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Abstract
Dynamic symbolic execution (DSE) has been proposed recently to
effectively generate test inputs for real-world programs. Unfortu-
nately, dynamic symbolic execution techniques do not scale well
for large realistic programs, because often the number of feasible
execution paths of a program increases exponentially with the in-
crease in the length of an execution path.

In this paper, we propose MULTISE, a new technique for merg-
ing states incrementally during symbolic execution, without using
auxiliary variables. The key idea of MULTISE is based on an al-
ternative representation of the state, where we map each variable,
including the program counter, to a set of guarded symbolic expres-
sions called a value summary. MULTISE has several advantages
over conventional DSE and state merging techniques: 1) value sum-
maries enable sharing of symbolic expressions and path constraints
along multiple paths, 2) value-summaries avoid redundant execu-
tion, 3) MULTISE does not introduce auxiliary symbolic values,
which enables it to make progress even when merging values not
supported by the constraint solver, such as floating point or function
values.

We have implemented MULTISE for JavaScript programs in a
publicly available open-source tool. Our evaluation of MULTISE
on several programs shows that MULTISE can run significantly
faster than traditional symbolic execution.

1. Introduction
Symbolic execution is a technique for automatically generating
a symbolic model from a program. It has been used succesfully
as a key component in a variety of applications, including gen-
erating high-coverage tests for C [11, 12, 17, 23, 48], C++ [37],
C# [51], Java [3, 4, 32, 40, 46], PHP [5], JavaScript [45, 47], x86-
binaries [6, 25, 50]. Symbolic execution has also been used in pro-
gram verification tools, such as jStar [21] and KeY [1].

The key idea behind symbolic execution was introduced almost
40 years ago [18, 33]. In this paper we consider the dynamic variant
of symbolic execution (DSE), in which a program is executed us-
ing symbolic values in place of concrete values for inputs. During
the execution, the state of variables is represented using symbolic
expressions over the symbolic input values. For each explored ex-
ecution path of the program, symbolic execution generates a path
constraint formula � over the symbolic input values. A satisfying
assignment to the path constraint � denotes a concrete test input
to the program on which the program executes along the corre-
sponding path. Symbolic execution attempts to explore all feasible
execution paths of a program systematically using a search strat-
egy. When symbolic execution is used for test input generation, a
constraint solver [19] is used to extract a satisfying assignment for
each path constraint. When it is used for path-based program verifi-

cation, the path constraint and the desired postcondition are passed
to a theorem prover in the form of a path verification condition.

Symbolic execution techniques do not scale for large realistic
programs because often the number of feasible execution paths of
a program increases exponentially with the length of an execution
path. To mitigate this path-explosion problem, a number of tech-
niques [2, 6, 22, 26, 36, 52] have been proposed to merge states
obtained from multiple paths converging at a join point. For exam-
ple, if a variable x is assigned some values v1 and v2 along the
two branches of an if-then-else statement, then after the con-
ditional statement the states from the two paths are merged into a
single state by introducing an auxiliary symbolic value for the value
of x, say x0. In the merged states, the variable x is mapped to x0,
and a symbolic constraint (x0 = v1) _ (x0 = v2) is added to the
path constraint, stating that x0 can either be v1 or v2. The advan-
tage of merging paths at join points is that the number of paths that
are explicitly explored remains polynomial in the length of an exe-
cution. However, this form of state merging can lead to difficulties
if the resulting formulas are outside the scope of the theories sup-
ported by the constraint solver, which may happen, for example,
if v1 or v2 in the above example are floating point values, func-
tion values, or objects. At the same time, this representation of the
merged state prevents a common optimization in symbolic execu-
tion, which is to perform operations concretely if the operands are
concrete. This would be the case in our example if v1 and v2 are
constants; in the merged state the operations would have to be per-
formed on the newly introduced auxiliary variable x0, which means
that they would have to be performed symbolically.

In this paper, we propose MULTISE, a new technique for merg-
ing states incrementally during symbolic execution, without using
auxiliary variables. The key idea of MULTISE is based on an al-
ternative representation of the state, where we map each variable,
including the program counter, to a set of guarded symbolic expres-
sions called a value summary. MULTISE improves upon conven-
tional DSE while avoiding some of the drawbacks of conventional
state-merging based on auxiliary variables, as follows:

1. Compared to conventional DSE, the value-summary representa-
tion of MULTISE is a powerful way of sharing symbolic expres-
sions and path constraints along multiple paths. As an improve-
ment over state merging, sharing using value summaries works
even for paths that do not all end at the same join points, as long
as some variables have the same values on those paths. Also, in
MULTISE the sharing is achieved without having to explicitly
identify join points, and without having to traverse the entire
state when merging. Instead, the sharing is achieved incremen-
tally at each statement in the program. We show in this paper
that the sharing factor, i.e., the ratio of the number of paths to
the number of distinct symbolic expressions in value summaries
for each variable, ranges from 3 to 45 in our experiments.
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1 var x = readInput;

2 var z = readInput;

3 var r = readInput;

4 x = 2*x;

5 if (x > 100)

6 if (z == 1)

7 r = 1.3;

8 if (r > 1)

9 z = r - 1;

10 halt

 1. var x = readInput 
 2. var z = readInput 
 3. var r = readInput 
 4. x = 2*x 
 5. if(x > 100) 

6. if(z == 1) 

7. r = 1.3 

8. if(r > 1) 

9. z = r - 1 

halt 

8. if(r > 1) 

9. z = r - 1 

halt halt 

8. if(r > 1) 

9. z = r - 1 

halt halt 

 1. var x = readInput 
 2. var z = readInput 
 3. var r = readInput 
 4. x = 2*x 
 5. if(x > 100) 

6. if(z == 1) 

7. r = 1.3 

8. if(r > 1) 

9. z = r - 1 

halt 

Figure 1. (a) A simple program to illustrate MULTISE; (b) Conventional symbolic execution tree; (c) MULTISE execution DAG.

2. Compared to conventional DSE, MULTISE can avoid doing re-
dundant work, e.g., for statements that follow a join point and
which operate on variables that have the same values on the
joining paths. This follows naturally from the value-summary
representation of the state that shares the parts of the state that
are the same among different paths. We show in this paper that
MULTISE executes between 1.3 to 87 times faster than con-
ventional DSE. This is due to MULTISE performing between
2 to 47 times fewer operations, and correspondingly spending
between 1.2 to 94 times less time in SMT solver invocations.

3. Compared to conventional state merging, MULTISE does not
use auxiliary variables. This has several important advantages.
First, symbolic execution can proceed even when joining values
that are not supported by the constraint solver, e.g., depending
on the solver: floating point values, objects, or function values.
Existing symbolic execution techniques deal with such situa-
tions by discarding one of the paths and continuing the exe-
cution with a concrete value, while MULTISE can often carry
out the symbolic execution for all paths while staying within
the scope of the constraint solver. Second, if the values being
merged are function values, and the merged value is invoked,
the MULTISE value-summary representation encodes naturally
the various possible functions that may be invoked. In contrast,
in conventional state merging if the value being invoked is rep-
resented as an auxiliary variable, an SMT solver must be used
to figure out what function should be invoked to proceed with
the symbolic evaluation. These kinds of operations are quite
common in dynamically typed programming languages such
as JavaScript, Python, and Ruby. We show in Section 5.2 that
about half of our benchmarks would require auxiliary variables
of type other than integer or string if executed with conven-
tional state merging, sometimes in the thousands, for up to 60%
of the joins; MULTISE avoids all these problematic auxiliary
variables.

4. Value-summary based symbolic execution can be formulated
in a way that generalizes both conventional DSE and state-
merging algorithms for symbolic execution. We show in this
paper that both these variants can be obtained from MULTISE
by varying the choice of when and to what extent value sum-
maries are compacted based on sharing of symbolic values. We
also show that we can vary the way MULTISE chooses which
state to explore next, and depending on this choice, we can
get different search strategies in symbolic execution, such as
breadth-first, or depth-first. This flexibility of MULTISE makes
it a general framework for describing various heuristics used in
symbolic execution and state merging.

We have implemented MULTISE for JavaScript programs in
a publicly available open-source tool (https://github.com/
SRA-SiliconValley/jalangi under branch symfront). We use

binary decision diagrams (BDDs) [10] to concisely represent and
to efficiently manipulate path constraints and guards of value sum-
maries. Our evaluation of MULTISE on several programs shows
that MULTISE can run significantly faster than traditional symbolic
execution.

2. Overview
We introduce the concepts of conventional symbolic execution and
its state representation informally and then we describe the main
elements of the MULTISE symbolic execution. We will use the
program in Figure 1(a) as a running example, which is written in
a JavaScript-like language. A statement of the form var v = e;

declares and initializes a variable v with the value of the expression
e. The execution of the statement var x = readInput; receives
an integer input from the environment and assigns it to the variable
x.
2.1 Conventional Dynamic Symbolic Execution
Dynamic symbolic execution (DSE) executes a program using
symbolic expressions for the program variables and memory loca-
tions. These expressions are in terms of fresh symbolic values that
are introduced upon execution of readInput expressions. DSE ex-
ecutes one path at a time, and it maintains the current symbolic state
that includes: the program counter, a mapping of program variables
to symbolic expressions, and a symbolic path constraint �, which is
a quantifier-free propositional formula over symbolic expressions.

For example, after executing statements 1–4 from our example
the symbolic execution state is as follows:

path � pc x z r

1-5 true 5 2x0 z0 r0

where x0, z0, and r0 are the symbolic values introduced for the
result of the readInput expressions in lines 1–3, respectively.

Each row in these tables corresponds to the symbolic execution
state of a path.1 Informally, for any concrete input values (concrete
values for the symbolic values) that satisfy the path constraint, the
concrete execution on those input values will follow the path given
in the table. Also, if we evaluate the symbolic expressions on the
same input values for the symbolic variables, we obtain the value of
the variable in the concrete execution at the end of the path. In our
example so far, for any set of input values the program will follow
the path 1–5, and if the input value for x0 is 10, then the value of x
at line 5 will be 20.

Upon encountering a branch and if both sides of the branch are
feasible, DSE replaces the current symbolic state with two copies
of the state with updated values of pc and of the path constraints.
One of these copies is placed in a backtracking set and the other
becomes the new current state. Continuing our example, we can

1 The path component of the state is shown here for clarity, but is not
explicitly maintained during symbolic execution.
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represent the state after executing the conditional in line 5 in a
consolidated manner, as follows:

path � pc x z r

1-5,8 2x0  100 8 2x0 z0 r0

1-5,6 2x0 > 100 6 2x0 z0 r0

In general, the path constraints are conjunctions of symbolic
boolean expressions corresponding to the branches taken to follow
the path specified in the first column.

At every step, DSE will pick one state from the consolidated
state, and will update the values of variables and the value of the
program counter according to the statement at the program counter
for that state. In the case of a conditional statement a copy of the
state, with updated pc and path constraint, is added to the con-
solidated state. We can consider that DSE is exploring the execu-
tion tree (Figure 1(b)), and depending on the strategy DSE uses to
pick the state to advance next, we can have different exploration
orders in symbolic execution, such as depth-first, breadth-first, or
best-first.

Eventually, DSE will finish exploring all states, and will termi-
nate with the consolidated state shown below, with each of the five
states corresponding to one of the five feasible paths shown in Fig-
ure 1(b).

path � pc x z r

1-5,8-10 �1 = 2x0  100 ^ r0 > 1 10 2x0 r0 � 1 r0

1-5,8,10 �2 = 2x0  100 ^ r0  1 10 2x0 z0 r0

1-5,6,8-10 �3 = 2x0 > 100 ^ z0 6= 1 ^ r0 > 1 10 2x0 r0 � 1 r0

1-5,6,8,10 �4 = 2x0 > 100 ^ z0 6= 1 ^ r0  1 10 2x0 z0 r0

1-10 �5 = 2x0 > 100 ^ z0 = 1 10 2x0 0.3 1.3

We make several observations about this state. First, the path con-
straints for any two paths in a consolidated state are disjoint. Sec-
ond, DSE will evaluate eagerly expressions containing concrete
values. In our example, when the conditional if (r > 1) ... is
executed in the path that includes line 7, the boolean condition is
evaluated concretely for the value 1.3 for r. The condition for the
“then” branch is 1.3 > 1, which evaluates to true, and is thus not
shown above in the path constraint for the path 1–10. Third, sym-
bolic execution aggressively rules out unfeasible paths by checking
the satisfiability of the path constraint for the two branches of a con-
ditional using an SMT solver. For the same conditional as before,
the path constraint for the “else” includes the conjunct 1.3  1 that
evaluates to false and makes the path constraint unsatisfiable.
2.2 MULTISE Value-Summary State Representation
The MULTISE representation of the symbolic execution state is
based on the key observation that by considering a consolidated
view of the execution state, including the current state and also the
states saved for backtracking, we expose a significant opportunity
for sharing of path constraints and symbolic expressions.

Consider the final consolidated state of DSE, as shown above.
We can obtain a more compact representation if we represent it by
variables, i.e., by columns. For each variable, and for each distinct
symbolic expression of the variable, we construct the disjunction of
the corresponding path constraints. For example, for pc the only
symbolic expression is 10 with the disjunction of path constraints
�1 _ �2 _ �3 _ �4 _ �5 which is equivalent to true. Consequently,
we represent the consolidated value of pc as the pair (true, 10). We
call such a pair, a guarded symbolic expression. For variables that
take different symbolic expressions on different paths we represent
their value as a set of pairs, with one pair for every distinct symbolic
expression. We call such a set of guarded symbolic expressions
a value summary. The MULTISE state is a mapping that maps
each variable to a value summary. The path constraints of different
guarded expressions for a given variable are disjoint and their
disjunction is true. The MULTISE representation of the final state
for our example program is:

{ pc 7! {(true, 10)},
x 7! {(true, 2x0)},
z 7! {(�1 _ �3, r0 � 1), (�2 _ �4, z0), (�5, 0.3)},
r 7! {(¬�5, r0), (�5, 1.3)}

}
(Final State)

A MULTISE final state describes compactly the final values of
all variables in all feasible concrete executions, as follows. Given
any assignment of integer input values to the symbolic values corre-
sponding to the program inputs, exactly one of the path constraints
will hold for each variable. The corresponding symbolic expres-
sion, evaluated at the given program inputs, gives the value of the
variable at the end of the execution of the program on the given
program inputs.

There are several advantages to the MULTISE value-summary
representation. The obvious one is its more compact form. As
we will show in our experiments there is a significant amount of
sharing for the symbolic expressions of variables among the many
execution paths. The less obvious but more important advantage
is that this representation achieves a natural form of state merging,
which in turn can reduce dramatically the number of statements that
must be executed symbolically, as we discuss in the next section
and we show experimentally in Section 5.

2.3 MULTISE: Symbolic Execution with Value Summaries
To illustrate the operation of MULTISE, consider the state when
the symbolic execution has explored all three paths up to the con-
ditional in line 8. For a conventional DSE the state would be:

path � pc x z r

1-5,8 2x0  100 8 2x0 z0 r0

1-5,6,8 2x0 > 100 ^ z0 6= 1 8 2x0 z0 r0

1-5,6-8 �5 = 2x0 > 100 ^ z0 = 1 8 2x0 z0 1.3

This state representation with three separate rows corresponds
to the three separate instances of execution paths ending in the
statement at line 8 shown in DSE execution tree from Figure 1(b).

The corresponding MULTISE value-summary representation of
the state is:

{ pc 7! {(true, 8)},
x 7! {(true, 2x0)},
z 7! {(true, z0)},
r 7! {(¬�5, r0), (�5, 1.3)}

}

(Intermediate State 8)

where, �5 = (2x0 > 100 ^ z0 = 1). Note that the guard for
the value r0 of the variable r, can be written either as 2x0 
100 _ (2x0 > 100 ^ z0 6= 1), or the logically equivalent ¬�5.

This value summary represents a merge of the three separate
conventional DSE states, corresponding to three separate execu-
tions paths. This allows MULTISE to evaluate the conditional in
line 8 twice (i.e., once for each value of r in the value sum-
mary), instead of three times for conventional DSE, as shown in
the MULTISE execution DAG (directed acyclic graph) shown in
Figure 1(c).

MULTISE symbolic execution in this state first considers the
value summary for the program counter. It picks one of the values,
in this case 8, guarded by the path constraint true, and executes the
statement if (r > 1) .... This requires the computation of the
value of the expression r > 1.

The symbolic execution of the expression r > 1 goes over each
guarded expression in the value summary for variable r, applies
the operation > on the expression part of each guarded expression,
and computes the value summary {(¬�5, r0 > 1), (�5, true)}.
Note that we add the conjunct true to each guard, to account
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for the current path constraint for the program counter. Note that
the second guarded expression for r > 1 contains the symbolic
expression “true”, which is obtained from 1.3 > 1. MULTISE
eagerly simplifies the parts of symbolic expressions that do not
depend on symbolic values.

Essentially, we want to compute the value of the binary expres-
sion r > 1 only for the paths matching the path constraint from the
value summary of pc .

Next MULTISE processes the actual conditional statement. We
compute the condition for the computed value of r > 1 to be true,
as a disjunction over the guarded expressions in the value summary
for r > 1. We must also add a conjunction for the current path
constraint (true). We will denote this condition as �6:

�6 = true ^ ((¬�5 ^ r0 > 1) _ (�5 ^ true))

Therefore, after the execution of the conditional statement
at line 8, in the new state pc maps to the value summary
{(�6, 9), (¬�6, 10)}, where ¬�6 is logically equivalent to ¬�5 ^
r0  1, the condition for the computed value of r > 1 to be false.
The value summary representing compactly both the “then” and the
“else” branches can be written as:

{ pc 7! {(�6, 9), (¬�6, 10)},
x 7! {(true, 2x0)},
z 7! {(true, z0)},
r 7! {(¬�5, r0), (�5, 1.3)}

}

(Intermediate State 9+10)

Note that this value summary represents five paths, two of which
end at line 10 after taking the “else” branch at line 8, and the
remaining three paths end at line 9. ¬�6 denotes the combined path
constraint of the two paths ending at line 10 and �6 denotes the
combined path constraint of the three paths ending at line 9.

Every time a new guarded symbolic expression is added to the
value summary for pc , MULTISE invokes a quick BDD satisfia-
bility check followed by an SMT solver satisfiability check for the
path constraint. This is important in order to avoid exploring un-
feasible paths. For the value summaries of other variables, only a
BDD satisfiability check is used, to reduce the overall cost of SMT
solving, which is a significant fraction of the overall cost.

One of the most interesting aspects of MULTISE is that it
performs incremental state merging at every assignment statement
to obtain a new consolidated representation of states using value
summaries. To illustrate this aspect, we continue with the above
MULTISE state. Say that for the program counter, MULTISE picks
the guarded value (�6, 9) and executes line 9 next, with the path
constraint �6. First, we symbolically evaluate the right-hand side
of the assignment (r - 1), and we obtain the guarded value:

{(¬�5, r0 � 1), (�5, 0.3)}

Since line 9 is guarded by the path constraint �6, symbolic exe-
cution of the assignment z = r - 1 should only update the value
of z for those paths for which �6 is true. The value of z must re-
main unchanged in the symbolic state for the other paths. This is
achieved by computing the new value of z using a guarded value-
summary union, where we preserve the previous value of z with
the additional guard ¬�6 (the negation of the current path con-
straint) to which we add the value summary for the right-hand side
with the additional guard �6. By applying a conjunction of ¬�6 to
the guards of the current value summary stored in z, we keep un-
changed the portion of the value summary for the other two paths
(whose combined path constraint is ¬�6).

The resulting value summary for z is:

{(¬�6, z0), (�6 ^ ¬�5, r0 � 1), (�6 ^ �5, 0.3)}

which is logically equivalent with the value summary we have
used in (Final State) for the final value of z. Finally, the value
summary stored in pc is also updated to {(¬�6, 10), (�6, 10)},
which simplifies to {(true, 10)}. Therefore, after the execution of
the statement z = r - 1 at line 9, the state becomes the same as
the (Final State).
2.4 Advantages of MULTISE
We highlight the key advantages of MULTISE over existing tech-
niques for symbolic execution.

First, the MULTISE state representation using guarded sym-
bolic expressions is a powerful way of sharing symbolic expres-
sions and path constraints among many different paths. We show
in Section 5 that the sharing factor, i.e., the ratio of the number of
paths to the number of distinct symbolic expressions in value sum-
maries, ranges from 3 to 45 in our experiments.

Some amount of sharing is also accomplished by previous tech-
niques for symbolic execution using state merging [6, 36], but in
MULTISE there is sharing for all states, not just those at control-
flow join points, as shown, for example, in the (Intermediate State
9+10).

MULTISE proposes a novel technique for incrementally updat-
ing the consolidated symbolic execution state. We have seen an ex-
ample of this incremental update in the previous section when we
showed the state update for the assignment on line 9. The right-
hand side of the assignment is computed only for the paths match-
ing the current path constraint by conjoining the guards of the used
variables with the current path constraint. The new value sum-
mary for the variable includes this computed value summary for the
right-hand side, along with the old value summary conjoined with
the negation of the current path constraint, to model the preserva-
tion of the value of the variable on paths not matching the path con-
straint. Thus the MULTISE state is at all times consolidated over all
the paths being explored.

This incremental state update is in contrast with how state merg-
ing is conventionally implemented. At join points, state merging
needs to iterate over the part of the symbolic state that has been
modified by the paths converging at the join point and merge that
part of the state. Identifying the join points, keeping track of the
modified part of the state, and merging the modified state could
pose various implementation challenges which are not present in
MULTISE.

Furthermore, because in MULTISE sharing is automatic for all
paths at all times, it takes effect even for programs where the join
points are not known statically, such as programs with exceptions,
or computed control-flow, or for binary programs with unstruc-
tured control-flow where the join points are non-trivial to compute.
In fact, in Section 3 we present the MULTISE algorithm for an
assembly-like language with computed jumps, which shows that
MULTISE can be used effectively for very low-level languages. In
contrast, state merging techniques need explicit knowledge of the
join points to trigger the merging operation that achieves sharing.

Second, MULTISE avoids redundant computation. This feature
is directly due to maintaining the value summaries in a consolidated
form at all times. At each step, MULTISE picks one of the guarded
expressions in the program counter value summary and executes
that statement. For example, in conventional DSE, the same state-
ment z = r - 1 at line 9 will get executed three times along three
paths reaching the statement, as shown in Figure 1(b). MULTISE
executed the statement only once, as shown in Figure 1(c), because
the new state representation (Intermediate State 8) merges the three
paths. In contrast to state merging techniques, which need to iden-
tify statically the join points, in MULTISE we can achieve sharing,
and thus effectively merging, even in a language with computed
jumps. We show in Section 5 that MULTISE executes between 1.3
to 87 times faster than conventional DSE. This is due to DSE per-
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forming between 2 to 47 times more operations, and also spending
between 1.2 to 94 times more time in SMT solver invocations.

Third, MULTISE achieves sharing without introducing auxil-
iary symbolic values during state merging at join points. This has
three advantages:

1. Execution can proceed even if certain theories are not supported
by the constraint solver.

2. Execution can carry out most operations concretely.
3. There is no need for expensive constraint solver calls where

conventional state merging introduces auxiliary symbolic val-
ues for functions and subsequently functions denoted by those
auxiliary symbolic values are called.

To illustrate these advantages, we first need to take a look at how
existing symbolic execution techniques for merging state work. Ex-
isting techniques introduce auxiliary symbolic values to represent
the value of a variable computed along two or more paths merging
at a point. For example, consider the intermediate DSE state of the
example program at line 8 where three paths merge.

path � pc x z r

1-5,8 2x0  100 8 2x0 z0 r0
1-5,6,8 2x0 > 100 ^ z0 6= 1 8 2x0 z0 r0
1-5,6-8 �5 = 2x0 > 100 ^ z0 = 1 8 2x0 z0 1.3

Here the symbolic expression for the variable r along the three
paths are not all the same. Conventional DSE stores only one sym-
bolic expression for each variable. Therefore, conventional state
merging would introduce an auxiliary variable r1 to denote the
value of the variable r, and would add to the path constraint the
relationship between r1 and the different symbolic expressions for
r along the merged paths, as follows:

path � pc x z r

. . . ,8
(( 2x0  100 ^ r1 = r0)

_(2x0 > 100 ^ z0 6= 1 ^ r1 = r0)
_(2x0 > 100 ^ z0 = 1 ^ r1 = 1.3))

8 2x0 z0 r1

The problem with this approach is that the new path constraint
containing the auxiliary variable has a predicate r1 = 1.3. How-
ever, if the constraint solver does not support floating point con-
straints, then symbolic execution cannot merge the paths to gen-
erate a path constraint that is beyond the scope of the constraint
solver.2

In MULTISE, we never introduce auxiliary symbolic values.
Therefore, path constraints in MULTISE are always formulas over
the input symbolic values, which we restrict to integer and string
types. Concrete values of data types that are not supported by the
constraint solver remains in the state as concrete values guarded by
symbolic predicates. This also implies MULTISE can perform more
operations concretely than existing techniques, as demonstrated
below for functions as values.

The fact that MULTISE does not introduce auxiliary symbolic
values while merging paths also helps MULTISE to efficiently han-
dle function values, which are often first-class objects in dynamic
languages such as JavaScript, Python, and Ruby. We illustrate this
using the following program:

1 var x = readInput;

2 var f, r = 0;

3 if (x > 0)

4 f = function f1() { return 1;}

5 else

6 f = function f2() { return -1;}

7 r = f();

2 The same problems arise if we write the path constraint using ITE (if-then-
else): r1 = ITE(2x0  100, r0, ITE(z0 6= 1, r0, 1.3)).

In this program, x gets an input from the environment. Depending
on whether x>0, f is assigned the function f1 or f2. Then the
function stored in f is called and the value returned by the call
is stored in r.

Consider a conventional DSE state with two paths both of which
end at line 7:

path � pc x f r

1-3,4,7 x0 > 0 7 x0 f1 0
1-3,6,7 x0  0 7 x0 f2 0

If we merge the two paths using existing path merging tech-
niques, then the state becomes:

path � pc x f r

. . . ,7 ((x0 > 0 ^ f0 = f1)
_(x0  0 ^ f0 = f2))

7 x0 f0 0

Merging introduces an auxiliary variable f0 and the path con-
straint now refers to the function objects f1 and f2. If we treat
f1 and f2 as symbolic references to the two functions, then when
symbolic execution executes the statement r = f() at line 7, it
needs to resolve what are the possible function values that may be
invoked. This is typically done by invoking a constraint solver to
find all satisfying assignments to f0 given the path constraint [6].
Invoking a constraint solver to obtain all satisfying assignments is
expensive.

MULTISE requires no such constraint solving as it explicitly
stores both f1 and f2 as separate guarded expressions in the value
summary denoted by f. Specifically, the state of MULTISE will be:

{ pc 7! 7,
x 7! x0,

f 7! {(x0 > 0, f1), (x0  0, f2)},
r 7! 0

}

In this state, and others that follow, we simplify the notation and
drop the constraint true from a guarded expression. Symbolic exe-
cution of the statement r = f(); will then create two paths corre-
sponding to the invocation of the two functions stored in the value
summary denoted by f. MULTISE’s mechanism of explicitly stor-
ing all uninterpreted objects as values in value summaries allows
us to avoid repeated constraint solver calls.

Keeping the values along different paths separate is very helpful
when dealing with memory addresses and pointers, since it allows
MULTISE to maintain in a natural way the set of memory addresses
that a variable may point to, which in turn will make it possible
to lookup and update memory addresses directly in many cases.
Consider the following example program:

1 var r = [ 2 ]; / / A new a r r a y w i t h one e l e m e n t

2 var s = [ 3 ]; / / A new a r r a y w i t h one e l e m e n t

3 var x = readInput;

4 if (x > 0)

5 t = r;

6 else

7 t = s;

8 t[0] = 4; / / S t o r e a t f i r s t l o c a t i o n i n a r r a y

At each memory allocation, MULTISE returns a new concrete
memory address, such as a0 and a1 in this example3, and keeps
value summaries for the value stored at each address symbol, just
as for variables. The MULTISE state before the store statement in
line 8 will be:

3
a0 and a1 are not auxiliary symbolic values. We could have replaced a0

and a1 with concrete addresses, say 0x3242 and 0x3246, had they been
known to us.
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{ pc 7! 8, x 7! x0, r 7! a0, s 7! a1,

t 7! {(x0 > 0, a0), (x0  0, a1)},
a0 7! 2, a1 7! 3

}

When processing the store statement on line 8, MULTISE will
resolve the address being written (t[0]) to either ⇤a0 or ⇤a1.
Thus the value summaries for a0 and a1 are modified to contain a
combination of their previous values and their values as updated by
the store statement. After processing the store statement on line 8,
the state becomes:

{
pc 7! 9, x 7! x0, r 7! a0, s 7! a1,

t 7! {(x0 > 0, a0), (x0  0, a1)},
a0 7! {(x0 > 0, 4), (x0  0, 2)},
a1 7! {(x0  0, 4), (x0 > 0, 3)}

}

When x0 > 0, the variable t contains address a0, which is
updated to 4 under this path constraint. In the alternative, the
variable t contains address a1, which is updated to 4.

This allows MULTISE value summaries to maintain precise
aliasing information and to perform strong updates and strong
reads, updating and accessing directly the memory locations that
may be involved in the memory operation, without having to resort
to encoding constraints for the theory of arrays. This is in contrast
with state merging techniques that use auxiliary variables. For
example, if the value of t is represented using the auxiliary variable
t1, along with the constraint (x0 > 0 ^ t1 = a0) _ (x0 
0^ t1 = a1), then symbolic execution would have to either invoke
a solver to enumerate the possible addresses that t1 refers to, or
must defer the reasoning about the memory operations to a solver
using the theory of arrays. We show in Section 5.2 that about half
of our benchmarks would require auxiliary variables of type other
than integer or string if executed with conventional state merging,
sometimes in the thousands, for up to 60% of the joins; MULTISE
avoids all these problematic auxiliary variables.

Fourth, value-summary based representations provide a general
framework for symbolic execution by making explicit two sources
of non-determinism:

• if two guarded expressions (�, v) and (�0
, v) are present in

a value summary, an implementation may or may not merge
them,

• at each step, an implementation can pick non-deterministically
a guarded expression from the value summary stored in pc .

Depending on how the first set of non-deterministic choices are
resolved, we get various degrees of merging in symbolic execution.
If we do not perform any merging, we get conventional symbolic
execution. If we want to keep our guards simpler (i.e. avoid too
many levels of nesting of disjunctions and conjunctions), we can
avoid merging two guarded expressions if their guards are already
complex. The second set of non-deterministic choices could be
resolved to derive various search strategies in symbolic execution.

As further evidence of how general is the formulation of sym-
bolic execution with value summaries, we show in Section 3.4 that
by changing only the choice of how value summaries are merged
when they contain multiple occurrences of the same symbolic ex-
pression, the operation of MULTISE degenerates into DSE.

3. Algorithm
In this section, we formally describe MULTISE using a simple
programming language.

Pgm ::= (` : stmt ; )⇤

stmt ::= x = c

x = readInput
z = x ./ y

if x goto y

y = ⇤x
⇤x = y

error
halt

where
V is a set of variables
C is the set of constants and statement labels
A is a set of memory addresses

x, y, z are elements of V
pc an element of V denoting the program counter
c is an element of C [A [ L

` is an element of L
./ is a binary operator

Figure 2. Syntax of a simple imperative language

3.1 Syntax
The syntax of the language is shown in Figure 2. A program in
the language is a sequence of labelled statements. We use x =
readInput to denote that x gets an input from the environment.
⇤x denotes the memory cell whose address is stored in x. The lan-
guage is similar to a simple untyped assembly language. Objects,
references, and functions can be modeled using memory and mem-
ory address arithmetic: the heap grows from lower address to higher
addresses and the call stack grows from higher address to lower ad-
dresses. Structured and unstructured control-flow, as well as excep-
tions, jump tables, can be modeled using if x goto y with computed
jumps. Variables can be thought as the registers of the machine. The
special variable pc contains the program counter and `0 is the label
of the first statement of the program.

3.2 MULTISE Symbolic Execution Semantics
We use the following notations to describe the semantics of
MULTISE execution:

•
S is the set of symbolic input values,

•
E is the set of all symbolic expressions built using the binary
operators ./ over elements of S, constants C, addresses A, and
labels L,

•
F is the set of all propositional logical predicates over elements
of E; we use �, �0, �

i

to denote a predicate in F ,
• If ` is a statement label, then Pgm(`) returns the statement in

the program whose label is `.

The state of MULTISE is denoted by a mapping for variables
and addresss to value summaries. A value summary is a set of
guarded symbolic expressions, each consisting of a symbolic pred-
icate along with a symbolic expression:

⌃ 2 (A [ V ) ! 2F⇥E

The predicate in a pair of a value summary is called a path con-
straint. Note that the program counter is represented as any other
variable, which allows MULTISE to deal naturally with computed
control flow constructs.

A key advantage of using a value summary is that often times
a state can be represented in a concise form due to the following
three observations:
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CONSTANT
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SYMBOLIC INPUT
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Figure 3. Alternative Symbolic Execution Semantics using Value Summaries

• if s is a value summary and (�, v) and (�0
, v

0) are any two
distinct elements of s such that v = v

0, then we can replace the
two elements with {(� _ �

0
, v)} to obtain the equivalent value

summary s \ {(�, v), (�0
, v

0)} [ {(� _ �

0
, v)}.

• if (false, v) is an element of a value summary, then it can be
removed from the value summary to get an equivalent value
summary.

• each guard in a value summary can be represented and manip-
ulated efficiently using a binary decision diagram (or a BDD),
which we discuss in detail later in the paper.

We take advantage of the above simplification rules by way of
a special value-summary union operation. We write s1] s2 for the
value summary obtained from the union of s1 and s2 followed by
removing guarded expressions with guards that are unsatisfiable,
i.e. guards that are equivalent to false, and replacing guarded ex-
pressions with the same symbolic expression with a single guarded
expression using the union of the guards. Note that with an alter-
native implementation of ] that does not do coalescing of repeated
symbolic expressions we obtain an algorithm that operates essen-
tially like conventional DSE, as explained in Section 3.4.

Figure 3 gives the operational semantics of MULTISE symbolic
execution as a transition relation between MULTISE states:

⌃ �! ⌃0

The execution starts from an initial state that maps each variable,
except pc , to the value summary {(true,?)}, where (? denotes
the undefined value), and maps pc to {(true, `0)}, where `0 de-
notes the first statement label.

The crucial operation used in the definition of the MULTISE
algorithm is s1 ]

�

s2, which given two value summaries s1 and
s2 computes a value summary that should behave as s1 on paths
where ¬� holds, and as s2 on paths where � holds. This function
is defined in the rule GUARDED UPDATE.

The NEXTPC defines the function NextPC that is used to update
the value summary for the program counter when advancing to the
next statement. The CONSTANT and SYMBOLIC INPUT are simple
rules that update the value of the assigned variable and the program
counter. As for all assignments, we use the function ]

�

to ensure
that we represent the fact that the assignment takes effect only on
paths that satisfy the current path constraint �.

The rule BINARY OPERATION triggers for a statement of the
form z = x ./ y. The value summary for the right-hand side is
computed by combining each symbolic expression for the variable
x with each symbolic expression for the variable y.

The CONDITIONAL rule is a bit more involved. For a computed
jump of the form if x goto y we compute a value summary s for
the possible destination labels, including the cases when the jump
is taken and those when it is not. For the cases when the jump is
taken we consider every combination of the value summaries for x
and y, adding to the path constraint the condition that the symbolic
expression for x holds. For the cases when the jump is not taken,
we consider every guarded expression in the value summary for x,
along with the condition that x is false. Finally, as shown in the
conclusion of the rule, we do a guarded union of this set with the
existing value summary for pc .

The LOAD rule shows the lookup operation. For the statement
y = ⇤x, we first consider the value summary for x to obtain the pos-
sible addresses that x refers to. Then, we get the value summaries
for these addresses as the value of ⇤x.

The STORE rule for statement ⇤x = y also considers first the
value summary for x to obtain the possible addresses being written.
Each of these addresses is updated with the value summary for y.
Note the guard � ^ �

x

i

in the guarded update for the address vx
i

, to
model accurately the condition under which v

x

i

should be updated.
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3.3 Approximation in MULTISE
There are several situations when MULTISE may need to approxi-
mate a concrete execution, in the sense that not all concrete execu-
tion paths will be represented in the symbolic state.

First, if the program contains a loop or a recursive function, and
the loop termination condition or the recursion base case are input
dependent, then MULTISE symbolic execution could run forever.
In such cases we may want to stop the symbolic execution after a
certain number of iterations. This is a typical problem with any kind
of symbolic execution. This can be handled in MULTISE by simply
dropping guarded symbolic expressions from the value summary of
the program counter, e.g., when a label has been visited more than
a certain number of times.

Second, it is possible for MULTISE to generate a symbolic
expression that is outside the scope of the theories supported by
the associated SMT solver, e.g., a product of symbolic expressions
(if we assume that the associated SMT solver cannot handle non-
linear arithmetic). Consider, for example, the following MULTISE
state:

{
pc 7! {. . . , (�, `), . . .},
x 7! {(�

x

, 2), (¬�
x

, x0)},
y 7! {(�

y

, 3), (¬�
y

, y0)}
}

This state suggests that the variables x and y have been initial-
ized with constants on some paths and with readInput on other
paths. The label `, pointing to statement z = x * y, is reached
under path constraint �. When evaluating the binary expression x

* y under path constraint �, MULTISE combines the symbolic ex-
pressions from the value summaries of x and y, and one of the re-
sulting guarded expressions will be (¬�

x

^¬�
y

, x0 ⇤y0). If we as-
sume that non-linear arithmetic is not supported by our SMT solver,
MULTISE approximates it as follows. First, we find a satisfying as-
signment for � ^ ¬�

x

^ ¬�
y

, from which we extract a possible
concrete value for x, e.g., x0 = 5. At this point we approximate
by dropping from further consideration the concrete paths where
� ^ ¬�

x

^ ¬�
y

^ x0 6= 5. We do this by refining the path con-
straint for pc to � ^ (�

x

_ �

y

_ x0 = 5), to obtain the following
MULTISE symbolic state:

{
pc 7! {. . . , (� ^ (�

x

_ �

y

_ x0 = 5), `+ 1), . . .},
z 7! { (�

x

^ �

y

, 3), (�
x

^ ¬�
y

, 2y0),
(¬�

x

^ �

y

, 3x0), (¬�x

^ ¬�
y

^ x0 = 5, 5y0)}
. . .

}

This sort of simplification allows MULTISE to make progress
and get around the limitations of the underlying SMT solver. When
such an approximation happens, we set a flag incomplete to true
indicating that MULTISE cannot guarantee full coverage of the
code. This approach has the same end result as the simplification
approach proposed in DART [23]. In DART, there was no need to
use an SMT solver to find a concretization because DART could
read the concrete value of v from the concrete execution.

3.4 Conventional DSE as a Special Case of MULTISE
We show in this section that the rules shown in Figure 3 can be used
to also model conventional DSE, although using a value-summary
state representation, as long as we use a different definition for
the value-summary union operation ]. Consider for example the
following consolidated DSE state in a program with two paths
ending at statement label 7:

path � pc x y

. . . , 7 � 7 x0 y0

. . . , 7 ¬� 7 x0 y1

This consolidated DSE state suggests that x has the same value
on both paths, while y was assigned different values. In MULTISE,
this consolidated state would be represented as:

{
pc 7! {(� _ ¬�, 7),
x 7! {(� _ ¬�, x0)},
y 7! {(�, y0), (¬�, y1)},

}

or, more precisely in a form where the disjunctions are simplified to
true. The disjunctions arise from the definition of value-summary
union ], which collapses together the guarded expressions with
the same symbolic expression (e.g., 7 for pc , and x0 for x), and
replaces the guard with the disjunction of the collapsed guards. If
we use an alternate implementation of ] that does not do not this
minimization step, we would get a state as follows:

{
pc 7! {(�, 7), (¬�, 7),
x 7! {(�, x0), (¬�, x0)},
y 7! {(�, y0), (¬�, y1)}

}

We argue that with such an implementation of the ] operation,
MULTISE mirrors essentially the operation of DSE. First, most im-
portantly, the statement at program counter 7 would be processed
twice, once for each element of the value summary for pc . Further-
more, other rules behave just as DSE. For example, if the statement
at label 7 is x = x + y, the rule BINARY OPERATION updates the
value summary for x along the path with path constraint � to:

{ (¬� ^ �, x0), (¬� ^ ¬�, x0)}
] { (� ^ � ^ �, x0 + y0), (� ^ � ^ ¬�, x0 + y1),

(� ^ ¬� ^ �, x0 + y0), (� ^ ¬� ^ ¬�, x0 + y1)}

The first line in the above value summary is from the left-hand
side of the ]

�

operator applied on the previous value of x along
with the ¬� guard. The four guarded values in lines 2 and 3 are
from the calculation of x + y by combining the value summaries
of x and y, along with the conjunct � from the right-hand side of the
]

�

operator. Once we simplify the boolean expressions we retain
the value summary {(¬�, x0), (�, x0 + y0)}, which is a correct
representation of the DSE state after processing x = x + y under
the path constraint � for the program counter. After one more step,
when we process the pc guarded value (¬�, 7), we obtain the
state:

{
pc 7! {(�, 8), (¬�, 8),
x 7! {(�, x0 + y0), (¬�, x0 + y1)},
y 7! {(�, y0), (¬�, y1)},

}
We point out that, modulo the minimization of the value sum-

mary for pc , this is the same as the state MULTISE would have
arrived at in only one step due to the fact that it maintains the
value summary in minimized form. We used such a configuration
of MULTISE to evaluate the reduction in the number of operations
performed, and in the total running time of MULTISE compared
with conventional DSE. We discuss the results in Section 5.2.

4. Soundness of MULTISE Symbolic Execution
There are two correctness results that we desire for MULTISE,
which we first summarize informally:

• Soundess w.r.t. concrete executions: Any program behavior en-
coded in the final symbolic state of MULTISE corresponds to a
concrete program behavior, and

• Soundness and completeness w.r.t. DSE: The final symbolic
state of MULTISE encodes exactly the same set of behaviors
as the final symbolic state of DSE.
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We note also that the only reason completeness does not hold
w.r.t. concrete executions is due to the approximations discussed
in Section 3.3. Those approximations drop concrete paths from the
symbolic representation. However, the paths that are kept are still
faithfully represented in the symbolic state.

To state these results formally, we assume without loss of gener-
ality that all the readInput statements occur as consecutive state-
ments at the start of the program. Let ⌃0 be the MULTISE state af-
ter these statements have been executed symbolically. Essentially,
⌃0 will map the program counter to {(true, `0)}, will map the in-
put variables to distinct symbolic values, and other variables and
addresses to the undefined value (?). We are going to refer to ⌃0

as the initial symbolic state.
The concrete executions of the program can be formalized by

a transition relation between concrete states. A concrete state is
denoted as ⇢ : (A [ V ) ! (A [ C [ L). The definition of this
concrete transition relation ⇢ �! ⇢

0 is standard, and we do not
show it here.

We define the meaning of symbolic expressions and predicates
by a denotation function [[ · ]] that given a symbolic expression
(a member of E) and a mapping of symbolic values to integer
constants (a member of S ! C), yields a value. Thus,

[[ · ]] : E ! (S ! C) ! (A [ C [ L)

We lift the [[ · ]] function to MULTISE states. Given a mapping
V of symbolic values to constants, a MULTISE state ⌃ denotes the
concrete state [[⌃ ]]V defined as follows, where x is a variable or
address:

[[⌃ ]]V x =

(
[[ v

i

]]V if 9(�
i

, v

i

) 2 ⌃(x) such that [[�
i

]]V

? otherwise

Note that given any mapping V , the concrete state [[⌃0 ]] is a
concrete initial state, where ⌃0 is the symbolic evaluation state
after all readInput statements, as discussed above.

The first soundness result states that a symbolic state denotes
only actual concrete executions, in the following sense:

THEOREM 1 (Soundness w.r.t. the concrete executions). If ⌃ is a
symbolic state obtained from the initial state ⌃0, i.e., ⌃0 �!⇤ ⌃,
then for any mapping V of symbolic values to integer constants
such that [[⌃ ]]V pc 6= ? we have that [[⌃ ]]V is a concrete state
that is reached from the initial state [[⌃0 ]]V in an actual execution,
i.e., [[⌃0 ]]V �!⇤ [[⌃ ]]V .

The proof of this soundness theorem can be done by induction
on the length of the MULTISE derivation ⌃0 �!⇤ ⌃, and the
inductive case by case analysis on the transition rules in Figure 3.

The second correctness result follows from the fact that the only
difference between MULTISE and DSE is the implementation for
]: in DSE we do not merge guarded expressions in ], whereas in
MULTISE we do. Value summaries obtained from the two imple-
mentations of ] are logically equivalent.

5. Implementation and Evaluation
We have implemented a prototype framework for MULTISE ex-
ecution for JavaScript using the Jalangi framework [47] and
we made it publicly available under Apache 2.0 open-source
licence (https://github.com/SRA-SiliconValley/jalangi
under branch symfront). We use CVC3 [7] for constraint solv-
ing, to handle the theory of integer linear arithmetic and strings
(with append, length, equality check, parseInt, and regular expres-
sion matching). We encode string operations in terms of integer
linear arithmetic after bounding the lengths of strings. These the-
ories are often sufficient for handling integer and string inputs in
JavaScript.

In conventional DSE, at join points, state merging needs to iter-
ate over the part of the symbolic state that has been modified by the
paths converging at the join point and merge that part of the state.
Identifying the join points, keeping track of the modified part of
the state, and merging the modified state in conventional DSE re-
quire one to implement a symbolic interpreter. While implementing
MULTISE we observed that due to our incremental state merging
approach we do not need to keep track of variables and memory
addresses that has been updated along different paths before a join.
Moreover, since we do not rely on join points, we do not need to
compute the static control-flow graph of the program. These ob-
servations immensely simplified the implementation of MULTISE
and we managed to finish our implementation through instrumen-
tation without going through the expensive path of implementing
a full-fledged symbolic interpreter for JavaScript. We believe that
MULTISE can easily be implemented for x86 and other low-level
languages, such as LLVM and Java bytecode, and other high-level
languages such as Python and Ruby.

The implementation provides a general framework where we
can choose when to merge two guards in a value summary.
Note that the soundness result for MULTISE holds irrespective of
whether we merge guards or not. In our framework, we can set a
flag to indicate if we want to merge guards. If we do not merge
guards, we get conventional symbolic execution. At the end of con-
ventional symbolic execution pc maps to a value summary where
for each feasible path we have a statement label guarded by the
path constraint for the path. We use this flag to execute and com-
pare MULTISE and DSE on several unit test programs.

Every time a new guarded symbolic expression is added to
the value summary for pc , we invoke a quick BDD satisfiability
check followed by an SMT solver satisfiability check for the path
constraint. This is important in order to avoid exploring unfeasible
paths. For the value summaries of other variables, only a BDD
satisfiability check is used, to reduce the overall cost of SMT
solving. During both MULTISE and DSE execution we generate an
input for each satisfiable SMT solver call made by the respective
techniques at a conditional statement. We generate inputs only at
conditional statements because one of the key goals of symbolic
execution is to generate a set of inputs that give maximal branch
coverage. Generating inputs that forces program execution along
both branches of a conditional statement ensures that we maximize
branch coverage for the particular conditional statement.

As explained earlier, MULTISE does not prescribe a particular
search order. In our implementation, we perform function-bounded
depth-first search. In this search strategy, we completely explore
all paths inside a function at the top of the call stack using the
depth-first search strategy before returning to the caller. During this
search process, MULTISE naturally merges pc variables at the
function boundaries. The values of all other variables are merged
incrementally during assignments.

5.1 Using Binary Decision Diagrams To Represent Guards
During a MULTISE execution, we perform a lot of disjunction,
conjunction, and negation operations on symbolic predicates. For
example, in the rule CONDITIONAL we compute � ^

W
i

(�x

i

^
¬vx

i

). These formulas could easily become complex if they are not
simplified on-the-fly. In our initial implementation of MULTISE,
we didn’t simplify the formulas. As a result we ended up generating
huge path constraints and MULTISE execution ran out of memory
even for simple programs such as quick sort.

We use binary decision diagrams (BDDs) to represent path con-
straints and guards in value summaries as follows. Note that sym-
bolic predicates arise from conditional expressions, as shown in
the CONDITIONAL rule. This happens via v

x

i

when we compute s

in the rule. For each unique symbolic predicate v

x

i

generated in a
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Test LOC MULTISE DSE/ MULTISE ratio

Total
time
(s)

BDD
time
(%)

Solver
time
(%)

Avg.
value

summary
size

Avg. value
summary
sharing
factor

Auxiliary
variables
avoided

Time
ratio (⇥
speedup)

Solver
time
ratio

Avg.
solver

call time
ratio

# Operations
ratio

Find Max 32 5.0 1.2 97.9 1.9 23.0 0 10.0 9.9 0.8 28.7
Kadane Subarray 38 6.5 1.0 98.4 2.4 3.2 0 2.7 2.6 0.9 6.9
Array Index 56 11.7 5.3 93.4 9.1 9.1 0 3.7 3.9 0.9 3.3
Calc Parser 66 35.5 8.9 90.2 20.4 9.8 0 1.6 1.6 1.0 2.8
Stack 81 0.6 6.2 89.0 2.4 7.7 44 (41.5%) 26.2 29.2 1.2 9.1
Queue 85 0.3 0 93.1 1.0 5.4 0 6.7 7.2 1.1 4.2
Heap Sort 87 4.0 1.5 96.7 1.7 5.6 0 2.5 2.5 1.0 8.5
Quick Sort 93 15.1 4.6 94.6 3.6 7.1 0 2.6 2.7 3.0 3.7
PL/0 Parser 135 246.4 18.7 80.4 29.3 45.8 0 1.3 1.2 0.9 2.7
Linked List 148 2.5 3.6 95.1 2.8 5.3 124 (56.8%) 11.1 11.6 0.9 5.1
Priority Queue 190 0.9 3.2 92.3 1.2 31.5 10 (10%) 87.7 94.5 1.3 47.5
Binary Search Tree 386 6.5 2.4 96.6 2.4 9.4 188 (78.3%) 7.3 7.4 0.9 5.6
Symbolic Arithmetic 475 1.5 9.1 82.3 1.8 39.3 168 (28.3%) 49.3 51.4 40.4 34.0
BDD 623 6.2 68.2 19.6 2.5 6.4 15838 (59.2%) 7.5 29.6 24.3 5.4
Red Black 1061 37.1 11.3 88.0 3.5 43.6 1088 (57.9%) 6.5 7.1 0.7 8.8

Table 1. Results: DSE vs MULTISE

conditional statement, we introduce a Boolean variable. A guard
or a path constraint is expressed as a Boolean formula in terms of
these Boolean variables. We use binary decision diagrams (BDDs)
to compactly represent Boolean formulas over these Boolean vari-
ables. Conjunction, disjunction, and negation of Boolean formulas
are computed by performing the corresponding operations on the
BDDs denoting the formulas. If we need to check if a guard or a
path constraint � is satisfiable, we first check if its BDD represen-
tation is not false and then we replace each Boolean variable in
the formula by its corresponding symbolic predicate and check the
satisfiability of the resulting formula using an SMT solver. The or-
dering on the Boolean variables in a BDD is the same as the order
in which they are created. We noticed that the use of BDDs helped
us to effectively maintain and manipulate the guards. We use an un-
optimized textbook implementation of BDD in JavaScript. Despite
being unoptimized, we noticed that the total overhead due to BDD
manipulation is significantly lower that the total overhead due to
SMT solving. For example, in our experiments, on an average we
spend less than 10% of total execution time in BDD manipulation,
whereas over 85% of total execution time is spent in SMT solving.

5.2 Evaluation
We experimented with the prototype implementation of MULTISE
to evaluate its effectiveness at sharing values in the value sum-
maries, at avoiding the need for auxiliary variables, and to measure
the total cost of symbolic evaluation and how much of it is due to
BDD or to SMT solver calls. We also measured the speedup over
conventional DSE.

For the evaluation we ran MULTISE on several test harnesses
created from publicly available JavaScript libraries. A symbolic test
harness for a library is created by sequentially calling the methods
of the library (possibly with repetitions) with inputs marked as
readInput. Even when the tested library is small the execution
trees can be quite large if the test harnesses contain several library
invocations.

Table 1 shows various statistics that we collected by running
MULTISE and conventional DSE on our benchmark programs. The
programs used in our evaluation include parsers (calculator parser
and PL/0 parser), data structures (red-black tree, binary-decision
diagrams, linked list, stack, priority queue, binary search tree and
queue), standard algorithms (quick sort, heap sort, Kadane maxi-
mum subarray), and small programs (find max and array index).

The first few columns in Table 1 summarize MULTISE perfor-
mance and effectiveness, while the columns on the right side of

the double vertical line summarize comparisons between DSE and
MULTISE. The experiments were performed on a laptop with 2.3
GHz Intel Core i7 and 16 GB RAM.

The “Total time” column reports the total running time of
MULTISE in seconds, and the columns “BDD time” and “Solver
time” report the percentage of time spent in BDD manipulation
and in SMT solving running time, respectively. We observe that
even though MULTISE involves numerous boolean predicate con-
structors, the overall time spent in the BDD library is negligible.
The SMT solver time takes most of the time. Note that we use
SMT solver only in CONDITIONAL rule when we perform ]

�

to
update the value of pc . Another observation is that compared to
the SMT time, the time actually spent in interpreting statements
and constructing symbolic expressions is also very small.

The column “Avg. value summary size” reports the cardinality
of the value-summary set, averaged over all variables during the
execution of MULTISE. We observe that in many cases the value
summaries are small (between 1 and 30). The smaller the size of
a value summary, the more efficient it is to perform an operation
on the value summary. This is especially true for statements that
involve multiple variables, such as binary operations and condi-
tionals, where we need to process all combinations of the value
summaries involved. A related measure is shown in the “Avg. value
summary sharing factor”. This column contains the ratio between
the number of paths to a point in the program and the size of the
value summary, averaged over all variables and all program points.
Recall that the size of a value summary is given by the number of
distinct symbolic values for a variable at a point in the program.
Our experiments show that the distinct values are shared on aver-
age between 3 to 45 paths. This validates our premise that there is
a significant opportunity for a representation based on sharing.

The column “Auxiliary variables avoided” is showing how
many auxiliary variables of types other than integer or string would
be introduced by conventional state-merging techniques. These
auxiliary variables would be problematic for most SMT solvers.
We note that for several of the benchmarks there would be such
variables, sometimes in the thousands, and each variable would
force a state-merging based tool to drop paths from symbolic exe-
cution. MULTISE never introduces auxiliary variables and can pro-
ceed along all paths even when dealing with variables of types not
supported by the constraint solver.

The right side of Table 1 shows how much value-summary
based symbolic execution improves over conventional DSE. In the
“Time ratio” column we show how much more time it takes to run
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DSE compared to MULTISE. We observe a significant speedup,
between 1.3⇥ and up to 87⇥. This speedup is due to two related
factors. First, DSE performs a lot more operations than MULTISE
because it processes statements following a join multiple times, as
shown in the “# Operations ratio”. This column shows how many
more operations DSE has to perform compared to MULTISE. Note
that for each statement processed by MULTISE we count as many
operations as the size of the value summary at that statement. Sec-
ond, DSE spends significant more time in SMT solver calls, as
shown in “Solver time ratio” (DSE/MultiSE). Finally, the column
“Avg. solver call time ratio” shows the ratio between the average
duration of a call to the SMT solver in DSE vs. MULTISE. We
present this number to show that even in the face of more compli-
cated constraints in MULTISE the cost of an individual SMT call
is not higher. The real problem is the higher number of SMT calls
that DSE must make.

6. Related Work
Recently several techniques for state merging [2, 6, 22, 26, 34, 36,
52] have been proposed to tackle the path-explosion problem. Dy-
namic state merging [36] uses a novel method called QCE (query
count estimation) which determines statically when merging two
states is advantageous, while at the same time allowing the state
exploration to be guided by arbitrary strategies. MergePoint [6] al-
ternates between path-based exploration of DSE and state-merging
based exploration of static symbolic execution. State merging is
only performed for code that does not contain system calls, indi-
rect jumps, or other statements that are difficult to reason about
precisely. Both of these techniques introduce auxiliary symbolic
values and cannot merge states when there are unstructured control-
flow and operations that introduce outside-theory constraints over
auxiliary symbolic values. Rozzle [34] does not introduce auxil-
iary variables and performs merging at join points, but could give
rise to formulas outside the domain of a constraint solver. Ros-
sette [52] also does state merging and manages to avoid some of the
auxiliary variables. Rosette’s state merging happens at join points
and is type-based where two data-structure values, such as two
lists having same length, are merged recursively to further com-
pact the merged state. Recursive merging of data-structure values
only works for immutable data-structures and cannot be applied to
get state compaction in mutable data-structures used in imperative
languages. SMART [22] performs compositional test generation by
computing summaries of all program functions. The summary of a
function is computed by exploring all paths of the function using
DSE and then by merging the symbolic states of those paths via
symbolic auxiliary variables. For real programs, SMART can gen-
erate function summaries that are outside the theories that can be
handled by an SMT solver. In such situations, it simplifies the sum-
maries at the cost of completeness. Demand-driven compositional
symbolic execution [2] was subsequently proposed to incremen-
tally construct partial summaries to avoid analyzing unnecessary
paths in functions. SMASH [26] incorporates both symbolic exe-
cution summaries (must summaries) and static analysis summaries
(may summaries). SMASH performs reachability analysis to rea-
son about possible buggy program states and to prune out group
of uninteresting execution paths. All the above three techniques in-
herit the same limitation: they introduce auxiliary symbolic values
at function interfaces. Therefore, they can reason about a function
precisely only if the function’s behavior can be captured by the
given decidable theories.

Another line of work [8, 14, 30, 31, 38, 39, 53] tries to miti-
gate the path-explosion problem by pruning out redundant or un-
necessary executions. Most of these techniques are orthogonal to
compositional reasoning and state merging. A subset of these tech-
niques avoid redundant executions by checking whether the current

symbolic program state has been visited before. JPF [53] first uses
state matching to avoid redundant state exploration. Boonstoppel
et al. [8] uses read and write sets to relax state matching condi-
tion. McMillan [39] proposed the idea to store interpolants as a
generalization of visited states and to check inclusion instead of
exact state matching. Tracer [30, 31], a symbolic execution engine
targeting C programs, proposes to use interpolants to mitigate the
path explosion problem by subsuming paths that can be proved to
be safe. Another subset of these techniques try to decompose the
program execution space into a number of independent sub spaces.
For example, Majumdar and Xu [38] and Chakrabarti and Gode-
froid [14] applied program slicing ideas to cluster the program ex-
ecution space. Recently, Santelices et al. [44], Qi et al. [41], Gode-
froid et al. [24], and Yang et al. [56] suggested incremental sym-
bolic execution techniques to reduce the cost of regression testing
of gradually evolving programs.

Function summaries [42, 49] have been used extensively in
static program analysis. Graph-reachability based analysis [42],
constraint-based analysis [29, 55], pointer analysis [15, 54], alias
analysis [20], shape analysis [35], separation logic [13, 27], and ab-
stract interpretation [9, 43] have incorporated function summaries
for scalability. More recently, Gulwani et al. [28] and Yorsh et
al. [57] investigated a general framework for summary-based static
analysis. In general, function summaries in static analysis use in-
terface symbolic values at function boundaries. Summaries are in-
stantiated by replacing interface variables with real variables at call
sites. Therefore, static analysis faces the same problem: a function
behavior can be captured precisely only if it can be described in
underlying decidable theories. However, this is not a serious limi-
tation for static analysis because summaries can always be over ap-
proximated. Dynamic symbolic execution cannot over approximate
a summary since over-approximation leads to loss of soundness.

Saturn [55] is one of the most closely related static analysis
techniques. For intra-procedural analysis, Saturn and MULTISE
have a number of commonalities: both perform symbolic execu-
tion, use guarded values to track values in a path sensitive manner,
and maintain a path constraint. However, Saturn introduces fresh
symbolic variables at function interfaces and updates guards of val-
ues at join points. MULTISE, in contrast, never introduces auxiliary
symbolic values and performs join at every assignment to maintain
a consolidated state throughout the execution. Guarded value flow
analysis [16] is another closely related work. It performs value flow
analysis using both path constraints and guards on values. Value
can flow from a source to a sink if the conjunction of the guard on
a value at the sink and the path constraint at the sink is satisfiable.
However, the technique computes path constraint and guards on
demand, while MULTISE performs symbolic execution to obtain
guarded values at every execution point.

In general, one of the biggest advantages of static analysis
techniques using summaries is that they can over-approximate a
summary if it falls outside the scope of decidable theories; dynamic
symbolic execution cannot over-approximate because it needs to
know the exact path constraint for test generation.
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