
Efficient Sampling of SAT Solutions for Testing
Rafael Dutra, Kevin Laeufer, Jonathan Bachrach and Koushik Sen

EECS Department
University of California, Berkeley, USA
{rtd,laeufer,jrb,ksen}@cs.berkeley.edu

ABSTRACT

In software and hardware testing, generating multiple inputs which
satisfy a given set of constraints is an important problem with
applications in fuzz testing and stimulus generation. However, it is
a challenge to perform the sampling efficiently, while generating a
diverse set of inputs which satisfy the constraints. We developed
a new algorithm QuickSampler which requires a small number
of solver calls to produce millions of samples which satisfy the
constraints with high probability. We evaluateQuickSampler on
large real-world benchmarks and show that it can produce unique
valid solutions orders of magnitude faster than other state-of-the-
art sampling tools, with a distribution which is reasonably close to
uniform in practice.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Formal software verification; • Hardware → Theorem
proving and SAT solving;

KEYWORDS

sampling, stimulus generation, constraint-based testing, constrained-
random verification

ACM Reference Format:

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach and Koushik Sen. 2018.
Efficient Sampling of SAT Solutions for Testing. In Proceedings of ICSE ’18:
40th International Conference on Software Engineering , Gothenburg, Sweden,
May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180248

1 INTRODUCTION

Given a set of constraints, the problem of generating a set of random
solutions to the constraints is important both in software and hard-
ware testing and verification. For instance, conventional symbolic
execution [13, 25] and dynamic symbolic execution techniques [1–
4, 7, 8, 12, 18, 19, 24, 28, 35–40, 42] generate a path constraint for
each prefix of feasible execution paths in a program and use a SMT-
solver to generate a solution for each such constraint. However,
in practice, these techniques face scalability problems because the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180248

number of paths for any reasonable program is astronomically large.
Instead of generating a single solution for the path constraint of
a path prefix, one could generate multiple solutions to randomly
test multiple paths having the same prefix. We call this approach
constraint-based fuzzing. If multiple solutions could be generated
efficiently, this would significantly speedup symbolic execution and
reap the benefits of random testing [6, 17, 21, 22, 34, 45, 46].

Similar ideas have been proposed and developed in hardware ver-
ification. For example, constrained-random verification (CRV) [33]
has been proposed to generate high-quality inputs for hardware
designs. In CRV, verification engineers specify preconditions re-
quired by the hardware and other constraints based on domain-
specific knowledge [32, 47]. Multiple random inputs satisfying the
constraints are then generated using a constraint solver that can
sample random solutions from a constraint.

However, despite its importance, the problem of sampling a di-
verse set of solutions efficiently is still challenging today [9]. There
are approaches which give strong guarantees of uniformity [11],
but are expensive to run when a large number of samples is re-
quired. Other approaches use heuristics for faster sampling [43],
but that can make the samples biased towards one portion of the
sampling space.

In this work, we specifically focus on the goal of generating
random samples to be used as inputs for testing. We assume that
the constraints are given as Boolean satisfiability (SAT) problems,
since constraints from higher level domains, such as bit-vectors or
other satisfiability modulo theories (SMT) problems can be mapped
into SAT. Our goal is to efficiently generate lots of random satisfying
assignments to SAT formulas, also known as SAT witnesses.

In the testing domain, it is often acceptable to generate invalid
solutions some of the time. For example, in constraint-based fuzzing,
we may use constraints to direct the execution towards a certain
portion of the program, but it is still fine if some samples don’t
satisfy the constraints and end up executing other program parts.
It is also important to notice that, in the testing domain, the most
important metric is the number of unique valid solutions generated
over time. That is because each unique valid input can help cover
new portions of the program and find previously unseen bugs, while
repeated samples do not increase coverage.

With that in mind, we have designedQuickSampler, a new tech-
nique for efficient sampling. QuickSampler uses a small number
of constraint solver calls to generate a large number of samples.
QuickSampler works as follows. First, it finds a random assign-
ment to the variables of the Boolean formula (i.e. the constraint).
Such an assignment may not satisfy the formula. QuickSampler
then uses a MAX-SAT solver to find a solution of the formula that
is close to the random satisfying assignment. It then flips the value
of each variable in the solution and again uses MAX-SAT to find
another close solution of the formula. The difference between the

1

https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/3180155.3180248

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Dutra et al.

original solution and the modified solution is called an atomic mu-
tation. For each variable in the formula, this generates at most one
atomic mutation. A small bounded number of such atomic muta-
tions are then combined and applied to the original solution to
generate a potentially new solution. We found that such combina-
tions of small atomic mutations often results in new valid random
solutions. This is because each atomic mutation identifies a small
set of variables that are tightly coupled with each other. Whereas
the variables from two different atomic mutations are often inde-
pendent. Therefore, if two such atomic mutations are combined and
applied to the original solution, then the resulting solution will of-
ten satisfy the formula. The entire process is repeated several times.
SinceQuickSampler creates lots of solutions by simply combining
atomic mutations, it avoids making frequent solver calls (which is
often the bottleneck). This in turn results in quick generation of
lots of random solutions.

We have implemented QuickSampler as an open-source tool
available at https://github.com/RafaelTupynamba/quicksampler/.
We use Z3 [14] to solve MAX-SAT queries. The samples gener-
ated by QuickSampler are not guaranteed to satisfy a given for-
mula, but our experiments show that they are valid solutions in our
benchmarks with high probability (i.e. ≥ 0.75).QuickSampler also
produces unique valid solutions orders of magnitude (i.e. ≥ 1000×)
faster than other state-of-the-art samplers, while generating a dis-
tribution of samples which is still close to uniform. For applications
which require only valid solutions, it is also possible to use our
technique, by simply checking the samples for validity and filtering
out the invalid ones. Our evaluation shows that QuickSampler
is still faster than the other samplers, even when including this
additional checking.

2 RELATEDWORK

There are several different techniques used to tackle the problem
of sampling solutions to Boolean constraints [29]. The problem of
sampling SAT witnesses is also closely related to the problem of
counting the number of solutions, which has #P-complete complex-
ity. Several sampling techniques can be applied to model counting
or use some form of model counting internally [16, 30, 44].

One class of sampling methods is based on Markov Chain Monte
Carlo (MCMC) algorithms [26, 27]. These include simulated anneal-
ing and Metropolis-Hastings which are used to generate samples
from a probability space. Those MCMC methods are guaranteed
to eventually converge to the desired distribution (such as uni-
form sampling). However, this convergence is slow in practice for
real-world problems, so the algorithms typically employ heuris-
tics which make the sampling more biased [27, 43]. For example,
[43] combines Metropolis steps with random walk steps through
the assignments to the variables of the formula. In comparison,
QuickSampler does not need to wait for a convergence time and
covers the search space by finding solutions closest to randomly
selected points.

One similar line of work attempts to modify the SAT solver
search heuristics in order to generate a more diverse set of solutions
[31]. However, unlike QuickSampler, this diverse sampling has
different goals and does not attempt to cover the whole search
space nearly uniformly. QuickSampler also does not modify the

σ : 0 1 0 0 0 1 0 1 1 0 1 1
δa : 1 0 0 0 1 1 0 0 0 0 0 0

σa = σ ⊕ δa : 1 1 0 0 1 0 0 1 1 0 1 1
δb : 0 1 0 0 0 1 1 0 1 0 0 0

σb = σ ⊕ δb : 0 0 0 0 0 0 1 1 0 0 1 1
(δa ∨ δb) : 1 1 0 0 1 1 1 0 1 0 0 0

σ̃ = σ ⊕ (δa ∨ δb) : 1 0 0 0 1 0 1 1 0 0 1 1

Figure 1: Combining two mutations.

inner search strategies of SAT solvers, but instead uses the SAT
solvers as an oracle to answer MAX-SAT queries.

The closest technique to QuickSampler in literature appears
to be SearchTreeSampler [16], which also uses a SAT solver as
an oracle. However, SearchTreeSampler performs simple satisfi-
ability queries instead of the MAX-SAT queries by QuickSampler.
SearchTreeSampler works by exploring the tree of variable as-
signments in a breadth-first way, generating pseudosolutions, which
are partial assignments to the variables that can be completed to a
full solution. SearchTreeSampler uses a parameter k which spec-
ifies the number of samples computed per level in the tree and
can be used to trade-off uniformity and number of solver calls re-
quired. On the other hand,QuickSampler uses a different strategy
to cover the search space, and also generates a vastly larger number
of samples per solver call, by combining learned mutations.

A different class of algorithms is based on universal hashing
[15, 30] and can provide strong guarantees of uniformity. These
techniques work by adding additional constraints to the formula
(known as hash functions) in order to partition the search space
uniformly. Those hash functions are typically formed by comput-
ing the XOR of a random subset of variables [20]. UniGen [11]
and UniGen2 [9] are examples of this class, with the latter also
employing parallelism to improve performance. In comparison,
QuickSampler does not attempt to be perfectly uniform, but only
close to uniform in practice.QuickSampler primarily aims for effi-
ciency, using solver calls which are much less expensive to solve
than the XOR constraints of hash functions, and generating a large
number of samples per solver call.

3 QUICKSAMPLER ALGORITHM

Given a Boolean formulaϕ, the goal ofQuickSampler is to generate
unique solutions of ϕ efficiently. Another goal of QuickSampler
is to make sure that solutions of ϕ are sampled almost uniformly
at random. The key idea behind QuickSampler is to make a small
number of solver calls to generate a large number of potentially
unique solutions of ϕ. The core algorithm behindQuickSampler
works as follows. QuickSampler assumes that we are given an
initial random solution σ (i.e. a satisfying assignment to ϕ), where
σ is a vector of 1s and 0s. Each location in the vector corresponds to
a Boolean variable in ϕ and the value at that location in the vector
denotes the value assigned to this variable in the solution σ . Let V
be the set of all Boolean variables in ϕ. For example, in Figure 1 we

2

https://github.com/RafaelTupynamba/quicksampler/

Efficient Sampling of SAT Solutions for Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

show a possible vector σ , in a case where the number of variables
is |V | = 12.

For each variablev ∈ V ,QuickSampler finds a solution σv such
that σv and σ are minimally different and σv (v) , σ (v), where
σ (v) is the value of the variable v in the solution σ . Note that such
a solution may not exist for all variables in V . The diff between σ
and σv , which we will denote using δv and which is the XOR of
σ and σv , is called an atomic mutation of σ . That is δv = σv ⊕ σ .
In the example from Figure 1, if the first variable of the formula is
a, we might find a new solution σa which has the first bit flipped
(corresponding to variable a) and additionally other two bits flipped.
The corresponding atomic mutation δa is also shown in Figure 1.
Similarly, if the second variable of the formula is b, we might find
a new solution σb as shown in Figure 1, which has the second bit
(corresponding to variable b) flipped, but also other 3 bits flipped.
The corresponding atomic mutation δb is again shown in Figure 1.

By definition, the atomic mutation δv always ensures that at least
δv (v) is one, i.e. σ and σv at least differ in the value of the variable
v and difference in the values of the remaining variables is minimal.
We will later explain how a MAX-SAT query to a SAT solver can
be used to find σv given ϕ, σ , and v . Given σ , QuickSampler first
computes the set of all atomic mutations by going over all the
variables v ∈ V . Let us denote the set of all such atomic mutations
by ∆1

σ . Note that given σ and δv , we can compute σv as δv ⊕ σ .
After computing ∆1

σ , QuickSampler computes sets of compos-
ite mutations ∆kσ for k > 1, where ∆kσ contains the union of all k
distinct mutations in ∆1

σ . For example, if δa and δb are two muta-
tions in ∆1

σ such that a , b, then δa ∨ δb is a mutation present in
∆2
σ . (Since each of δa and δb are bit-vectors, δa ∨ δb is computed

by taking bitwise OR of the two bit-vectors.) For example, after
computing the atomic mutations δa ,δb ∈ ∆1

σ from Figure 1, the
combined mutation δa ∨ δb is added to ∆2

σ . If we apply the com-
bined mutation to σ , by computing σ ⊕ (δa ∨ δb) we obtain a new
assignment σ̃ , as in Figure 1. Note that σ̃ differs from σ on all the
bits set in either of the two atomic mutations δa and δb .

This new assignment σ̃ is not guaranteed to be a valid solution,
but we have found that it has a high probability of being valid in
real benchmarks1. This is because the differences δa and δb consist
of a minimal set of bits which can be flipped while still preserving
the satisfiability of the formula. So the bits in δa are likely to be
closely related to each other by some clauses in the formula. It is
likely that those clauses would still be satisfied in σ ⊕ (δa ∨ δb),
where we flip all the bits from δa in addition to the bits from δb .

In general, each mutation δ present in a ∆kσ denotes a composite
mutation and can be XORed with σ to get an assignment σ̃ to the
variables in ϕ. Such an assignment may or may not be a solution of
ϕ. Surprisingly, in our experiments we found that for small values
of k (i.e. k ≤ 6), more than 73% of such assignments obtained by
XORing are solutions of ϕ. Let us denote the assignments obtained
by applying all the mutations present in ∆kσ to σ by Σkσ , i.e.

Σkσ =
{
δ ⊕ σ | δ ∈ ∆kσ

}
1Our heuristic to generate samples exploits the clause structure found in real-world
benchmarks. We expect it to perform poorly if applied to a randomly-generated SAT
formula.

We let Σσ = ∪1≤k≤6Σ
k
σ . We found experimentally that over all

benchmarks, 75% of the assignments in Σσ are solutions of ϕ.
We now make a few interesting and important observations

about the set of assignments Σσ . QuickSampler needs to make
solver calls only to compute ∆1

σ . Moreover, it is not always neces-
sary to make a solver call while computing the elements of ∆1

σ—if
QuickSampler flips the bit corresponding to the variable v in σ
and discovers that the resulting bit-vector is a satisfying assignment
to ϕ, then QuickSampler can skip the solver call for δv . For the
computation of all other Σkσ , QuickSampler needs no solver calls
because each element in Σkσ is obtained by applying at most k bit-
wise Boolean operations. An assignment in Σkσ may or may not be a
valid solution, however checking its validity is fast and takes linear
time in the size of ϕ. In summary, QuickSampler can potentially
make solver calls for the computation of Σ1

σ , but it makes no solver
calls to compute the remaining sets Σkσ . Another observation is that
size of Σkσ could grow exponentially with k . This observation com-
bined with the facts that a significant number of assignments in Σσ
have been empirically found to be solutions of ϕ and that we make
at most |V | solver calls suggests that given σ , QuickSampler can
rapidly generate lots of unique solutions of ϕ by making very few
solver calls. This forms the crux ofQuickSampler’s core algorithm
for sampling.

Given a random solution σ , we described how QuickSampler
generates lots of solutions that are small mutations of σ . We next
describe how we generate a random solution σ . QuickSampler
first chooses a random assignment σ ′ by picking the values of
variables inV uniformly at random. Then it uses a MAX-SAT query
to find a closest solution σ to the random assignment σ ′. We picked
this strategy to make sampling of solutions more uniform. Overall,
QuickSampler execution is divided into epochs. In each epoch,
QuickSampler generates a random solution σ using the method
described above. Then it computes Σσ and outputs the elements of
Σσ that are solutions of ϕ. QuickSampler repeats this process in a
loop until it has run out of time budget or it has finished generating
a user-specified number of solutions.

Now we describe how MAX-SAT queries can be used to obtain
the random solution σ and also to obtain the solutions σv for each
variable v . The maximum satisfiability problem, or MAX-SAT, is
defined as follows: given a set of hard constraints and a set of soft
constraints, find a solution which satisfies all the hard constraints
and additionally satisfies the maximum possible number of soft
constraints. In order to compute the random solution σ , we just
need to specify one hard constraint that the formula ϕ must be
satisfied and |V | soft constraints indicating that the values of each
variable v should preferably be equal to their respective values in
the random assignment σ ′, i.e. ∀u ∈ V : σ (u) = σ ′(u). In order
to compute each solution σv , we specify two hard constraints and
|V | − 1 soft constraints. The hard constraints are that the formula
ϕ must be satisfied and that the value of variable v must be flipped,
i.e. σv (v) , σ (v). The soft constraints are that the values of other
variables should preferably remain the same, or ∀u ∈ V \{v} :
σv (u) = σ (u).

This completes the general description of the QuickSampler
algorithm. However, we have also made some adaptations to this
initial algorithm in order to improve its performance. We discuss

3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Dutra et al.

σa

1

σb

1

2

σc

1

2

3

2

Figure 2: Combining Mutations

in §3.1 the eager generation of samples, in §3.2 the use of the
independent support of the formula, and in §3.3 the removal of
unsatisfiable variables.

3.1 Eager Generation of Samples

As we have seen,QuickSampler only requires solver calls in order
to produce the atomic mutations in ∆1

σ . After that, the computation
of the samples in Σkσ can be performed with simple bitwise oper-
ations. However, the solver calls can be expensive for the largest
benchmarks. So ideally we would like to leverage each solver call
to generate samples as soon as the call is completed, so that we do
not need to wait for all solver calls before generating samples.

We have adapted the basicQuickSampler algorithm to generate
samples as soon as each solver call is completed. Figure 2 presents
an example of this eager generation. Each circle represents one
mutation and inside it we indicate the number of atomic mutations
used to generate it. When solution σa is returned by the solver, we
learn one atomic mutation δa , represented by the first circle in the
figure. Then, as soon as solution σb becomes available, we learn
the atomic mutation δb and also combine it with δa to generate a
mutation in ∆2

σ . Then, as soon as solution σc becomes available,
we learn the mutation δc and combine it with the three previously
known mutations in order to generate three new mutations.

In conjunction with this eager generation of mutations, we also
eliminate duplicate mutations in the current sampling epoch. We
found it important to avoid duplicates within one epoch, other-
wise we would output too many repeated samples and perform
unnecessary work computing them.

We maintain a collection ∆ of currently known mutations gen-
erated in the current epoch. Whenever we learn a new mutation
from a solver call, we combine it with the mutations in ∆. The new
generated mutations are added to ∆ only if they are previously
unseen mutations in this epoch. Also, we only combine the new
atomic mutations with mutations from ∆kσ for k < 6. We do not

want to generate mutations composed of more than 6 atomic muta-
tions, because they would have a lower chance of generating valid
solutions, according to our experiments.

3.2 Independent Support

Similarly to UniGen2 [9], we can restrict our sampler to only oper-
ate over the variables in an independent support S of the formula,
instead of generating assignments to all the variables in V . The
independent support is a subset of variables which completely de-
termines all the assignments to a formula. More specifically, given
an assignment of values to the variables in the independent support
S , there is at most one completion of this assignment to the remain-
ing variables which satisfies the formula. So we can think of all
other variables being dependent on the variables in the independent
support. Knowing an independent support is helpful in reducing
the number of variables for which we need to assign values.

In many cases, an independent support arises naturally from
the application. For example, when the Tseytin transformation
is used to transform a combinatorial logic circuit into a Boolean
formula in conjunctive normal form (CNF), auxiliary variables are
introduced for all intermediate wires in the circuit. All of those
auxiliary variables can be uniquely determined given the inputs
to the circuit, so the inputs form an independent support. In cases
when an independent support is not known for a formula, there
are also methods to compute a minimal independent support for
it [23].

3.3 Unsatisfiable variables

If one MAX-SAT query for variablev returns no solutions, we learn
that v can only have one truth value in this formula. When this
happens in the first epoch, we record the variablev in a setU of un-
satisfiable variables. Then, we do not try to flip the value of v again
in other epochs. We found that, over all benchmarks, on average 6%
of the variables from the independent support were added to the
setU . This means that, after the first epoch, all subsequent epochs
can work over a reduced sampling set and avoid unnecessary solver
calls.

4 IMPLEMENTATION

We have implemented2 the technique in C++, using Z3 [14] as
the underlying solver. QuickSampler uses the Z3 optimization
subsystem νZ [5] in order to solve the MAX-SAT queries. We also
use the push() and pop() interfaces to efficiently add and remove
constraints from a single solving context.

QuickSampler takes as input a SAT formula in conjunctive
normal form (CNF), represented in the DIMACS file format. The
formula includes a list of variables which compose its independent
support.

Our implementation outputs the samples generated to a file
without checking if they are valid solutions. If desirable, it is possible
to add a posterior check which verifies if the samples are valid or
not (and possibly filters out the invalid ones). We also do not check
for duplicates, which can appear between different epochs in the
sampling algorithm. This global check for uniqueness could also
be added, but it would require an additional time and memory
2The source code is available at https://github.com/RafaelTupynamba/quicksampler.

4

https://github.com/RafaelTupynamba/quicksampler

Efficient Sampling of SAT Solutions for Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

overhead. Some applications might prefer not to keep all generated
samples in memory, and allow the generation of repeated samples
instead.

We have implemented an offline analysis to check if the samples
are valid and generate histograms that count how many times each
solution has been sampled. We record the time taken by the sample
generation and also the time taken by the checking phase. The
checking phase is not heavily optimized and for most benchmarks
it was more expensive than the sampling phase. We believe there is
still room for improvement in the checking phase, since all it needs
to do is to propagate the values of the independent support to the
remaining variables and check if all clauses are satisfied.

5 EVALUATION

We evaluateQuickSampler by comparing against two state-of-the-
art samplers UniGen2 [9] and SearchTreeSampler [16]. UniGen2
provides strong uniformity guarantees, by using hash functions
composed of XOR constraints in order to partition the search space
into similar-sized bins.

SearchTreeSampler, on the other hand, uses the SAT solver to
find pseudosolutions (partial assignments to the first few variables)
and progressively augments the pseudosolutions into real solutions.
SearchTreeSampler is only approximately uniform. The unifor-
mity can be increased with a higher number of samples per level k ,
but at a cost of also increasing the number of solver calls required.
In our experiments, we used the default value of k = 50.

Both QuickSampler and UniGen2 can leverage the knowledge
of an independent support of the formula to improve sampling
performance. So in order to make for a fair comparison, we mod-
ified SearchTreeSampler to use this additional information. We
reorder the variables of the formula in order to place first the ones
which are part of the independent support. And we additionally
tell SearchTreeSampler to finish sampling after processing those
variables and output pseudosolutions (assignments to the variables
of the independent support) that it has produced so far. Since an
assignment to the independent support can only be completed to
one solution, there is no need to find assignments to the remaining
variables.

For the evaluation, we use the set of benchmarks from the
UniGen2 paper [9] available online3. From the benchmarks listed
in [9], we found 173 on the online repo. The benchmarks include
bit-blasted versions of SMTLib benchmarks, ISCAS89 circuits aug-
mented with parity conditions on randomly chosen subsets of out-
puts and next-state variables, problems arising from automated
program synthesis and constraints arising in bounded model check-
ing. Thus, they are representative of the kinds of constraints that
might appear in SMT formulas for software testing or circuit con-
straints for hardware.

On 10 benchmarks4, UniGen2 reported an error because the
specified independent support is not really an independent sup-
port for the formula. In all those benchmarks, we verified that the

3Benchmarks and source code for UniGen2 were obtained from https://bitbucket.org/
kuldeepmeel/unigen.
4GuidanceService2.sk_2_27, GuidanceService.sk_4_27, IssueServiceImpl.sk_8_30,
PhaseService.sk_14_27, ActivityService.sk_11_27, IterationService.sk_12_27,
ActivityService2.sk_10_27, ConcreteActivityService.sk_13_28, NotificationServi-
ceImpl2.sk_10_36, LoginService.sk_20_34.

Table 1: Correctness statistics for the samples produced

in one epoch of QuickSampler (average among all bench-

marks)

Atomic mutations Total Valid %

0 1 1 100%
1 32 32 100%
2 511 492 96%
3 5619 5208 93%
4 47493 42179 89%
5 346367 282860 82%
6 2143385 1571553 73%

Total 2543409 1902325 75%

number of solutions computed by the exact model counter sharp-
SAT [41] is larger than 2 |S | , which should not happen if S is a
real independent support for the formula. So we decided to exclude
those benchmarks from our results. The results in this paper include
the remaining 163 benchmarks.

On 3 benchmarks, UniGen2 could not estimate the number of
solutions: on parity.sk_11_11, UniGen2 raised a floating point ex-
ception and on isolateRightmost.sk_7_481 and listReverse.sk_11_43,
the ApproxMC [10] model counter used by UniGen2 couldn’t fin-
ish even in 40 hours. On 2 benchmarks, UniGen2 estimated the
number of solutions but couldn’t produce any samples: on dou-
blyLinkedList.sk_8_37 it timed out and on diagStencilClean.sk_41_36
it ran out of memory.

The experiments were conducted on a 12-core, 3.50GHz Intel
Core i7-5930K CPU. For each benchmark, each of the algorithms
was given one core and 1.5 GB of memory. ForQuickSampler and
SearchTreeSampler, we allowed a maximum timeout of 1 hour, or
2 hours on the hardest benchmarks. We also stopped the sampling
after a large number of samples had been produced (at least 10
million samples).

For UniGen2, we requested the generation of 1000 samples for
most benchmarks, allowing up to 20 hours to produce them. For the
hardest benchmarks, we reduced the number of requested samples
to 500. For all the benchmarks in which UniGen2 failed to produce
any samples, it times out after 20 hours even when the number of
requested samples was 1.

5.1 Correctness of Samples

On Table 1, we list the average number of samples produced and
how many of those were valid, on one epoch of the sampling algo-
rithm. The results were averaged across all 163 benchmarks. They
are classified according to the number of individual atomic muta-
tions which compose the mutation. The base solution used in the
epoch is the one with 0 atomic mutations and the neighbors of
the base solution obtained when flipping each bit correspond to 1
atomic mutation. Those are always valid solutions to the formula,
since they are obtained as the result of solver calls.

From 2 to 6 atomic mutations, we see that the fraction of valid
solutions decreases from 96% to 73%. And overall, 75% of all sam-
ples produced were valid, when we allow a maximum of 6 atomic
mutations. Table 1 shows that, by adjusting this maximum, we can

5

https://bitbucket.org/kuldeepmeel/unigen
https://bitbucket.org/kuldeepmeel/unigen

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Dutra et al.

change the accuracy of the sampling. For example, with a maximum
of 5 atomic mutations instead of 6, the fraction of valid samples
would increase to 83%. However, there would be a substantial de-
crease in the quantity of samples produced. We have chosen to use
the maximum number of 6 atomic mutations to allow the genera-
tion of millions of samples, while still having a reasonably good
accuracy of 75%.

If n is the number of atomic mutations, then the number of
mutations of level 6 can go up to

(n
6
)
, a sixth-degree polynomial

in n. This explains why we can generate millions of samples from
only tens of atomic mutations.

5.2 Performance Comparison

For the performance comparison, we define tq , ts , tu to be the
average time taken by QuickSampler, SearchTreeSampler and
UniGen2, respectively to produce a valid sample. tq was computed
as tq = Tq/(sq · p), where Tq is the total execution time, sq is the
total number of samples produced and p is the fraction of samples
which are valid for QuickSampler. We additionally define t∗q to
be the estimated time per valid sample that QuickSampler would
require if it also checked all samples for validity. t∗q was computed
as t∗q = (Tq +Tc)/(sq · p), where Tc is the total time taken to check
the validity of all sq produced samples.

Table 2 shows the performance comparison among a selected set
of benchmarks. We have included the largest benchmarks (more
than 4000 variables), the benchmarks which were listed as represen-
tative benchmarks in [9] and the benchmarks used for uniformity
plots in §5.3. This includes the benchmarks which QuickSampler
or SearchTreeSampler found hard.

The first group of columns in Table 2 shows basic information
about the benchmarks: size of the independent support, number
of variables, clauses and solutions. The number of solutions was
obtained from UniGen2. On most benchmarks, an exact number of
solutions is known, while for some we only know an approximation
(represented with ≈) and on some UniGen2 failed completely to
compute the number of solutions.

The second group of columns shows results for QuickSampler:
the number of epochs completed, number of MAX-SAT solver calls,
number of samples generated, fraction of samples which are valid
and the average times per valid sample tq and t∗q , in microsec-
onds. The third and fourth group of columns present results for
SearchTreeSampler and UniGen2: the number of samples pro-
duced and the average time per sample, taken in comparison with
the QuickSampler time tq .

The mean value for some ratios of interest is shown on Table 3.
For example, ts/tq ≈ 102.5±0.8. This was computed by taking the
average and the standard deviation of log10(ts/tq) across all bench-
marks.

Figure 3 shows a comparison of the average time per valid
sample, against SearchTreeSampler and UniGen2. As reported
in Table 3, QuickSampler was on average 2.5 orders of magni-
tude faster than SearchTreeSampler and 4.7 orders of magnitude
faster than UniGen2. Overall,QuickSampler was only slower than
SearchTreeSampler on the benchmark diagStencilClean.sk_41_36,
with ts/tq = 6.6 · 10−5. We believe QuickSampler did not do well

0 20 40 60 80 100 120 140 160
10−5

10−3

10−1

101

103

105

Benchmarks

ts
tq

(a) SearchTreeSampler/QuickSampler

0 20 40 60 80 100 120 140 160
101

102

103

104

105

106

107

108

Benchmarks

tu
tq

(b) UniGen2/QuickSampler

Figure 3: Average time per valid sample

on diagStencilClean.sk_41_36 because the Z3 solver used in our im-
plementation did not perform well on this formula. In comparison,
MiniSAT, the solver used by SearchTreeSampler, was much faster
on this benchmark. The opposite effect can be seen, for example,
on parity.sk_11_11, where MiniSAT was only able to complete a
small number of solver calls.

Next we present graphs of the same metrics, but now also taking
into account the time that would be required forQuickSampler to
check if the samples are valid. This should only be needed if the ap-
plication cannot deal with invalid samples. Figures 4a and 4b show
the comparison with SearchTreeSampler and UniGen2, respec-
tively.We see thatQuickSampler is still 1 order of magnitude faster
than SearchTreeSampler and 3.2 orders of magnitude faster than
UniGen2, even when including this checking time.QuickSampler
was only slower than SearchTreeSampler on three benchmarks,

6

Efficient Sampling of SAT Solutions for Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Comparison of sampling algorithms

QuickSampler SearchTreeSampler UniGen2
Benchmark |S | Vars Clauses Solutions n Calls Samples Valid tq (µs) t ∗q (µs) Samples ts /tq Samples tu /tq

blasted_case47 28 118 328 262144 244 6616 10010929 0.564 7.5 26 11694350 41.3 3932170 426
blasted_case110 17 287 1263 16384 1387 22208 10001202 0.822 28.3 29 8502350 14.9 245762 34
s820a_7_4 23 616 1703 591872 128 3093 10002673 0.770 5.9 34 4007950 151.6 2959363 802
s820a_15_7 23 685 1987 722944 114 2759 10014350 0.674 9.0 66 3875900 103.2 3614721 674
s1238a_3_2 32 686 1850 2466250752 9 328 10140047 0.936 2.7 211 1917850 707.2 1001 60515
s1196a_3_2 32 690 1805 1038090240 11 393 10077447 0.803 3.2 246 1848850 609.1 1001 60320
s832a_15_7 23 693 2017 3713024 83 2014 10017640 0.818 6.4 100 2742600 204.4 1001 3803
blasted_case_1_b12_2 45 827 2725 274877906944 1 89 10021799 0.739 2.9 305 1001600 1235.7 1001 71769
blasted_squaring16 72 1627 5835 1865275930882 0 65 10304220 0.209 15.8 1961 285450 799.7 1001 215680
blasted_squaring7 72 1628 5837 274408144896 0 68 11344920 0.112 32.1 3788 255750 438.1 1001 22186
70.sk_3_40 40 4670 15864 8589934592 8 304 10134785 1.000 5.8 1236 4091950 151.2 1001 109854
ProcessBean.sk_8_64 64 4768 14458 ≈7009386627072 1 86 10011221 0.906 4.1 1294 297900 2932.3 1001 179418
56.sk_6_38 38 4842 17828 3690987520 9 334 10049283 0.930 5.3 694 1685350 406.3 1001 71623
35.sk_3_52 52 4915 10547 4398046511104 2 95 10717156 1.000 2.3 229 2348300 664.6 1001 435883
80.sk_2_48 48 4969 17060 1099511627776 2 126 10252598 1.000 4.0 1399 2572650 350.5 1001 103909
7.sk_4_50 50 6683 24816 2199023255552 2 124 10139607 1.000 4.9 1778 1717250 429.5 1001 296687
doublyLinkedList.sk_8_37 37 6890 26918 2038431744 106 3425 10003513 0.267 678.4 6308 231850 22.9 0 -
19.sk_3_48 48 6993 23867 2959802892288 1 89 10198861 0.937 4.1 2010 756400 1156.1 1001 814253
29.sk_3_45 45 8866 31557 347892350976 2 120 10045170 0.855 6.7 2772 215450 2483.0 1001 1995316
isolateRightmost.sk_7_481 481 10057 35275 - 0 59 11191269 0.878 11.3 3293 6000 52789.2 0 -
17.sk_3_45 45 10090 27056 274877906944 3 157 10181716 1.000 5.7 2374 1600150 392.8 1001 3207452
81.sk_5_51 51 10775 38006 18141941858304 1 52 11099585 0.867 4.0 3863 75850 11859.7 1001 1035125
LoginService2.sk_23_36* 36 11511 41411 ≈163840 272 6019 10001533 0.724 680.3 3212 1593200 14.8 778250 34
sort.sk_8_52 52 12125 49611 ≈88046829568 2 105 10563617 0.625 31.1 7354 30650 3775.2 1001 155253
parity.sk_11_11* 11 13116 47506 - 68 615 3833 0.809 2322699.9 3535813 462 3.2 0 -
77.sk_3_44 44 14535 27573 18253611008 6 249 10014904 0.966 5.8 1580 1478300 420.4 1001 2552683
20.sk_1_51 51 15475 60994 37108517437440 1 52 11126152 0.910 4.0 3751 84250 10695.1 1001 2360454
enqueueSeqSK.sk_10_42 42 16466 58515 ≈3355443200 4 207 10008980 0.762 34.8 21412 29450 3512.4 1001 30830
karatsuba.sk_7_41* 41 19594 82417 ≈1245184 2 86 670641 0.088 125504.0 203615 50 1116.2 1001 61
diagStencilClean.sk_41_36* 36 378131 2110471 ≈13 5 66 87 0.701 120336466 120397476 908868 0.000066 0 -
tutorial3.sk_4_31* 31 486193 2598178 ≈49283072 6 193 2114947 0.798 4281.2 362747 1200 693.2 506 18783

Table 3: Mean ratio comparisons across all benchmarks

Ratio Mean

ts/tq 102.5±0.8

tu/tq 104.7±1.0

ts/t
∗
q 101.0±0.5

tu/t
∗
q 103.2±0.7

uq/us 102.3±0.7

uq/uu 104.4±1.1

where the ratio ts/t∗q was 0.95 for 17.sk_3_45, 0.71 for 70.sk_3_40
and 6.6 · 10−5 for diagStencilClean.sk_41_36.

Those results show clearly thatQuickSampler is capable of gen-
erating valid solutions orders of magnitude faster than the other
techniques. However, we believe that an even more important met-
ric is the number of unique valid solutions generated over time,
since repeated solutions do not help uncover new behavior in the
test program. So we performed an experiment to evaluate the num-
ber of unique valid solutions generated.

All three algorithms were allowed to run until they produced 10
million samples or reached 1 hour of execution. If their execution
times are Tq ,Ts ,Tu , we define T = min{Tq ,Ts ,Tu } and look at the
number of unique valid solutions that each algorithm could produce
in time T and represent those numbers as uq ,us ,uu . We found out
that on most benchmarksQuickSampler was able to produce 10
million samples before 1 hour and it was the fastest algorithm to
finish. So the uniqueness comparison is performed at time Tq . On
six benchmarks, neither of the algorithms could produce 10 million
samples before 1 hour, so the uniqueness comparison is performed

at 1 hour. The names of those benchmarks are marked with an
asterisk in Table 2.

Figure 5a compares unique solutions produced byQuickSampler
and SearchTreeSampler. On average, the number of unique so-
lutions produced by QuickSampler was 2.3 orders of magnitude
larger, as seen in Table 3. On only one benchmark it was lower
(karatsuba.sk_7_41, with uq/us = 0.76).

In Figure 5b, we present the ratio of unique solutions between
QuickSampler and UniGen2. Again, the ratio was lower only on
karatsuba.sk_7_41, with uq/uu = 0.08. On average, uq was 4.4 or-
ders of magnitude higher than uu . We found thatQuickSampler
performed poorly on karatsuba.sk_7_41 because it had not com-
pleted one sampling epoch within the first hour of execution, and
most of the samples are generated towards the end of the sam-
pling epoch. However, within 2 hours, QuickSampler was able to
complete 2 sampling epochs, generating a vastly larger amount of
samples, as reported in Table 2.

5.3 Uniformity of Coverage

The results from §5.2 show thatQuickSampler can produce unique
valid solutions very fast, which was our primary goal. But we would
still like to check if the distribution of samples produced is similar
to uniform, because we don’t want to be missing a large portion
of the solution space, while focusing on a very biased subset of
solutions. We have designed our main sampling function to start
from a random point in the space of possible variable assignments
in order to make our coverage more uniform. This also guarantees
that any solution has a positive probability of being output by our
algorithm.

In order to empirically evaluate the uniformity ofQuickSampler,
we compare its distribution of solutions with the ones from the

7

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Dutra et al.

0 20 40 60 80 100 120 140 160

10−4

10−2

100

102

Benchmarks

ts
t ∗q

(a) SearchTreeSampler/QuickSampler

0 20 40 60 80 100 120 140 160

101

102

103

104

105

106

Benchmarks

tu
t ∗q

(b) UniGen2/QuickSampler

Figure 4: Average time per valid sample, including time to

check validity

two other samplers SearchTreeSampler, UniGen2 as well as a
distribution from a perfect uniform sampler. Only the valid samples
are considered in this analysis. We compare on the benchmarks
for which the number of samples generated by UniGen2 in a time
limit of 10 hours was at least five times the total number of solu-
tions. It is important for statistical significance that each solution
be sampled on average at least five times. For each of the bench-
marks, let sq , ss , su be the number of valid samples generated by
each algorithm and s = min{sq , ss , su }. We subsample uniformly s
samples from the valid samples produced by each algorithm and
we also generate s samples from a perfectly uniform distribution,
using the total number of solutions provided by UniGen2.

Figures 6 to 10 show the results of the comparison on all bench-
marks for which the number of generated samples s can be at least

0 20 40 60 80 100 120 140 160

100

101

102

103

104

Benchmarks

uq
us

(a) QuickSampler/SearchTreeSampler

0 20 40 60 80 100 120 140 160

10−1

101

103

105

Benchmarks

uq
uu

(b)QuickSampler/UniGen2

Figure 5: Unique solutions produced over same amount of

time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25 30 35 40 45

O
c
c
u
rr

e
n
c
e
s

Solution Count

blasted_case47

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 6: blasted_case47 histogram

8

Efficient Sampling of SAT Solutions for Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

O
c
c
u
rr

e
n
c
e
s

Solution Count

blasted_case110

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 7: blasted_case110 histogram

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25

O
c
c
u
rr

e
n
c
e
s

Solution Count

s820a_7_4

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 8: s820a_7_4 histogram

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30

O
c
c
u
rr

e
n
c
e
s

Solution Count

s820a_15_7

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 9: s820a_15_7 histogram

five times the number of solutions before the timeout is reached. The
x axis represents the number of times each solution has been sam-
pled and the y axis represents the quantity of solutions which have
been sampled x times. We can see that SearchTreeSampler and
UniGen2 are usually indistinguishable fromuniform, butQuickSampler
is also very close to uniform behavior.

We have also applied Pearson’s chi-squared test to the s samples
obtained from each algorithm. We compute the χ2 statistic and the
corresponding p-value using the known number of solutions to

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

O
c
c
u
rr

e
n
c
e
s

Solution Count

LoginService2.sk_23_36

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 10: LoginService2.sk_23_36 histogram

Table 4: Chi-squared Uniformity Test

Not Rejected Rejected

QuickSampler 149 11
SearchTreeSampler 153 7
UniGen2 155 5

the formula. We reject the null hypothesis that the distribution is
uniform if the p-value is lower than the confidence level of 0.05.
This gives a bound on the type I error rate (i.e., the probability
that a uniform distribution is mistakenly rejected as non-uniform)5.
Table 4 show the results of applying this test to the 160 benchmarks
for which we know an estimate of the number of solutions. We
can see that SearchTreeSampler and UniGen2 are more uniform,
but QuickSampler is still close to uniform on most benchmarks.
However, this result should be taken with care, since the uniformity
test is not very reliable on benchmarks whereQuickSampler com-
pleted a small number of epochs or when the number of produced
samples is too low.

Besides analyzing the uniformity of the distribution, we also
measured the number of unique valid solutions generated. This is
arguably more important than the histograms of solution counts,
because we want unique solutions to increase coverage in testing.

We computed the number u of unique valid solutions generated
by QuickSampler and also the number ū of unique solutions that
should be generated if the sampling was perfectly uniform. We
record the ratio u/ū for all benchmarks for which we have an esti-
mate of the number of solutions. The ratiou/ū had an average value
of 0.981, with standard deviation of 0.052. Besides one benchmark
(doublyLinkedList.sk_8_37, with value 0.41), all other benchmarks
had u/ū > 0.87. In comparison, for SearchTreeSampler, the aver-
age was 0.996 and standard deviation 0.038. SearchTreeSampler
also performed worst on the benchmark doublyLinkedList.sk_8_37,
with value 0.538, and all other benchmarks having u/ū > 0.92.
UniGen2 obtained an average of 1.000 and a standard deviation of
0.002, with aminimum value of 0.999. On doublyLinkedList.sk_8_37,
UniGen2 timed out, so we cannot compare on this benchmark.
5We could not perform power analysis to estimate the type II error rate because
that would require a specific alternative hypothesis and we did not see any natural
alternative hypothesis for the distribution of samples.

9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Dutra et al.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30 35 40 45 50

U
n
iq

u
e
 s

o
lu

ti
o
n
s

Time (s)

s820a_7_4

QuickSampler
SearchTreeSampler

UniGen2

Figure 11: s820a_7_4 unique solutions

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300

U
n
iq

u
e
 s

o
lu

ti
o
n
s

Time (s)

enqueueSeqSK.sk_10_42

QuickSampler
SearchTreeSampler

UniGen2

Figure 12: enqueueSeqSK.sk_10_42 unique solutions

We also present plots of the number of unique solutions pro-
duced over time, for two representative benchmarks. In Figure 11
we show the graph for benchmark s820a_7_4, where the number
of samples produced is larger than the total number of solutions.
We see that the number of unique solutions grows very fast ini-
tially, and then stabilizes as we approach complete coverage of all
solutions. SearchTreeSampler and UniGen2, on the other hand,
produce solutions at a much slower rate. In Figure 12 we show
benchmark enqueueSeqSK.sk_10_42, where the number of valid
samples produced is much smaller than the total number of solu-
tions. We can see that QuickSampler is able to generate unique
solutions orders of magnitude faster than SearchTreeSampler
and UniGen2. We also notice a distinctive step pattern in the graph.
This happens because we produce the largest number of samples
at the end of each sampling epoch, when the collection of known
mutations is the largest.

In summary, we see that SearchTreeSampler and UniGen2 are
a bit closer to uniform sampling, but QuickSampler is still very
close. In almost all cases the number of unique solutions generated
was very close to the number that would be expected if the sampling
was uniform and we are able to produce new unique solutions at a
faster rate than the other techniques.

6 CONCLUSION

We have developed a new technique to sample solutions to Boolean
constraints, with the goal of applying it to constrained-random
verification and fuzz testing. For those applications, it is typically
acceptable to produce a small number of invalid inputs, so we
allow our technique to output samples which are not guaranteed
to be valid. By leveraging a small number of MAX-SAT solver calls,
QuickSampler can generate millions of samples.

Our experiments show that the produced samples are valid with
an average probability of 75% on a set of large, real-world bench-
marks. Moreover, QuickSampler is more than 2 orders of magni-
tude faster at producing valid samples, when compared to other
state-of-the-art samplers. It is also more than 2 orders of magni-
tude faster at producing unique valid samples, which is specially
important to increase testing coverage. We have also verified that
QuickSampler is still 1 order of magnitude faster even when it
takes the additional time to verify that the generated solutions
are valid. Finally, the distribution of samples produced is close to
uniform on most of the benchmarks.

ACKNOWLEDGMENTS

Research partially funded by Brazilian Science Without Borders
CAPES 13245/13-9; NSF grants CCF-1409872 and CCF-1423645;
DARPA CRAFT HR0011-16-C-0052; Intel Science and Technology
Center for Agile Design; and ASPIRE Lab industrial sponsors and
affiliates Intel, Google, HPE, Huawei, LGE, Nokia, NVIDIA, Oracle,
and Samsung. Any opinions, findings, conclusions, or recommen-
dations in this paper are solely those of the authors and does not
necessarily reflect the position or the policy of the sponsors.

REFERENCES

[1] Saswat Anand and Mary Jean Harrold. 2011. Heap cloning: Enabling dynamic
symbolic execution of java programs. In ASE. 33–42.

[2] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. 2007. JPF-SE: a symbolic
execution extension to Java PathFinder. In TACAS’07.

[3] Shay Artzi, AdamKiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D. Ernst. 2008. Finding bugs in dynamic web applications. In ISSTA’08.

[4] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 1083–1094.

[5] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ-An Optimizing
SMT Solver.. In TACAS, Vol. 15. 194–199.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1032–1043.

[7] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test
Generation. In ASE’08.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI’08.

[9] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and
Moshe Y Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation.. In
TACAS. 304–319.

[10] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2013. A scalable
approximate model counter. In International Conference on Principles and Practice
of Constraint Programming. Springer, 200–216.

[11] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2014. Balancing scala-
bility and uniformity in SAT witness generator. In Design Automation Conference
(DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 1–6.

[12] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E
Platform: Design, Implementation, and Applications. ACM Trans. Comput. Syst.
30, 1 (2012), 2.

[13] Lori A. Clarke. 1976. A program testing system. In Proc. of the 1976 annual
conference. 488–491.

10

Efficient Sampling of SAT Solutions for Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[15] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2013. Embed
and project: Discrete sampling with universal hashing. In Advances in Neural
Information Processing Systems. 2085–2093.

[16] Stefano Ermon, Carla P Gomes, and Bart Selman. 2012. Uniform solution sampling
using a constraint solver as an oracle. Conference on Uncertainty in Artificial
Intelligence (2012).

[17] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). ACM, New York, NY, USA, 416–419.

[18] P. Godefroid, N. Klarlund, and K. Sen. 2005. DART: Directed Automated Random
Testing. In PLDI’05.

[19] P. Godefroid, M.Y. Levin, and D. Molnar. 2008. Automated Whitebox Fuzz Testing.
In NDSS’08.

[20] Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2007. Near-uniform sampling
of combinatorial spaces using XOR constraints. In Advances In Neural Information
Processing Systems. 481–488.

[21] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21st USENIX Conference on Security Symposium
(Security’12). USENIX Association, Berkeley, CA, USA, 38–38.

[22] Allen D. Householder and Jonathan M. Foote. 2012. Probability-Based Parameter
Selection for Black-Box Fuzz Testing. Technical Report. CarnegieMellon University
Software Engineering Institute.

[23] Alexander Ivrii, Sharad Malik, Kuldeep S Meel, and Moshe Y Vardi. 2016. On
computing minimal independent support and its applications to sampling and
counting. Constraints 21, 1 (2016), 41–58.

[24] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. 2009.
jFuzz: A Concolic Whitebox Fuzzer for Java. In In NFM’09.

[25] James C. King. 1976. Symbolic execution and program testing. Commun. ACM
19 (July 1976), 385–394. Issue 7.

[26] Nathan Kitchen and Andreas Kuehlmann. 2007. Stimulus generation for con-
strained random simulation. In Computer-Aided Design, 2007. ICCAD 2007.
IEEE/ACM International Conference on. IEEE, 258–265.

[27] Nathan Boyd Kitchen. 2010. Markov Chain Monte Carlo Stimulus Generation for
Constrained Random Simulation. University of California, Berkeley.

[28] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011. KLOVER: A Sym-
bolic Execution and Automatic Test Generation Tool for C++ Programs. In CAV.
609–615.

[29] Kuldeep S Meel. 2014. Sampling techniques for boolean satisfiability. Master’s
thesis (2014).

[30] Kuldeep S Meel, Moshe Y Vardi, Supratik Chakraborty, Daniel J Fremont, Sanjit A
Seshia, Dror Fried, Alexander Ivrii, and SharadMalik. 2016. Constrained Sampling
and Counting: Universal Hashing Meets SAT Solving.. In AAAI Workshop: Beyond
NP.

[31] Alexander Nadel. 2011. Generating Diverse Solutions in SAT.. In SAT. Springer,
287–301.

[32] Reuven Naveh and Amit Metodi. 2013. Beyond feasibility: CP usage in
constrained-random functional hardware verification. In International Conference
on Principles and Practice of Constraint Programming. Springer, 823–831.

[33] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s
Marcu, and Gil Shurek. 2007. Constraint-based random stimuli generation for
hardware verification. AI magazine 28, 3 (2007), 13.

[34] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE’07, Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, MN, USA, 75–84.

[35] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person,
and M. Pape. 2008. Combining Unit-level Symbolic Execution and System-level
Concrete Execution for Testing NASA Software. In ISSTA’08.

[36] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). IEEE,
513–528.

[37] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE : Concolic Unit Testing and
Explicit Path Model-Checking Tools. In CAV’06.

[38] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In ESEC/FSE’13. To appear.

[39] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In ESEC/FSE’05.

[40] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
ICISS’08.

[41] Marc Thurley. 2006. sharpSAT-counting models with advanced component
caching and implicit BCP. SAT 4121 (2006), 424–429.

[42] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex -White Box Test Generation
for .NET. In TAP’08.

[43] Wei Wei, Jordan Erenrich, and Bart Selman. 2004. Towards efficient sampling:
Exploiting random walk strategies. In AAAI, Vol. 4. 670–676.

[44] Wei Wei and Bart Selman. 2005. A new approach to model counting. In SAT.
Springer, 324–339.

[45] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).
ACM, New York, NY, USA, 283–294.

[46] MichaÅĆ Zalewski. [n. d.]. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
([n. d.]). Accessed October 1, 2016.

[47] Yanni Zhao, Jinian Bian, Shujun Deng, and Zhiqiu Kong. 2009. Random stimulus
generation with self-tuning. In Computer Supported Cooperative Work in Design,
2009. CSCWD 2009. 13th International Conference on. IEEE, 62–65.

11

http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Related Work
	3 QuickSampler Algorithm
	3.1 Eager Generation of Samples
	3.2 Independent Support
	3.3 Unsatisfiable variables

	4 Implementation
	5 Evaluation
	5.1 Correctness of Samples
	5.2 Performance Comparison
	5.3 Uniformity of Coverage

	6 Conclusion
	Acknowledgments
	References

