
ChocoPy: A Programming Language for
Compilers Courses

Rohan Padhye
rohanpadhye@cs.berkeley.edu

University of California, Berkeley
USA

Koushik Sen
ksen@cs.berkeley.edu

University of California, Berkeley
USA

Paul N. Hilfinger
hilfingr@cs.berkeley.edu

University of California, Berkeley
USA

Abstract
ChocoPy is a programming language designed for teaching
an undergraduate course on programming languages and
compilers. ChocoPy is a restricted subset of Python 3.6, using
static type annotations to enforce compile-time type safety.
ChocoPy is fully specified using formal grammar, typing
rules, and operational semantics. Valid ChocoPy programs
can be executed in a standard Python interpreter, producing
results consistent with ChocoPy semantics. A major com-
ponent of CS164 at UC Berkeley is the project: students de-
velop a full compiler for ChocoPy, targeting RISC-V, in about
twelve weeks. In other exercises, students extend the syntax,
type system, and formal semantics to support additional fea-
tures of Python. In this paper, we outline (1) the motivations
for creating the ChocoPy project, (2) salient features of the
language, (3) the resources provided to students to develop
their compiler, (4) some insights gained from teaching two
semesters of ChocoPy-based courses by different instructors.
Our assignment resources are available for re-use by other
instructors and institutions.

CCSConcepts • Social andprofessional topics→Com-
puter science education; • Software and its engineer-
ing→ Compilers; Context specific languages.

Keywords Compilers courses, Python, RISC-V
ACM Reference Format:
Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy:
A Programming Language for Compilers Courses. In Proceedings
of the 2019 ACM SIGPLAN SPLASH-E Symposium (SPLASH-E ’19),
October 25, 2019, Athens, Greece. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3358711.3361627

1 Introduction
ChocoPy is a programming language designed for classroom
use. It is currently used at UC Berkeley to teach CS164, an
undergraduate-level course on the design and implemen-
tation of programming languages. ChocoPy is a statically

SPLASH-E ’19, October 25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 2019 ACM SIGPLAN SPLASH-E Symposium (SPLASH-E ’19),
October 25, 2019, Athens, Greece, https://doi.org/10.1145/3358711.3361627.

typed, restricted subset of Python 3.6. ChocoPy is fully spec-
ified using formal descriptions of syntax, typing, and op-
erational semantics. Students taking CS164 learn to reason
about such formalisms, consider alternatives, and extend
them to support additional features of Python. Over the
course of a semester, students work in teams to develop a
full compiler for ChocoPy, targeting the RISC-V architec-
ture. We provide to students a language reference manual,
a RISC-V implementation guide, and skeleton code for de-
veloping a modular ChocoPy compiler in Java. Additional
resources include an instructor-provided reference compiler,
a web-based ChocoPy IDE, a web-based RISC-V simulator
with step-through assembly debugging, and an auto-grader.
The ChocoPy compiler project is developed in three modular
stages that can be tested and graded independently of each
other. The ChocoPy project is designed to be portable. All
ChocoPy resources are available at https://chocopy.org.

2 Motivation
Waite [11] describes three common strategies for teaching
an undergraduate compilers course: (1) software project, (2)
application of theory, (3) support for communicating with a
compiler. At UC Berkeley, the CS164 course is a mix of the
first two strategies. Students are exposed to various theoreti-
cal concepts underpinning programming language design—
such as syntax, type systems, and formal semantics—as well
as their efficient implementation—such as lexing, parsing,
type checking, program analysis and optimization, code gen-
eration, and memory management. These concepts concur-
rently tie in to a semester-long project on developing a full
compiler for a small but non-trivial programming language.
For students, developing a compiler end-to-end can be a

hugely rewarding task. The rewards are both in the form of
a substantial software engineering experience—the project
is often the largest that students have undertaken so far—
as well as in gaining insights about programming language
design and implementation.
The major design decision for instructors is what pro-

gramming language to base the compiler project on. The
advantage of using a pedagogical language such as COOL [2]
or SOOL [4], is the availability of formal specifications for
a set of language features designed specifically for educa-
tion. One of the co-authors of this paper has implemented
this approach for several years. However, students are not

https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://chocopy.org

SPLASH-E ’19, October 25, 2019, Athens, Greece Rohan Padhye, Koushik Sen, and Paul N. Hilfinger

always motivated to learn about the design of or write a
compiler for a language having unfamiliar syntax or whose
features are not relatable to languages they already know;
this phenomenon has been observed by other instructors as
well [1, 11]. An alternate approach is to specify a subset of
a popular language, such as Java [3, 6, 8] or C [7]. Another
co-author of this paper has had success with this approach in
the past. However, existing subset definitions either did not
have formal semantics attached to them, were not sufficiently
complex enough for reasoning about language design issues,
and/or did not have associated resources for developing a
compiler targeting a modern instruction-set architecture.
The development of the ChocoPy project was motivated

by the following design goals:
1. We wanted to use a subset of a widely used program-

ming language, preferably one which students are al-
ready familiar with.

2. We wanted the language to be expressive enough to
write non-trivial programs in. In particular, we wanted
to support an object-oriented paradigm with sufficient
complexity to illustrate important nuances of static
type checking and efficient code generation. We de-
cided to use the features of COOL as a reference.

3. We wanted to use a language whose syntax, type-
checking rules, and operational semantics were for-
mally specified. These concepts tie the theory compo-
nent taught in class to practical aspects of compiler
development.

4. We wanted the students’ compilers to target a mod-
ern assembly language, while providing sufficient tool
support for simplifying such a daunting task.

5. We wanted to produce artifacts that can be re-used
across instructors and institutions offering compilers
courses.

ChocoPy fulfills these goals in the following way:
1. ChocoPy is a statically typed subset of Python 3.6. We

found that, as of 2018, most students taking CS164
were already familiar with writing Python programs.
ChocoPy uses Python’s type hinting syntax [5, 10] to
annotate variable and formal parameter declarations
with static types. All valid ChocoPy programs can also
be run in a standard Python interpreter.

2. ChocoPy supports integers, booleans, strings, user-
defined classes, lists of any type (including nested lists),
class inheritance and method overloading, as well as
nested functions that can access non-local variables.
Many language features were inspired by COOL, but
adapted to conform to Python 3.6. See §3 for more
details.

3. The ChocoPy reference manual contains a formal spec-
ification of the language’s syntax (tokenization rules +
grammar), comprehensive typing rules for a type sys-
tem based on nominal subtyping, as well as operational

semantics for all language constructs. Homework ex-
ercises lead students towards extending the syntax,
typing rules, and formal semantics to support addi-
tional Python features such as exceptions, dictionaries,
list comprehensions, closures, etc.

4. We provide resources to aid students in implementing
a compiler for ChocoPy that targets the 32-bit RISC-V
instruction-set architecture [12]. In particular, we pro-
vide infrastructure to emit auto-commented assembly
code that conforms to conventions listed in an accom-
panying implementation guide. We also make use of a
RISC-V simulator, which allows step-through debug-
ging of RISC-V assembly in a web browser. See §4 for
more details.

5. All our artifacts are being made available as a package
of three assignments, complete with documentation
and auto-graders, for re-use by other instructors upon
request.

We soon discovered an additional advantage of basing a
compiler project around a type-safe subset of a highly dy-
namic language such as Python. On non-trivial benchmarks,
student-implemented compilers can easily outperform the
official Python implementation! We found this to be an ex-
cellent source of motivation for students.

3 The ChocoPy Language
ChocoPy is designed to be a subset of Python. An execution
of a valid ChocoPy program that does not result in a run-
time error should produce the same observable result as the
execution of that program in a standard Python interpreter.

Program statements can contain expressions, assignments,
and control-flow statements such as conditionals and loops.
Evaluation of an expression results in a value that can be an
integer, a boolean, a string, an object of a user-defined class,
a list, or the special value None. ChocoPy does not support
dictionaries, first-class functions, and reflective introspec-
tion. All expressions are statically typed. Variables (global
and local) and class attributes are statically typed, and have
only one type throughout their lifetime. Both variables and
attributes are explicitly typed using annotations. In func-
tion and method definitions, type annotations are used to
explicitly specify return type and types of formal parameters.
Figure 1 contains a sample ChocoPy program illustrat-

ing top-level functions, statements, global variables, local
variables, and type annotations. This is valid Python 3.6
program; the Python interpreter simply ignores the type an-
notations. In contrast, ChocoPy enforces static type checking
at compile time. Figure 2 contains a sample ChocoPy pro-
gram illustrating classes, attributes, methods, constructors
and inheritance.

ChocoPy’s syntax is a greatly simplified subset of Python
syntax. One huge advantage of this fact is that we get syntax
highlighting for free in almost every code editor!

ChocoPy: A Programming Language for Compilers Courses SPLASH-E ’19, October 25, 2019, Athens, Greece

1 def is_zero(items: [int], idx: int) -> bool:

2 val: int = 0

3 val = items[idx]

4 return val == 0

5

6 idx: int = 1

7 print(is_zero ([1, 0, 1], idx))

Figure 1. ChocoPy program illustrating functions, variables,
and static typing. Prints True when executed.

1 class Animal(object):

2 makes_noise:bool = False

3

4 def make_noise(self: "Animal"):

5 if (self.makes_noise):

6 print(self.sound())

7

8 def sound(self: "Animal") -> str:

9 return "???"

10

11 class Cow(Animal):

12 def __init__(self: "Cow"):

13 self.makes_noise = True

14

15 def sound(self: "Cow") -> str:

16 return "moo"

17

18 c:Animal = None

19 c = Cow()

20 c.make_noise () # Prints "moo"

Figure 2. ChocoPy program illustrating classes, attributes,
methods, and inheritance.

ChocoPy has a nominal type system. The predefined types
include int, bool, str, and object. Every user-defined class
also defines a type. Additionally, for every type T in a ChocoPy
program, there is a list type [T], which represents a list
whose elements are of type T. For example, the type [int]
represents a list of integers. List types are recursive: the type
[[int]] represents a list whose elements lists of integers.

The semantics of ChocoPy programs have been carefully
designed so that the execution of a valid ChocoPy program
results in the same observable output as the execution of the
same program in a standard Python interpreter.
The language reference manual1 provides a comprehen-

sive set of typing rules and operational semantics for all
ChocoPy language constructs; some examples are shown in
Figure 3 and Figure 4 respectively.

1https://chocopy.org/chocopy_language_reference.pdf

var-init
O(id) = T

O,M,C,R ⊢ e1 : T1
T1 ≤a T

O,M,C,R ⊢ id:T = e1

attr-init
M(C, id) = T

O,M,C,R ⊢ e1 : T1
T1 ≤a T

O,M,C,R ⊢ id:T = e1

attr-read
O,M,C,R ⊢ e0 : T0

M(T0, id) = T

O,M,C,R ⊢ e0.id : T

list-select
O,M,C,R ⊢ e1 : [T]
O,M,C,R ⊢ e2 : int
O,M,C,R ⊢ e1[e2] : T

return-e
O,M,C,R ⊢ e : T

T ≤a R

O,M,C,R ⊢ return e

return
<None> ≤a R

O,M,C,R ⊢ return

Figure 3. Sample typing rules for ChocoPy.

var-read
E(id) = lid
S(lid) = v

G,E, S ⊢ id : v, S, _

var-assign-stmt
G,E, S ⊢ e : v, S1, _

E(id) = lid
S2 = S1[v/lid]

G,E, S ⊢ id = e : _, S2, _

list-select
G,E, S0 ⊢ e1 : v1, S1, _

G,E, S1 ⊢ e2 : int(i), S2, _
v1 = [l1, l2, . . . , ln]

0 ≤ i < n
v2 = S2(li+1)

G,E, S0 ⊢ e1[e2] : v2, S2, _

return-e
G,E, S ⊢ e : v, S1, _

G,E, S ⊢ return e : _, S1,v

Figure 4. Sample operational semantics rules for ChocoPy.

Students learn to read and critique the typing and op-
erational semantics rules. Written exercises walk students
through changes or additions to the rules. In particular,
they are encouraged to reason about how such changes
would affect various other components of the language. Since
ChocoPy is a subset of Python, we found it convenient to
introduce additional language features that already exist in
Python but not in ChocoPy such as dictionaries, exceptions,
and default arguments. The official Python documentation
and interpreter provide an informal specification and an or-
acle respectively; these form the basis for constructing and
evaluating new formalisms.

4 Resources for Compiler Development
To support the compiler development project, students are
provided a number of artifacts. The design philosophy for
this distribution is strongly influenced by COOL [2].

https://chocopy.org/chocopy_language_reference.pdf

SPLASH-E ’19, October 25, 2019, Athens, Greece Rohan Padhye, Koushik Sen, and Paul N. Hilfinger

1 .globl $is_zero

2 $is_zero:

3 la a0, const_2 # Initial value for local: val

4 sw a0, 0(sp) # Put local variable on stack top + 0

5 sw fp, -4(sp) # Put control link on stack top + 1

6 sw ra, -8(sp) # Put return address on stack top + 2

7 addi sp, sp, -12 # Increment stack pointer by 3

8 addi fp, sp, 4 # New fp is just below stack top

9 lw a0, 16(fp) # Load var: is_zero.items

10 sw a0, -4(fp) # Push on stack slot 1

11 lw a0, 12(fp) # Load var: is_zero.idx

Figure 5. Self-documenting assembly code generated by the ChocoPy reference compiler. Code corresponds to the beginning
of function is_zero defined in Fig. 1. The label const_2 references the integer object for value 0.

Figure 6. Snapshot of the Web-based ChocoPy IDE with
syntax and error highlighting. The above program contains
a slight change to the example in Fig. 1, which leads to two
compile-time type errors.

The main document provided to students is the ChocoPy
language reference manual. This document formally specifies
the language syntax, typing rules, and operational semantics.
In the project, students are expected to develop a compiler
that conforms to these formal specifications.
The course project consists of three assignments: (1) a

front-end that parses ChocoPy programs and produces ab-
stract syntax trees (ASTs), (2) a semantic analyzer and type
checker that decorates ASTs with type information, and (3)
a code generator that analyzes typed ASTs and emits RISC-V
assembly code. Assignments are modular: each of the three
compiler stages can be developed and tested independently
of the others. Modules from the instructor-provided refer-
ence compiler, which is distributed in obfuscated binary
form, can be used in place of stages other than the stage
being developed. Students can thus test the entire compiler
pipeline while working on a single assignment. They need
not worry about problems from one of their compiler stages
compounding to other stages.
The structure of AST node types is fixed. We use JSON

as a seriailized intermediate representation (IR) between the
three compiler stages. The output of the first two stages are
JSON-serialized ASTs (on success) or JSON-serialized error
messages (on failure). Error messages also reference line and

column numbers corresponding to the AST node responsible
for the error. The schema of the JSON-based IR, which defines
the AST node types and error message format, is provided
to students along with each assignment specification. The
advantage of a serialized IR is that students can freely choose
any language of their choice to develop their own compiler.
The auto-grader for the first two assignments only compares
the JSON output produced by students’ implementations
against a reference output. The auto-grader for the third
assignment simply executes the RISC-V code emitted by the
students’ compiler and compares it with a reference output
(which should also match the output produced by a standard
Python interpreter running the same test case).

For each assignment, we provide to students a set of 30–80
small ChocoPy programs and their corresponding reference
output. Students can run the auto-grader locally to keep track
of their own progress while working on each assignment.
The sample test cases provided to students are a subset of
the full test suites used to grade their submissions. For each
assignment, we also provide Java skeleton code. The skeleton
code passes 1 or 2 trivial tests, and demonstrates the basic
use of tools and design patterns, e.g. parser generators and
AST visitors. Likely owing to the availability of the skeleton
code, all student projects to date have opted to implement
their compiler in Java.
For the third assignment, which pertains to code gen-

eration, we provide to students three additional resources.
First, a document called the RISC-V implementation guide
describes the calling conventions and object memory layout
used by the reference compiler. Every student submission to
date has followed the same conventions. Second, the refer-
ence compiler emits self-documenting assembly code: every
line of assembly code emitted for a ChocoPy program con-
tains an associated dynamically generated comment string.
The comment explains how the assembly code relates to
entities in the ChocoPy program. See Figure 5 for an ex-
ample. Students seemed to find this useful: the majority of
student implementations followed suit and produced their

ChocoPy: A Programming Language for Compilers Courses SPLASH-E ’19, October 25, 2019, Athens, Greece

own auto-commented assembly. Third, we provide and host
a customized version of the Venus RISC-V simulator [9]. The
simulator provides an execution environment for I/O and al-
lows step-through debugging of standalone RISC-V code in a
web browser. Registers and memory can be inspected using a
GUI. An advantage of using Venus, which itself is written in
Kotlin, is that it can be compiled to both JavaScript—for the
Web GUI version—and to the JVM—for use by our Java-based
auto-grader.

Finally, the ChocoPy website also provides an in-browser
IDE. ChocoPy programs can be edited with syntax highlight-
ing and compiled to RISC-V assembly. The assembly can in
turn be executed in the same browser window using Venus.
Compile-time errors highlight mistakes in the source code.
See Figure 6 for an example. The IDE is a recent develop-
ment. Since the students’ compilers produce JSON-serialized
error messages with line and column numbers in a standard
format, it is possible to integrate their own implementations
into this IDE. We did not have this integration available in
past offerings but intend to provide such a mechanism in the
future.

5 Informal Survey
Mid-way through the Fall 2018 offering of CS164, we con-
ducted an informal, anonymous survey of students taking the
class. This was at the point where the second programming
assignment—on semantic analysis and type checking—was
due, but the third assignment—on code generation—was not
yet published. The purpose of the survey was for instructors
to get feedback on how the students were coping with the
then brand-new project, and possibly implement changes in
“real-time”. We discuss some results here simply as anecdotes
and not as a formal evaluation of our work.

The survey listed six negative and two positive statements
about the project; students could check any statements they
agreed with. There were also text boxes for students to write
what they liked about the project, what they did not like,
and what they would like changed. Of the 15 survey re-
spondents, 14 checked the positive sentiment “I’m getting
insights into how real compilers work”, while 9 indicated
that they loved ChocoPy. Zero respondents checked the neg-
ative statement “I don’t like ChocoPy”. The most common
negative sentiments were “Too much work to do” and “Too
much text to read” (6 of 15 respondents each). 4 respondents
checked “Implementing error reporting is annoying”. Such
feedback prompted us to augment the final assignment—on
code generation—with a substantial amount of support code
to provide to students. Further, the error-reporting require-
ments for the compiler front-end were streamlined for the
second offering of the course (Spring 2019). Six of the seven
students who filled out the text boxes indicated either that
they found the project well-designed or that they felt they
are learning a lot from it.

6 Conclusion
Overall, student feedback about the ChocoPy-based course
has been largely positive. This has encouraged us to continue
using and refining the language and project materials for
future offerings of CS164. The ChocoPy project materials
are self-contained and portable. We believe that it should
also be easy to customize the project by adding or removing
language features as found necessary by instructors. The
resources that we developed for this project are available for
use by other instructors and institutions, upon request.

Acknowledgments
We thank Rohan Bavishi for aiding in the migration from
COOL.We also thank the students of CS164 Fall 2018 for their
invaluable feedback on the first deployment of the ChocoPy
project. This work is supported in part by NSF grants CCF-
1409872, CCF-1908870, CCF-1900968, and CNS-1817122.

References
[1] Alfred V. Aho. 2008. Teaching the Compilers Course. SIGCSE Bull. 40,

4 (Nov. 2008), 6–8. https://doi.org/10.1145/1473195.1473196
[2] Alexander Aiken. 1996. Cool: A Portable Project for Teaching Compiler

Construction. SIGPLAN Not. 31, 7 (July 1996), 19–24. https://doi.org/
10.1145/381841.381847

[3] Andrew W. Appel and Jens Palsberg. 2003. Modern Compiler Imple-
mentation in Java (2nd ed.). Cambridge University Press.

[4] Kim B Bruce. 2002. SOOL, a Simple Object-Oriented Language. In
Foundations of object-oriented languages: types and semantics. MIT
press, Cambridge, Massachusetts, Chapter 10, 173–200.

[5] Ryan Gonzalez, Philip House, Ivan Levkivskyi, Lisa Roach, and Guido
van Rossum. 2016. PEP 526 – Syntax for Variable Annotations. https:
//www.python.org/dev/peps/pep-0526/.

[6] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-
erweight Java: A Minimal Core Calculus for Java and GJ. ACM Trans.
Program. Lang. Syst. 23, 3 (May 2001), 396–450.

[7] Christoph M. Kirsch. 2017. Selfie and the Basics. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
2017). 198–213. https://doi.org/10.1145/3133850.3133857

[8] Eric Roberts. 2001. An Overview of MiniJava. In Proceedings of the
Thirty-second SIGCSE Technical Symposium on Computer Science Edu-
cation (SIGCSE ’01). ACM, 1–5. https://doi.org/10.1145/364447.364525

[9] Keyhan Vakil. 2017. Venus: RISC-V instruction set simulator built for
education. https://github.com/kvakil/venus Retrieved Sept 1, 2018.

[10] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP 484
– Type Hints. https://www.python.org/dev/peps/pep-0484/.

[11] William M. Waite. 2006. The Compiler Course in Today’s Curriculum:
Three Strategies. In Proceedings of the 37th SIGCSE Technical Sympo-
sium on Computer Science Education (SIGCSE ’06). ACM, New York,
NY, USA, 87–91. https://doi.org/10.1145/1121341.1121371

[12] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanović. 2014. The RISC-V Instruction Set Manual, Volume I: Base
User-Level ISA Version 2.0. Technical Report UCB/EECS-2014-54. EECS
Department, University of California, Berkeley.

https://doi.org/10.1145/1473195.1473196
https://doi.org/10.1145/381841.381847
https://doi.org/10.1145/381841.381847
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0526/
https://doi.org/10.1145/3133850.3133857
https://doi.org/10.1145/364447.364525
https://github.com/kvakil/venus
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.1145/1121341.1121371

	Abstract
	1 Introduction
	2 Motivation
	3 The ChocoPy Language
	4 Resources for Compiler Development
	5 Informal Survey
	6 Conclusion
	Acknowledgments
	References

