation. Spectrum-based fault localization techniques
[23, 24] are widely used to rank such a series of locations based on
their suspiciousness. In the motivating example, all locations within
the function in Figure 1 are selected during the fault localization
process, among approximately 100 more.

The second phase of GV program repair is to generate patches for
one or more of the locations selected by the fault localization phase.
The generation phase can evaluate the test cases or use additional
information (such as whether a patch seems likely to be written by
a developer) to prioritize or de-prioritize locations and patches. For
php-307846-307853, the correct patch is generated after nearly two
thousand others.

The third phase of GV program repair is the validation phase. The
validation phase uses all test cases to show that the patch is valid—
if all test cases pass with the patch, then the patch is considered
validated. If no patch is valid, then G&V program repair can either
return to the generation phase or, if there are no more patches to be
generated, the process can complete with failure. php-307846-307853
provides a test suite of nearly 7000 tests. The vast majority of these
test cases do not detect the failing behavior.

Our work focuses on accelerating both the generation phase and
the validation phase. The generation phase is accelerated by providing
prioritization for locations that are particularly favorable for patching.
For php-307846-307853, we specifically prioritize the line of the
patch and not lines earlier in the function. The validation phase is
accelerated by eliminating unnecessary test case evaluations. For php-
307846-307853, this leads to a 6X reduction in test cases evaluated.



C. Test-Case Pruning

Here we introduce the Test-Case Pruning technique, which is
inspired by regression test selection. The purpose of Test-Case
Pruning is to minimize the cost of validating a patch. To do this, we
identify a subset of test cases that cover only the changed locations
in a program. In particular, for any location where a patch can be
applied, we use profiling information from the localizer to identify the
test cases that cover that location. For any location that is changed,
that change can only effect test cases that cover that location. The
set of all test cases that exercise at least one of the changed locations
will contain all the test cases effected by the patch.

For the php-307846-307853 benchmark, exactly 15 of the 6951 test
cases cover some part of the function in Figure 1, and only 12 cover
the location where the patch is applied. This information is obtained
by profiling the coverage of the test cases. Using the exact test case
coverage for a patch location, allows us to safely not run the vast
majority of test cases during patching. For comparison, in the ideal
case for generic G&V program repair, the “correct” patch would be
generated on the first attempt and then validated. The validation, in
this case, would use all test cases. This would mean that the generic
G&V program repair would use over 400x more test case evaluations
than are necessary to show that the patch is valid and over 2X what
our technique uses to validate all patches (as discussed in Section IV).

In practice, G&V program repair systems produce multiple invalid
patches which each require the use of one test case to invalidate the
patch. While more patches will always require more test case evalu-
ations and will decrease the effective acceleration of this technique,
this technique will prevent unnecessary test case evaluations in the
case that (1) a “correct” patch is found and (2) a test case is used to
invalidate a patch that is not affected by that patch.

D. Location Selection

Here we describe the Location Selection technique. This technique
aims to accelerate the generation phase of G&V program repair. To
do this, we prioritize locations for patching by analyzing the values
of the variables that are “live” at that location. We define live to
be variables that have been written to and are otherwise in-scope.
In particular, we analyze the range of values that occur during the
positive test cases and compare that to the range of values that occur
during the negative test cases. If the range of values during negative
test cases is a subset of the range of values for positive test cases,
then we consider the location to be a worse location for a patch. If
the range of values during the negative test cases is not a subset of
the ranges from the positive test cases, then we consider this location
to be a better location for a patch. We consider all locations that we
deem better for patching before any location we deem worse. We
will now use Figure 1 to describe two cases: one in which a location
is prioritized and one in which a location is de-prioritized.

To understand how this works for prioritizing locations, let us
consider line 15 in Figure 1. This line is where the patch should be
applied. In order to determine whether this location is suitable for
patching by the Location Selection technique, we must log the values
of the live variables at this location. As discussed in Section III-E,
we use a subset of ‘live variables, focusing on variables that are
used nearby. For purposes of exposition, let us assume that we
have selected the variable dataobj and let us discuss the fields
in dateobj->time->relative that are not correctly initialized.
In particular, the dateobj->time->relative.weekday behavior

field, which is an integer field, causes this location to be

prioritized. During the negative test case1, this function
produces an incorrectly initialized date object: the field of
dateobj->time->relative.weekday behavior, among others, is not set
correctly. The value of dateobj->time->relative.weekday behavior

is non-zero for the negative test case. The incorrect output of
the negative test case is an incorrect week number (the week
number in the year, e.g., the 2nd week of the year). This value
is calculated via the timelib update ts function on line 19. This
function uses different fields of dateobj->time->relative, including
weekday behavior to complete this calculation. If weekday behavior

is non-zero, then the calculation will fail and the results of the
function call will be incorrect. During passing test cases for PHP,
the value can range between zero and two. Because the value of
this field is uninitialized during the negative test case, the values for
dateobj->time->relative.weekday behavior during the negative test
case are pointer values that happen to exist at that memory location2.
No value in this range is in the range of values from the positive
test cases. We, therefore, consider this location as a better location
for a patch. Note that if this field was zero during the negative test
case, the range would be a subset of the range of values for the
positive test cases, and the program would not have produced the
wrong output. This technique works especially well for uninitialized
values.

To continue the discussion, let us consider a location that was de-
prioritized by our algorithm—line 9, after the curly brace. This is the
last line before dateobj becomes “live”. At this location, there are a
number of variables in scope: global variables, object, dateobj, and
the long-type variables y,w, and d. Our technique selects the variables
that are “live”—they have been written to—and are otherwise used
in the function (we don’t use global variables that are only used
elsewhere). This selection includes the long-type variables and the
object variable. For purposes of discussion, let us consider only the
long-type variable y—the remaining variables behave similarly. In the
negative test case, the value for y is 2005. For the positive test cases
for php-307846-307853, the values for y are -12345, -10, 0, 1, 10,

1963, 2006, 2008, 2009, 2010, and 12345. First, we should note that
the value 2005 is not in this set, but it is still a value that can be
used without causing a bug to occur. We use a summary of values in
order to enable our technique to solve this issue—to overcome under-
specification due to the sparseness of test cases. We compare the value
2005 to the range of values obtained in the positive test cases: -12345

to 12345. Since it is in that range, we conclude that this variable does
not make this location suspicious. The remaining variables at this
location exhibit similar behavior (the remaining long-type variables
have the exact same range, as 12345 was used as a sentinel in testing).
Since no variable makes this location suspicious, we de-prioritize it.
Logically, we are asserting that there are no variables at this line that
are immediately causing the bug. This technique works especially
well with variables that can store any value from a continuous-range
and have test cases that cause many values in that range to occur.

III. TECHNIQUES

In this section we describe both techniques more formally. While
both of the techniques are distinct, we use one algorithm to perform
both in tandem. First, we describe a high-level view of G&V repair,
and then we describe the algorithm in detail.

1This benchmark only has a single negative test case.
2No pointers between zero and two are valid in our experimental setup.



Algorithm 1 Algorithm for validating patches
1: function REPAIRALGORITHM(L, G, TP . TN , P )
2: S ← PREPROCESS(L, TP ∪ TN , P )
3: for all l ∈ GETORDER(L, S, TP , TN ) do
4: for all I ∈ G(P,L′) do
5: for all t ∈ GETTESTSETFORPATCH(I , S) do
6: if Fails(RunProgram(P, I, t)) then
7: go to 4
8: return I
9: return ⊥

A. Generate & Validate Repair

The problem of automated repair is to generate patches to programs
such that all test cases pass. Our techniques work to increase the
efficiency of existing repair systems that use a generic generate and
validate (G&V) mechanism. To describe our techniques, we first must
define a high-level view of G&V automated repair.

For our purposes, the following definitions suffice:

• A program P is a pair of two mappings: n and p, where p maps
a location l to a statement s, and n maps a location to a set of the
next locations that can be executed. This is inspired by [6].

• A patch I is a pair of two mappings n and p, which are a subset
of their respective mappings in a program. This subset overrides
the mappings in the program. For instance, if a patch maps l→ s′

and a program maps l→ s, then when the patch is applied l maps
to s′ instead of s.

• A patch generator G takes a program P , and a location l and
returns a list of patches I for that location. The patch generator
may take additional information, but our techniques do not require
that it does so. For instance, the patch generator may use the
program test cases to decide on the prioritization of possible
patches for a location in the list.

• A test case set T is a set of test cases. We require two test case
sets: the set of all test cases that the program passes originally
(the positive test case set TP ) and the set of all test cases that the
program fails to pass originally (the negative test case set TN ).

Algorithm 1 describes a simple G&V repair algorithm. Here, the
repair algorithm is broken up into a pre-processing step and three
nested loops. Our techniques require a pre-processing step, while
in a generic G&V algorithm, the pre-processing step does nothing
(e.g., PREPROCESS simply returns ⊥ on line 2). The outermost of
the three nested loops iterates over the locations to generate patches
at. In a generic G&V repair system, the order is unchanged from the
order inputted (e.g., GETORDER returns the L unmodified), while
our techniques provide a more-optimal order. The middle nested loop
iterates over the patches for a location. In the inner-most loop, the
patch is tested by running the program with the patch for a set of
test cases. In a generic G&V repair algorithm, this set is the set of
all test cases (e.g., GETTESTSETFORPATCH returns a set of all test
cases). If the patch fails a test case, then a new patch is generated
and tested. If the patch successfully passes all test cases, then the
patch is returned. Should no patch successfully pass all test cases,
then a bottom value is returned, signifying a failure to produce a
valid patch.

To describe our techniques, we provide algorithms for the
GETORDER and GETTESTSETFORPATCH functions that improve
the overall run time of the repair system, using information gained
through a PREPROCESS function call. These functions augment the

Algorithm 2 Algorithm for filtering test cases and candidate locations
1: function GETORDER(L, S, TP , TN )
2: ŜN ←SUMMARIZEFORTESTSET(TN , L, S)
3: ŜP ←SUMMARIZEFORTESTSET(TP , L, S)
4: LS ← empty list, LO ← empty list
5: for all l ∈ L do
6: if ŜN [l] 6≤ ŜP [l] then
7: LS ← LS‖l
8: else
9: LO ← LO‖l

10: function SUMMARIZEFORTESTSET(T , L, S)
11: Ŝ ← empty map
12: for all t ∈ T do
13: for all l ∈ L do
14: Ŝ[l]← Ŝ[l] t S[t, l]
15: return Ŝ
16: function GETTESTSETFORPATCH(I , S)
17: testSet← empty set
18: for all l ∈ ChangedLocations(I) do
19: testSet← testSet ∪ {t|S[t, l] 6= ⊥}
20: return testSet
21: function PREPROCESS(P,L, T )
22: I ←GETINSTRUMENTATIONPATCH(P , L)
23: S ← map from all values t ∈ T, l ∈ L to ⊥
24: for all t ∈ T do
25: for all σ, l ∈ LoggedStates(RunProgram(P, I, t)) do
26: S[t, l]← S[t, l] t σ
27: return S
28: function GETINSTRUMENTATIONPATCH(P ,L)
29: p, n← P
30: p′ ← empty map, n′ ← empty map
31: for all l ∈ L do
32: lt ← a new location
33: n′[lt]← n[l]
34: p′[lt]← p[l]
35: varsToLog ←LOGGINGVARS(l, P )
36: s′ ← createLogStmt(l, varsToLog)
37: p′[l]← s′

38: n′[l]← {lt}
39: return p′, n′

repair algorithm by adding three different phases: a pre-processing
phase that logs state information from the evaluation of test cases, a
processing phase that summarizes the state information and uses it
to prioritize patch locations, and a test case selection phase. These
phases are discussed below, and the full algorithms is given are
Algorithm 2.

B. Pre-Processing Phase

The pre-processing phase collects information to be used by the
later stages by running the program under test with instrumentation.
In particular, the pre-processing phase collects traces of partial states.
A state σ is a mapping from variables to values during the execution
of a specific program location. In order to provide the necessary
instrumentation, each location where a patch may be made has
a logging statement inserted in front. The logging statement logs
the value of a heuristically-determined set of variables as a state.
The heuristic is described in Section Section III-C1. This logic is
described on lines 28 through 39 of Algorithm 2.



The instrumentation patch is then used to log states by running
the program, with the patch, for all test cases. During the execution
of the program with the instrumentation, the state & location pairs
are recorded. This logic occurs on lines 21 through 27 in Algo-
rithm 2. Ideally, we desire the state to give us information about
its corresponding location, but a location can produce multiple states
due to loops in the program. Instead of keeping a list of states for
each location, we summarize the states by keeping a summary of
values for each variable instead of a set of values. A summary is an
abstraction of a set of values—any value that is in a set must be in
the summary of that set, though values that are not in the set may
also be in the summary of the set. Abstracting sets into summaries
decreases the memory requirements of our algorithm, but it is not
sound as the summary is necessarily an over-approximation of the
values that occur in the program for that location. We require that
summaries form a lattice: the join is well-defined, that the ⊥ value
represents an empty set of values, and > represents the set of all
possible values. While there are a variety of summarization methods
we can use, we elected to use ranges of values (e.g., the values 1 and 3

would be summarized as the range from 1 to 3). We call the mapping
from variables to summaries a state summary. A state summary is
a mapping from a variable to the summary of values it has during
the execution(s) of a specific program location. In order to create
state summary from the recorded states, we extend (if necessary)
each summary for each variable with the corresponding value from
the state. This computation is identical to the least upper bound of a
lattice over state summaries. We use state summaries to implement
Location Selection.

C. Location Selection

During the first phase, we collect the summaries of values that
variables can obtain (state summaries) for each location for each test
case. During this phase, we use this information to determine whether
the state summaries for a location is “different” during positive test
cases than during negative test cases. To do this, we first summarize
the state summaries for each location for all positive test cases and
construct a separate summary for each location for all negative test
cases. This results in two separate mappings—each mapping is from
a location to a state summary. This is performed on line 10 through
line 15 in Algorithm 2. This code produces the least upper bound of
all state summaries for each location for all test cases in the specified
set.

Now, we have a mapping from each location to a single state
summary for the positive test cases and a single state summary
for the negative test cases. Let σ̂P be the state summary for a
location l for the positive test cases and let σ̂N be the state summary
for the same location for negative test cases. We then prioritize
suspicious locations before ordinary locations for the purposes of
patch generation. A suspicious location is one such that the σ̂N 6≤ σ̂P ,
which means that at least one value during the negative test cases did
not occur during the positive test cases at that location. Any location
that is not suspicious is ordinary. This operation is performed on
lines 5-9 of Algorithm 2.

During patch generation, all locations are considered, but suspi-
cious locations are prioritized above ordinary locations. Ordinary
locations are still evaluated to maintain soundness of the technique:
because we can discard variables via our heuristic (see Section Sec-
tion III-C1) and we consider summaries instead of sets of values,
discarding ordinary locations is unsound. To understand the former
reason, consider a location that produces different state summaries
between positive and negative runs only because of a single variable,

which our heuristic happens to discard. For the latter case, consider
a location that has the state summary (a range) of 1 to 5 for positive
test cases but in the negative test cases the value 3 causes those
test cases to fail and the value 3 does not occur during the positive
test cases. In this case our Location Selection technique would
incorrectly de-prioritize the location because the state summary is
an over approximation of the values that can occur at that location.
State summaries can trivially be overly broad: consider a variable that
either contains the minimum value or the maximum value of its type.
The summary of this variable will have a range containing all values
for its type. We now discuss the selection of variables to create state
summaries.

1) Variable Selection Heuristic: In the Location Selection tech-
nique, we construct summaries of values for variables at a location.
Naively, we could construct these summaries for all variables at a
location, but this is ineffective and inefficient in practice. Instead,
we use the variable selection heuristic to select specific variables for
which to construct summaries.

First, we only consider variables that are in-scope at that location
and are “live”. A “live” variable, for our purposes, is a variable that
has already been written to (this prevents using uninitialized vari-
ables) or read from (we assume that variable is correctly initialized
if it is read from). From this set of considered variables, we apply the
heuristic. The heuristic is designed to eliminate variables that cannot
be used by any patch and to eliminate variables that have values that
cannot effectively be summarized.

The first set of variables to eliminate—variables that cannot be
used by any patch—is effective because any variable that cannot be
used in the patch (the patch cannot read from or write to it) is a
variable that the patch is agnostic to. A patch is agnostic to the
variable if the behavior of the patch is not effected by the value
of the variable. A variable that cannot effect the behavior of the
patch and, hence, its correctness, is not necessary to be evaluated for
the Location Selection technique. Our heuristic removes variables
that SPR’s patch generation technique cannot use; e.g., floating point
variables.

The second set of variables to eliminate—variables that have
values that cannot be effectively summarized—is necessary to prevent
our technique from behaving erratically and is independent of the
summarization method. To explain this concept, consider a pointer
variable that obtains its value from a call to malloc. The range of
values this pointer may obtain is any pointer value in the heap,
with the correct byte alignment. A summary of this range would
be, ideally, the minimum and maximum values of the portion of
the heap used for memory allocation at that time in the program.
Knowing that a pointer points to some specific area in the heap rarely
determines whether the pointer is valid. This is both because multiple
locations in the same range are invalid and code is rarely designed
to require specific heap ranges for execution. Our heuristic removes
these variables that cannot be effectively summarized; e.g., pointer
variables.

D. Test-Case Pruning

The remaining technique to implement is the Test-Case Pruning
technique. In this technique, we construct a test case set of all test
cases that covered a location that was changed in the patch. In
practice, the coverage of each test case is commonly available for
each location that a patch may be applied. For purposes of exposition,
we will assume that no such information is available for each location
and will construct the necessary information from the mappings
obtained in the first phase. At the end of the first phase, we have



a map from test case & location pairs to the summary of values that
variables can obtain (state summaries). If the state summary is an
empty range (the variables there cannot obtain any value), then we
know that the location is never encountered during execution of the
program for that test case. The set of all tests cases where a specific
location has a non-empty range is the set of all test cases that cover
that location. This set is constructed on line 17 through line 19. When
a patch for that location is being validated, we skip any test case that
is not in this set. This is sound because any test case that exercises
the locations in the patch are in the test case set—any test case that
exercises the location must produce some non-empty state summary
for that location.

E. Implementation

We implement both of our techniques on top of SPR [6], modifying
the source code available in its replication package. SPR is a recent
generate and validate automated repair tool for C programs. SPR uses
several heuristics to decrease its runtime and improve its accuracy.
We now describe SPR’s architecture and how it’s internal heuristics
interact with our techniques.

The execution of SPR can be broken into multiple phases: a
fault localization phase, patch schema selection, and staged patch
validation. The first phase—fault localizing—runs as a pre-processing
step for SPR, using the coverage information for all test cases
to determine a list of locations for patching. The resulting list is
ordered based on how likely the location is the source of the bug.
Our Test-Case Pruning technique can use the coverage information,
with zero overhead, from this phase to determine the test cases for
each patch location. Our Location Selection technique requires a
separate pre-processing stage with measurable overhead (as discussed
in Section IV-E).

The second phase—patch schema selection—chooses a schema for
each of these locations. A schema is a generic plan for patching, like
introducing an if-statement or an assignment statement. A schema
does not necessarily specify a complete patch: for instance, it may
specify that an if-statement is introduced, but not the condition.
Once a schema is selected for each location, the location-schema
pairs are prioritized based on both the position in the list from the
fault localization and the schema selected. Our Location Selection
prioritization supersedes this ordering.

The third phase—staged patch validation—creates a concrete patch
from the schema in stages and validates the patch. The creation of
a concrete patch from a schema sometimes involves the running
of test cases to collect further information. Here, our Test-Case
Pruning technique eliminates unnecessary test case executions. Once
a concrete patch is created, the patch is added to a batch. A batch
is a set of patches that are compiled at once. Patches are added to a
batch until certain heuristics are met, one of which is the time since
a batch was last compiled. The patch that is run during validation
is selected via a run-time environment variable. This is achieved by
separating the patches by a switch-case statement. Once the batch is
compiled and a specific patch is selected, it is validated by running
all test cases, prioritizing the test cases that last caused a patch to
fail earlier. Our Test-Case Pruning technique alters this technique
to only be test cases that could be affected by the patch. The very
design of staged patch validation, decreases the number of concrete
patches and thereby decreases the number of compilations and test
cases evaluated.

Two of the heuristics in the third phase negatively effect the utility
of our techniques: batching and the existing test-case prioritization.
The batching behavior prevents Location Selection from effectively

minimizing compilation time, as the difference of time of compilation
between a batch of size one and a batch of a larger size is negligible.
The existing test-case prioritization essentially simulates a simpler
form of the Test-Case Pruning technique, because the test case that
last failed is often the test case that has the most coverage.

IV. EVALUATION

A. Experimental Setup

All experiments for this paper were performed on virtual machines
with 2 Intel Xeon E5-2695 CPUs and 8Gb of memory allocated. The
experiments used modified source code and support scripts from the
SPR replication package [25] with a time limit of 12 hours. We used
43 bugs from the GenProg benchmarks [2] used by SPR.
RQ1: Can Test-Case Pruning and Location Selection working in tan-

dem improve the efficiency of generate-and-validate program
repair without degrading patch correctness? (Section IV-B)

RQ2: What is the contribution to the speedup from each of the two
techniques? (Section IV-C)

RQ3: Does Test-Case Pruning reduce the number of test cases
evaluated for each repair candidate and Location Selection
the number of repair candidates examined to derive a repair?
(Section IV-D)

RQ4: What is the overhead of applying the proposed techniques?
(Section IV-E)

B. RQ1: Overall Speedup

Table I shows the patch generation results for the execution of
four techniques: the original SPR (columns SPR), SPR enhanced
with Test-Case Pruning (columns +TP), SPR enhanced with Location
Selection (columns +LS), and SPR enhanced with both techniques
(+TP+LS). The patch correctness columns record the correctness of
the patch categorized as CR (correct patch), PL (plausible patch),
or TO (timeout). As in previous work [3, 4, 6] we categorize a
patch that is semantically equivalent to the developer-provided patch
(established through manual comparison) as correct, and one that is
not equivalent but nevertheless passes the test suite, as plausible.

The upper half of the table (termed comparable instances) corre-
sponds to the 27 bugs where all four techniques produced identical
patches. These include all of the 12 correct patches produced by
the original SPR (bugs # 1 − 12) and a further 15 instances with
plausible patches. In these instances all four techniques are effec-
tively searching comparable search-spaces, and can be meaningfully
compared in terms of efficiency. The bottom half of the table (termed
incomparable instances) includes a further 16 instances where all
techniques ran but produced different results, i.e., either different
plausible patches or one or more of the techniques timing out. In these
instances the techniques are effectively searching different search
spaces and it is less meaningful to compare (or even define) their
relative efficiency. Nevertheless, we report this data for completeness.

The columns labeled Runtime report the repair time for various
techniques, recorded in minutes (720 minutes if a timeout occured).
Note that, consistent with previous work [3, 4, 6], this time does not
include the bug localization time. Further, it does not include our
pre-processing time, which we discuss separately under RQ4. The
columns labelled Speed-up are calculated as a ratio to the runtime
of the original SPR. Again, speed-ups although calculated for the
bottom half-of the table have only nominal value.

Discussion: Overall, the combined technique (+TP+LS) provides
a net speed-up for almost all of the 27 comparable instances (top
half of Table I), and in particular for each of the 12 correct instances



TABLE I
PATCH GENERATION RESULTS.

Bug Patch Correctness Runtime [min.] Speed-up [X] Pre-processing

# ID SPR +TP +LS +TP+LS SPR +TP +LS +TP+LS +TP +LS +TP+LS Time [min.]

1 gmp-13420-13421 CR CR CR CR 179.9 179.3 103.8 100.8 1.0 1.7 1.8 3.2
2 libtiff-ee2ce5b7-b5691a5a CR CR CR CR 13.1 11.3 12.5 9.6 1.2 1.1 1.4 1.4
3 php-307562-307561 CR CR CR CR 251.4 184.3 300.7 420.3 1.4 0.8 0.6 5.7
4 php-307846-307853 CR CR CR CR 78.2 52.3 23.5 9.6 1.5 3.3 8.2 5.3
5 php-307914-307915 CR CR CR CR 45.5 45.2 46.8 40.5 1.0 1.0 1.1 4.9
6 php-308734-308761 CR CR CR CR 339.3 123.0 343.5 121.2 2.8 1.0 2.8 4.7
7 php-309516-309535 CR CR CR CR 92.8 51.5 60.9 18.6 1.8 1.5 5.0 4.3
8 php-309579-309580 CR CR CR CR 66.5 23.1 69.9 22.5 2.9 1.0 3.0 4.6
9 php-309892-309910 CR CR CR CR 84.4 36.6 118.7 10.2 2.3 0.7 8.3 5.5
10 php-310991-310999 CR CR CR CR 143.1 166.2 165.2 142.5 0.9 0.9 1.0 4.3
11 php-311346-311348 CR CR CR CR 64.4 21.3 48.7 5.5 3.0 1.3 11.8 4.7
12 python-69783-69784 CR CR CR CR 74.0 50.8 61.8 38.4 1.5 1.2 1.9 3.6
13 gmp-14166-14167 PL PL PL PL 19.0 9.3 15.8 4.7 2.1 1.2 4.1 3.0
14 gzip-a1d3d4019d-f17cbd13a1 PL PL PL PL 6.1 6.6 18.0 18.0 0.9 0.3 0.3 1.9
15 libtiff-0860361d-1ba75257 PL PL PL PL 24.4 20.0 15.6 14.8 1.2 1.6 1.6 2.0
16 libtiff-90d136e4-4c66680f PL PL PL PL 13.3 11.7 12.7 9.8 1.1 1.0 1.4 1.3
17 lighttpd-1948-1949 PL PL PL PL 55.1 57.9 59.0 54.2 1.0 0.9 1.0 2.6
18 lighttpd-2330-2331 PL PL PL PL 43.2 24.5 35.1 16.2 1.8 1.2 2.7 3.0
19 php-308525-308529 PL PL PL PL 370.9 58.1 258.5 64.8 6.4 1.4 5.7 5.1
20 php-309688-309716 PL PL PL PL 42.3 30.6 43.5 43.2 1.4 1.0 1.0 4.8
21 php-310011-310050 PL PL PL PL 462.0 228.6 470.9 220.1 2.0 1.0 2.1 5.3
22 php-310370-310389 PL PL PL PL 165.2 109.8 160.1 96.0 1.5 1.0 1.7 5.7
23 php-311323-311300 PL PL PL PL 96.5 112.0 147.2 96.2 0.9 0.7 1.0 22.0
24 python-69368-69372 PL PL PL PL 35.8 35.9 68.4 64.5 1.0 0.5 0.6 7.4
25 python-69709-69710 PL PL PL PL 48.0 44.6 47.9 41.0 1.1 1.0 1.2 3.8
26 python-70019-70023 PL PL PL PL 306.2 280.1 323.9 285.3 1.1 0.9 1.1 8.2
27 wireshark-37112-37111 PL PL PL PL 42.0 30.0 32.6 25.4 1.4 1.3 1.7 12.3

Average 1.7 1.1 2.7
Average (correct) 1.8 1.3 3.9

28 libtiff-5b02179-3dfb33b PL PL PL∗ PL∗ 6.3 2.9 11.2 11.0 2.2 0.6 0.6 1.6
29 lighttpd-1913-1914 PL PL PL∗ PL∗ 134.4 148.7 21.1 12.0 0.9 6.4 11.2 2.3
30 php-309111-309159 PL PL PL∗ PL∗ 92.1 46.3 22.2 6.1 2.0 4.1 15.2 5.0
31 php-309986-310009 PL PL PL∗ PL∗ 560.7 360.4 103.2 3.5 1.6 5.4 159.4 5.6
32 php-310673-310681 PL PL PL∗ PL∗ 42.1 41.2 108.7 24.3 1.0 0.4 1.7 5.1
33 python-69223-69224 PL PL TO TO 225.7 216.9 720.0 720.0 1.0 0.3 0.3 3.9
34 lighttpd-2661-2662 PL PL∗ PL∗ PL∗ 162.0 165.2 12.4 7.7 1.0 13.1 21.0 1.5
35 python-70098-70101 PL PL∗ PL PL∗ 63.8 34.4 60.6 35.3 1.9 1.1 1.8 2.7
36 wireshark-37172-37171 PL PL∗ PL∗ PL∗ 39.4 40.0 24.2 17.1 1.0 1.6 2.3 13.4
37 wireshark-37172-37173 PL PL∗ PL∗ PL∗ 36.0 34.6 19.6 29.8 1.0 1.8 1.2 13.2
38 wireshark-37284-37285 PL PL∗ PL∗ PL∗ 35.9 40.2 21.9 29.7 0.9 1.6 1.2 13.2
39 libtiff-d13be72c-ccadf48a TO PL∗ TO PL∗ 720.0 19.4 720.0 4.1 37.1 1.0 173.5 2.4
40 php-308323-308327 TO PL∗ TO PL∗ 720.0 121.7 720.0 12.7 5.9 1.0 56.8 5.0
41 lighttpd-1806-1807 TO TO TO TO 720.0 720.0 720.0 720.0 1.0 1.0 1.0 2.2
42 php-307931-307934 TO TO TO TO 720.0 720.0 720.0 720.0 1.0 1.0 1.0 5.0
43 php-308262-308315 TO TO PL∗ PL∗ 720.0 720.0 79.0 19.5 1.0 9.1 36.9 12.4

Average 3.8 3.1 30.3

SPR: original SPR, +TP: SPR with Test-Case Pruning technique, +LS: SPR with Location Selection technique, +TP+LS: SPR with both techniques
CR: a correct patch, PL: a plausible but incorrect patch, TO: no patch generated due to time-out, ∗: the patch is different from the SPR patch.

(bugs # 1− 12), faithfully re-generating each of the correct patches.
For these instances, the average speed-up is 2.7X , and 3.9X on only
the correct instances. It can be as high as 11X on the correct or
plausible instances (bug #11).

There are three instances, bug #3, 14, 24, where there is a modest
slowdown. In these instances, Location Selection incorrectly de-
prioritizes the correct location and the repair search takes significantly
longer to re-discover the same patch, later. There are some remarkable
speed-ups among the incomparable instances, specifically bugs #31,
40, and 41. These are discussed under RQ2.�
�

�
�The combined technique provides a 3.9X speed-up of repair, on

average, without any degradation in correct patch quality.

C. RQ2: Speedup Contribution by Each Technique

The columns +TP and +LS under the speed-up section of Table I
report the speed-ups provided (individually) by the Test-Case Pruning
and Location Selection techniques respectively.

Discussion: Test-Case Pruning provides a speed-up of 1.7X on
average (1.8X on only the correct patches), producing modest slow-
downs in some of the instances, e.g., bug #10 where the speed-
up is 0.9X . In this case, and most others, the pruning of some
(redundant) test-cases by Test-Case Pruning slightly perturbs the
candidate batching order that was being produced by SPR’s heuristics,
actually increasing runtime by a modest amount. Location Selection
provides a speed-up of 1.1X on average (1.3X on only the correct
patches). It also produces slow-down in several cases, sometimes as



Fig. 2. The runtime of php-307846-307853, broken into compilation and
processing time (darker colors, with vertical lines) and test case runtime
sections (lighter colors). The test case runtime sections correspond to the
compilation and runtime sections immediately below them on a bar.

much as 0.3X speedup (i.e., 3.3X slow-down), e.g., in bug #14. In
these cases, one of two behaviors occur: the patch location is de-
prioritized or the batching system is made less optimal.

The former case—the patch location is de-prioritized—occurs
when either the positive test case set is unable to explore a good
representation of the range of valid values for a variable or the
failing value exists inside this range (e.g., an integer value causes
the test case to fail, but the values greater than or less than it
do not cause failing behavior). This is the case for bug #14. The
latter case—the batching system is made less optimal—occurs due
to an interaction between the batching evaluation behavior. A batch
attempts to compile many patches to nearby locations at once. If the
locations are prioritized in a different order, then the size of the batch
may decrease, causing more compilations.

Interestingly, the two techniques complement each other quite well,
producing an overall speed-up that exceeds the product of the two
individual speed-ups. An example of this behavior is in the motivating
example php-307846-307853, which is bug #4. The runtime of this
benchmark is given in Figure 2. In the figure, there are four bars
corresponding to the four configurations tested: unmodified SPR,
SPR with the Test-Case Pruning technique, SPR with the Location
Selection technique, and SPR with both techniques enabled. Each
bar is broken into two or more sections. We describe the sections
by focusing on the first bar, which contains all sections. On this bar,
the lowest section (dark red with vertical lines) is the compilation
and processing runtime for patch locations that would have been
prioritized; the second lowest section on the bar (light orange) is the
test case execution time for those patch locations; the third section
(dark blue with vertical lines) is the runtime for the compilation
and processing time for patch locations that would be de-prioritized;
and the fourth section (light green) is the runtime for the test case
execution time for the de-prioritized patch locations. In the remaining
bars, one or more of these sections have been eliminated or minimized
by our techniques. In this figure, the speedup is clearly shown: the
reason a better-than-linear speedup is possible is that the Location
Selection removes both test cases and compilation runtime, and the
Test-Case Pruning optimization does not affect both sets of patch
locations (those prioritized or de-prioritized) equally.

�
�

�
�

Test-Case Pruning and Location Selection provide speed-ups of
1.8X and 1.3X respectively, on average. They work even

better together, each compounding the other’s gains.

D. RQ3: Reduction in Executed Test-cases & Repair Candidates

Table II shows data for the same 43 bugs as Table I, organized
in the same two sets of bugs. Columns 3 − 5, show statistics for
the Test-Case Pruning technique, in particular, the number of test-
cases executed per candidate patch evaluated, for the original SPR
(column 3), SPR+TP (column 4) and the ratio of columns 3 and 4
as the reduction ratio (column 5). Columns 6 − 8, show statistics
for the Location Selection technique, in particular, the number of
candidate patches evaluated till the generation of a successful patch
(or timeout), for the original SPR (column 6), SPR+LS(column 7)
and the ratio of columns 6 and 7 as the reduction ratio (column 8).

Discussion: Considering only the comparable instances (i.e., the
set of first 27 bugs) Test-Case Pruning produces, on average, an
9.6X reduction in the number of test-cases executed per candidate.
For bug # 19 the reduction is quite remarkable (126.5X) but this is
definitely an extreme case. For most instances TP produces a 1−2X
reduction, and in some cases leaves it unchanged. Overall, this is still
a substantial reduction, which ultimately contributes to the runtime
speed-up (RQ1 and RQ2).

Overall, Location Selection produces an average 3.6X reduction
in the number of candidates evaluated per repair run, compared to the
original SPR. However, the gains are not uniform across all instances,
ranging from a 7.7X reduction for bug #7 to a 10X increase for bug
#24. This is because a single location can produce a different number
of candidate patches depending on the statements at that location.
For instance, SPR has different schemas for generating conditionals
than for generating statements—should a location with many schemas
available be de-prioritized, the number of candidate patches will drop
more than if a location with few schemas is de-prioritized.�
�

�
�

Test-Case Pruning produces an average 9.6X reduction in the
number of test-cases executed per candidate. Location Selection

produces an average 1.8X reduction in the number of
candidates evaluated in a repair run.

E. RQ4: Overhead of the Techniques

As discussed earlier, Test-Case Pruning has no overhead, since the
information needed to perform it is already provided by spectrum-
based fault localization. The time for the pre-processing phase needed
to implement Location Selection, is shown in the last column of
Table I, for each bug. When taken as a fraction of the original SPR
repair time for the corresponding bug, and averaged out, this comes
to, an overhead of 5.6% for only correct patches, 9.0% when averaged
on the first 27 bugs, i.e., the comparable, instances, and 9.5% when
considering all 43 bugs.

Discussion: Overall, the 10−20% pre-processing overhead, while
not negligible, is more than compensated by the speed-up in the
repair time provided by the techniques (typically 2.7X speed-up on
average for comparable cases), making the techniques a net-positive
proposition. Further, with the exception of a single instance (where
the pre-processing time is about 22 minutes) the pre-processing is of
the order of 5− 15 mins., where the original SPR time was several
tens of minutes.

Finally, we note that there is significant scope for optimizing the
current, first-cut implementation of the pre-processing phase. One
direction is to gather the necessary state information, not through a
pre-processing phase (as is currently the case) but in a incremental,



TABLE II
QUANTITATIVE REDUCTIONS BY THE PROPOSED TECHNIQUES.

Bug # of Test Cases Executed Per Repair Candidate # of Repair Candidates Evaluated

# ID SPR +TP Reduction Ratio [X] SPR +LS Reduction Ratio [X]

1 gmp-13420-13421 1.6 1.5 1.1 6475.0 2976.0 2.2
2 libtiff-ee2ce5b7-b5691a5a 3.7 2.6 1.4 499.0 499.0 1.0
3 php-307562-307561 5.2 5.4 1.0 1675.0 5128.0 0.3
4 php-307846-307853 7.7 1.2 6.4 1999.0 125.0 16.0
5 php-307914-307915 21.8 22.1 1.0 387.0 377.0 1.0
6 php-308734-308761 45.3 2.1 21.6 2252.0 2252.0 1.0
7 php-309516-309535 11.0 1.5 7.3 1455.0 188.0 7.7
8 php-309579-309580 48.9 1.2 40.8 499.0 499.0 1.0
9 php-309892-309910 49.7 1.9 26.2 438.0 352.0 1.2
10 php-310991-310999 558.4 558.4 1.0 101.0 101.0 1.0
11 php-311346-311348 284.2 72.2 3.9 99.0 127.0 0.8
12 python-69783-69784 15.5 7.6 2.0 232.0 158.0 1.5
13 gmp-14166-14167 6.2 3.9 1.6 499.0 258.0 1.9
14 gzip-a1d3d4019d-f17cbd13a1 1.7 1.7 1.0 579.0 1050.0 0.6
15 libtiff-0860361d-1ba75257 7.7 8.0 1.0 397.0 296.0 1.3
16 libtiff-90d136e4-4c66680f 3.9 2.8 1.4 499.0 499.0 1.0
17 lighttpd-1948-1949 22.4 22.4 1.0 159.0 159.0 1.0
18 lighttpd-2330-2331 6.2 3.2 1.9 409.0 339.0 1.2
19 php-308525-308529 455.3 3.6 126.5 289.0 998.0 0.3
20 php-309688-309716 20.6 20.6 1.0 366.0 366.0 1.0
21 php-310011-310050 355.7 170.3 2.1 499.0 499.0 1.0
22 php-310370-310389 116.3 72.0 1.6 499.0 499.0 1.0
23 php-311323-311300 42.2 42.2 1.0 499.0 499.0 1.0
24 python-69368-69372 5.2 5.2 1.0 499.0 4999.0 0.1
25 python-69709-69710 9.0 9.0 1.0 320.0 320.0 1.0
26 python-70019-70023 3.2 3.2 1.0 2654.0 2654.0 1.0
27 wireshark-37112-37111 16.1 8.4 1.9 249.0 219.0 1.1

Average 9.6 1.8

28 libtiff-5b02179-3dfb33b 11.0 3.9 2.8 72.0 499.0 0.1
29 lighttpd-1913-1914 45.1 43.8 1.0 145.0 82.0 1.8
30 php-309111-309159 44.1 3.8 11.6 499.0 51.0 9.8
31 php-309986-310009 1991.8 1557.8 1.3 122.0 11.0 11.1
32 php-310673-310681 16.9 16.9 1.0 492.0 589.0 0.8
33 python-69223-69224 12.7 12.8 1.0 188.0 TO -
34 lighttpd-2661-2662 3.2 2.6 1.2 999.0 155.0 6.4
35 python-70098-70101 2.2 1.4 1.6 1494.0 1494.0 1.0
36 wireshark-37172-37171 2.1 2.0 1.1 359.0 331.0 1.1
37 wireshark-37172-37173 2.1 1.8 1.2 369.0 266.0 1.4
38 wireshark-37284-37285 1.9 1.6 1.2 430.0 188.0 2.3
39 libtiff-d13be72c-ccadf48a TO 6.6 - TO TO -
40 php-308323-308327 TO 1.9 - TO TO -
41 lighttpd-1806-1807 TO TO - TO TO -
42 php-307931-307934 TO TO - TO TO -
43 php-308262-308315 TO TO - TO 24.0 -

Average 2.4 3.6

on-demand fashion during the repair run. We are currently experi-
menting with this idea among others.�
�

�
�

Test-Case Pruning has no additional overhead. Location
Selection has a 10− 20% pre-processing overhead, which is

more than compensated by the 2− 4X reduction in repair time
provided by the two techniques.

V. THREATS TO VALIDITY

Internal validity. Our implementation of the two techniques in
the context of SPR could have bugs, which could impact our internal
validity. One technique that was used to validate the absence of bugs
in the state recording mechanism was to use a slower implementation
for verifying correctness and a faster mechanism for the actual
evaluation runs, and verifying that they produced the same results.

External validity. Our techniques have currently only been imple-
mented in the SPR tool [6] for C program repair and evaluated only

on the GenProg benchmarks [2]. As such our conclusions may not
apply to other G&V repair tools or other benchmarks or to repair
for other languages, such as Java. Intuitively, our techniques do not
directly exploit any special features of SPR, the GenProg benchmarks,
or the C programming language, and should apply more generally.
However, to rigorously mitigate this threat, replication studies on
other benchmarks and G&V repair tools, including Java repair tools,
should be conducted.

Construct validity. Our criterion for classifying patches as correct
or plausible is based on manual analysis, which is not scientifically
rigorous, even though it is accepted practice in previous work [4, 6, 7,
26]. For each correct patch that was produced, we verified that it had
the same MD5 hash as the patch produced by the local installation
of the unmodified SPR. Any patches that produced different MD5
hashes were manually compared to see if the patches were otherwise
semantically identical and none of the patches with different hashes
were considered semantically equivalent.



Other metrics, such as number of repair candidates evaluated
and the number of test-cases evaluated per candidate, while not
common, are simple modifications of metrics used by previous work
on program repair [8, 27].

VI. RELATED WORK

Search-based repair. The objective of research in this area, at least
initially, was to maximize the fix-rate of the repair technique, i.e., the
fraction of instances for which a patch (passing all tests) is produced.
The proposed techniques use innovations in the underlying search
technique, the repair search space defined by the repair templates,
or the search order to achieve this. GenProg [2] uses a genetic
programming based search and produced patches for 55 out of 110
bugs evaluated. RSRepair [10] uses a random search instead, with
similar success. PAR [11] proposes a set of repair schemas manually
derived from human-written patches, Relifix [12] proposes a set
of repair schemas specialized for regression errors, while SPR [6]
prioritizes repairs related to conditional statements. Prophet [3] and
history-driven repair [5] both use knowledge from a large corpus
of previous successful patches to order the search space of potential
repairs; Prophet relies on a machine-learned model while [5] abstracts
patches into canonical graph representations. Machine learning has
also been applied to repair selection conditions in database statements
in ABAP programs [28] and more recently conditional statements
in Java programs [29]. SketchRep [30] reduces the problem of
program repair to program sketching [31] and uses the SAT-based
Sketch system as an off-the-shelf synthesis backend. More recent
work [32] performs a similar reduction but employs execution-driven
sketching [33] to solve the ensuing search problem and perform
program repair.

Recent studies have highlighted the concern around patch qual-
ity [26, 34]. The Kali tool [26] demonstrated that many of the earlier
G&V repair tools tend to produce patches that effectively deleted
(valid) functionality. Smith et al. [34] further showed that G&V
repair tools tend to overfit repairs to the weak specifications (i.e.,
test suites) they work with, leading to poor quality repairs. Tan et
al. [13] use this understanding to propose a set of generic, forbidden
repair transformations, which they refer to as anti-patterns, to block
nonsensical repairs that might otherwise be produced. In very recent
work, ACS [14] proposes a method for precise condition synthesis
by instantiating heuristically ranked variables in frequently occurring
predicates, mined from a given corpus of code.

While most of the above innovations have indirectly also con-
tributed to the efficiency of G&V repair, only a handful of tech-
niques have directly targeted or even evaluated the efficiency of
repair [6, 8]. AE [8] uses deterministic search coupled with light-
weight program analysis to prune equivalent patches. SPR [6] uses
abstract conditions to evaluate and prune candidates for condition-
related repairs, before concretizing the repairs, typically providing an
order of magnitude speed-up over vanilla G&V repair. In any case,
our proposed techniques are orthogonal to the above techniques, since
they are independent of the search algorithm or the repair schemas
used (i.e., the repair space). Thus, arguably they can be integrated
into any G&V repair technique.

Oracle-based repair. These techniques use some analysis, typi-
cally symbolic execution, to generate an oraclular representation of
the repair. They differ in how they create a concrete repair from the
repair oracle. SemFix [35] uses program synthesis for this purpose,
while MintHint [36] uses statistical analysis to search for a concrete
repair. DirectFix [37] attempts to generate comprehensible patches
by generating minimal repairs; it casts repair concretization as a

partial maximum satisfiability problem over satisfiability modulo the-
ories (SMT) formulas. Angelix [4] retains this notion of minimality
but enhances scalability by using a light-weight repair constraint.
SearchRepair [38] searches for repairs in a corpus of human-written
correct patches, indexed on the basis of their input-output behavior,
encoded as SMT constraints. NOPOL [7], a predecessor of SPR,
also uses abstract conditions as repair oracles of condition-related
repairs, but concretizes the repair by encoding it as an SMT formula.
In principle, our proposed techniques, especially Location Selection
should also be applicable to oracle-based repair techniques, but would
require further investigation to establish feasibility and impact.

Regression test selection. Regression test selection (RTS) is a
well-research body of work, spanning over three decades, summa-
rized in several excellent surveys [18–22]. The main distinction
between different RTS techniques is the granularity at which they
collect dependency information. While it seems natural, even obvious,
to apply RTS techniques to optimize G&V repair, the challenge is
that classical RTS techniques would be either too-grained and/or too
expensive to be useful in the context of repair. Our contribution is to
design a precise, but relatively cheap RTS technique that effectively
exploits the mechanics of G&V repair.

Delta Debugging. The work on Delta Debugging and its exten-
sions [15–17, 39, 40] attempts to precisely localize the location of
a defect, as well as a minimal subset of input or state variables
responsible for it. This is done by iteratively and systematically
mutating the program state under a single failing test case and
comparing it with that of a single passing test, at the same location,
under the applied mutations. However, while this work provided the
initial motivation for our Location Selection technique our approach
is fairly different in both its objective and its mechanics. Our aim
is to identify program locations where it would be unproductive to
attempt repairs and de-prioritize such locations during a G&V repair
search. This is done through a heuristic function which compares, in
aggregate, the program states produced by all failing and passing tests
(in the complete test suite), to determine if failing and passing tests
exhibit substantially similar behavior at that location. This involves
no mutations or repeated execution of tests.

VII. CONCLUSIONS & FUTURE WORK

Repair efficiency of program repair, i.e., the time it takes for a
repair tool to generate a successful patch, is currently one of the key
impediments to the practical adoption of such tools. In this work
we proposed two complementary optimization techniques, namely
Location Selection and Test-Case Pruning, to substantially improve
the efficiency of search-based repair techniques. We implemented
them in the context of the SPR search-based repair tool, and evaluated
them on the GenProg benchmarks. As our experiments demonstrate,
Location Selection successfully reduces the number of candidates
that need to be examined before generating a repair, by 1.8X on
average, while Test-Case Pruning reduces the number of test cases
executed per examined candidate, by 9.6X on average. Together
they accelerate the repair runs, by a factor of 3.9X , on average.
Interestingly, the techniques perfectly complement each other, with
the speed-up of the combined technique surpassing even the product
of the individual speed-ups. Further, the techniques can be integrated
into current G&V repair flows fairly easily, through an additional
pre-processing step, which consumes 10−20% of the repair time on
average. There is significant scope for further reducing this overhead.
We are actively exploring this, as well as other research ideas to
enhance repair efficiency.
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