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1. Introduction 
The RAMP project [1] aims to create a FPGA based hardware 

emulator for future manycore systems, which will scale to 1000 

processor cores on several multi-FPGA boards, such as BEE3 board 

[2]. At the same time, the emulated processor cores can support 

running real life workload (e.g OS and unmodified application 

binaries) in a cycle accurate manner given a user defined timing model. 

In this work, we introduce a fine-grained multithreading architecture to 

build 512 independent SPARC v8 integer functional contexts running 

at over 150 MHz on a single Xilinx Virtex 5 LX110T FPGA with over 

1 GIPS peak emulation throughput. The functional model fully 

complies with the SPARC v8 standard. Therefore, it is easy to run real 

OS (e.g. Debian Linux) and diagnostics. With a smaller FPGA, we can 

build a low cost (<$500) practical 64-way or 128-way multicore 

emulator that has cycle accurate timing model as well as floating point 

support.  

2. Related Work 
Besides the timing emulation model, the study of efficient functional 

emulation model already drew a lot attentions in the community [3, 4, 

5].  Most of previous works [3, 4] attempts to directly map a soft-core 

processor to FPGA fabric with only a few modifications. This 

approach suffers from poor per FPGA core count and low clock 

frequency. In addition, it still takes dozens of high-end FPGAs to 

implement a 1000 core system at a high cost that only large research 

groups in university or industry can afford. In [5], a software and 

hardware hybrid simulation technique is discussed. By exploiting time-

multiplexed interleaving, a 90 MHz 16-context SPARC v9 functional 

pipeline is built on a single Virtex-II FPGA. Though the time-

multiplexed technique seems promising, we still believe a good 

understanding of modern FPGA architecture plus careful engineering 

will help to create a functional model purely in hardware, which will 

have a much higher density and even better aggregated performance. 

3. Design Methodology  
One optimization goal in our design is to achieve a high aggregate 

emulated instruction throughput given the capacity constraint of 

FPGA, i.e. MIPS/FPGA. It can be written as the following equation 

𝑀𝐼𝑃𝑆𝑝𝑒𝑟  𝐹𝑃𝐺𝐴 =
𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

𝐶𝑃𝐼𝑖𝑑𝑒𝑎𝑙 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 ∗ 𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦
× # 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 

We argue that simply duplicating CPU pipelines is suboptimal. First, 

most of soft-core processors on FPGA run under 100 MHz, which is 

way slower than state-of-the-art memory interfaces. Second, standard 

single issue in-order pipeline has a higher actual CPI due to high cache 

miss penalty (20~30 cycles). On the other hand, we believe fine-

grained host-multithreading is a more efficient approach to improve the 

pipeline utilization on FPGA moreover the computation density. In 

above equation, the miss penalty can be reduced to  
𝑚𝑖𝑠𝑠  𝑙𝑎𝑡𝑒𝑛𝑐𝑦

# 𝑜𝑓  𝑡ℎ𝑟𝑒𝑎𝑑𝑠
  . If 

there are enough threads, the miss penalty is just 1.  

We also seriously reconsider some traditional RISC pipeline 

optimizations on FPGA such as forwarding network and delay slot. 

Our initial result on LEON processor [6] in Table 1 quantifies the area 

and clock frequency differences on a Xilinx Virtex II Pro FPGA after 

removing pipeline forwarding logic. Under different logic synthesis 

optimization strategies, the pipeline area is reduced by 26%~32% and 

frequency is boosted by 18%~58%. However, the spirit of RISC 

"simpler, smaller and faster" still applies.  

Over the years, there have been many improvements in FPGA 

architecture. For example, powerful embedded DSPs are introduced to 

provide extra computation capacity. Bandwidth and capacity of BRAM 

and LUTRAM are nearly doubled in each generation. However, few 

FPGA processor designs make good use of these enhanced structures, 

which can fundamentally affect design density and clock frequency. 

Most of designs focus on functional only, and leave design mapping to 

CAD tools. Our functional model is designed with FPGA fabric in 

mind. Area, clock frequency, routing delay and reliability were 

deliberately considered at very early stage of the design phase.  

Overall, our design will run at over 150 MHz on Xilinx Virtex 5 

LX110T FPGAs. If we assume a perfect memory model (fixed 

latency), we can have a rough comparison of emulated instruction 

throughput between 8 multithreaded functional models and 8 standard 

LEON cores running at 100 MHz on a single FPGA. Besides 

supporting more emulated contexts, the multithreaded implementation 

can have an aggregated throughput over 1 GIPS/FPGA, while the 

standard version can only reach 533 MIPS per FPGA1.  

4. Pipeline Architecture 
Figure 1 shows the architecture of the functional model pipeline. 

Currently, only a single-issue in-order integer pipeline is implemented. 

Each pipeline supports up to 64 independent SPARC v8 contexts by 

fine-grained hardware multithreading with zero context switch 

overhead. Instruction streams from different threads are issued by a 

static round-robin scheduler. If a long latency instruction (e.g. memory 

load/store) is executed, the pipeline will tag the issue thread and make 

no changes to the thread’s architecture registers. When the same thread 

is scheduled in the next round, the instruction will be ‘replayed’. If the 

result is available, the thread will commit the result and continue to 

execute the next instruction. Ideally, the access latency is hidden by 

interleaved execution of other threads. On large FPGAs, we can 

increase the overall throughput by including multiple pipelines. Figure 

2 shows eight pipelines grouped into two clusters in a Xilinx Virtex 5 

LX110T FPGA on BEE3 board. Four pipelines in each cluster share 

one DDR2 memory controller. This model is used to emulate a non-

cache-coherent distributed memory system (e.g. data centers). With a 

different cache/memory subsystem, the multithreaded functional model 

can also be used to emulate shared-memory multicore systems. 

Internally, the functional pipeline only implements a subset of SPARC 

ISA for minimal area. Microcode handles complex instructions that 

require a sequence of operations (e.g. atomic operations) or special 

architecture support, or less frequent operations such as traps and 

interrupts. Although microcode adds a little complexity at decoding 

stage, it eliminates a lot of more expensive structures are eliminated. 

For example, 3-read port register file (for some SPARC store 

                                                                 

1 We assume a fixed actual CPI of 1.5 for LEON. Multithreaded model 

has a higher miss rate due to smaller per thread cache, i.e. 10% miss 

for I and 30% miss for D. Loads and stores constitute 30% of the 

instruction mix. 
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instructions) might potentially double the dual-port BRAM 

requirements, while BRAM is one of the critical FPGA resources for 

state storage and cache. 

Per-thread State Storage  

To minimize the cost of per-thread state storage, we choose to 

implement three register windows for each hardware SPARC context 

(thread). The SPARC specification requires at least two register 

windows. Three is the maximum number that falls in the 64 boundary 

(low bound of power of two). The 3-window register file is aligned in a 

64 32-bit word chunk in BRAM. Eight of the 64 words in one chunk 

are used as trap base register (TBR) and scratchpad registers (non-

architecture register) in microcode mode. In total, each multithreaded 

register file consumes eight 18kb BRAM blocks. Other special 

architecture registers, such as PC/nPC and PSR (processor state 

register), are mapped to distributed LUTRAMs. All registers can be 

easily indexed by encoding the thread ID as MSBs of register address.  

DSP Mapped ALU 

To accelerate digital signal processing, most of FPGAs come with 

dozens of hard DSP blocks, which are greatly enhanced over the 

generations. DSP blocks are no longer a simple multiplier-accumulator 

(MAC). In the latest Xilinx Virtex 5 FPGA, each DSP block is 

extended to perform 48-bit two's complement add/substract and bit-

wise logic operations. A 48-bit pattern detector is also included. We 

find most of SPARC instructions can be mapped to a single DSP block, 

including all simple arithmetic/logic instructions and address 

calculation for LD/ST and JMPL/CALL instructions. Besides, the 

pattern detector in DSP can be used to generate the ALU zero flag, 

which consumes the most FPGA resource among the four architecture 

flags, i.e. negate, zero, carry, overflow. Table 2 presents the area save 

(in 6-input LUT) when mapping 32-bit and 64-bit ALU in DSP block. 

The baseline SPARC 32-bit v8 pipeline (without forwarding logic) 

consumes around 1,500 LUTs. With different CAD tools and 

constraints, DSP based ALU saves around 5%~10% of the LUTs. 

Moreover, DSP based ALU can work at over 400 MHz compared to 

<200 MHz implementation in LUT with standard FPGA routing. 

Host-level Caching 

In order to reduce host memory traffic, we designed small per-thread 

split I/D host caches. We choose to implement the simplest direct-

mapped write-back and write-allocate cache. The block size is 32 

bytes, which matches the burst size of DDR2 memory controller on 

BEE3. Under a 64-thread configuration, each thread can have a 256-

byte I-cache as well as a 256-byte D-cache. The cache tag is physical 

and indexed by either physical address or virtual address, because the 

cache size is smaller than the page size. The I/D caches (including 

tags) are mapped to eighteen 18kb BRAM blocks, which accounts for 

69%  of total per pipeline BRAM usage. 

The cache controller is non-blocking to allow accesses from different 

threads. To be more specific, it allows a total of 64 outstanding 

requests coming from 64 different threads. In addition, the cache refill 

and access paths are completely decoupled by using different physical 

BRAM ports. Figure 3 shows the D-cache controller along with 

corresponding pipeline stages. Routing and wide bus multiplexers are 

well planned in order to achieve the highest performance.  

Reliability Concerns 

As the transistors keep shrinking, soft-errors become more critical than 

before. Lesea shows BRAM soft-error rates in the recent 65nm Xilinx 

FPGA nearly doubled compared to previous 90nm generation [7]. 

Furthermore, eventually we still need dozens of FPGAs in an O(10K) 

emulation system by stacking up multiple BEE3 boards. The total 

failure rate for the whole system can be even worse. On Xilinx Virtex 5 

FPGA, for the first time hardware ECC primitives are introduced to 

protect BRAM content. In our design, all the BRAMs are either 

protected by these embedded ECC blocks or parity bit generated by 

logic. Error detection/correction status is also outputted to special 

monitor circuit. Additionally, content in LUTRAMs can also be 

protected with parity bit by adding extra LUT resource for parity 

generation and storage. 

Fine-tuned Physical Implementation 

To achieve an optimal clock frequency, the whole architecture is 

aggressively pipelined to 11 physical stages. Pipeline stages near 

dedicated FPGA primitives such as BRAMs and DSPs are heavily 

engineered. Some of the pipeline stages are dedicated to route global 

signals and avoid long combinatorial paths.  

All the BRAMs and LUTRAMs are either double clocked or work with 

both clock edges to double bandwidth. DSP blocks are also double 

clocked to reduce latency. One observation behind this is that hard 

blocks such as BRAMs can generally run twice as fast as the rest of 

logic implemented in LUT, which is limited by routing. Double 

clocking schemes will create a timing-balanced design. Another reason 

is because BRAM is still the critical resource that limits our design 

density. Double clocking can avoid the need of duplicating storage in 

order to provide more read/write ports. 

5. Status and Future Work 
We have already completed the Systemverilog design of the functional 

model, which currently has over 6000 lines of code. The Xilinx 

Virtex5 FPGA is the first target we support because of platform 

availability, though the code is constructed in a way to support multiple 

FPGA architectures (e.g. Altera Stratix III). We are now in the process 

of functional verification using the SPARC v8 verification suite 

donated from SPARC International. At the same time, we are working 

closely with major FPGA CAD vendors (Mentor Graphics and 

Synplicity) in order to deliver a synthesizable RTL release to the 

community by late this summer under BSD license. 

In the near future, we plan to integrate an IEEE 754 FPU and a simple 

in-order timing model. A 64-way/128-way cycle accurate emulator will 

be developed on low cost single Xilinx Virtex 5 FPGA board. Adding 

complete MMU/TLB implementation as well as I/O and interconnect 

are also on our schedule in order to support manycore OS research. We 

would also like to answer other emulation performance questions such 

as trading thread state for more host-level caching. 
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              *An extra pipeline stage is dedicated to FPGA routing and demultiplexing operands from double-clocked BRAM. 

Figure 1. Multithreaded SPARC v8 functional model (integer pipeline only)  
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Figure 2. Eight multithreaded pipelines are placed on a single Xilinx Virtex 5 LX110T FPGA for emulating non-cache-coherent 

distributed memory system. Four pipelines are grouped into one cluster that connects to one DDR2 memory controller. Each 

pipeline has a 16KB I-Cache and a 16KB D-cache in total, which are equally partitioned among 64 threads. 

 

Table 1. Area and performance comparison of SPARC V8 LEON3 processor after removing standard RISC pipeline optimizations 

on Xilinx Virtex 2 Pro FPGA. The percentages of improvements are shown in brackets. The results are from Synplify 9.0 with two 

different optimization strategies (area vs. speed). 

  Original  
(wo. debugging) 

No forwarding 
(wo. debugging) 

Original  
(w. debugging) 

No forwarding  
(w. debugging) 

Area Optimized 
Frequency 49.3 MHz 77.7 MHz (57.6%) 52.7 MHz 77.7 MHz (47.4%) 

LUT 2637 1943 (26.3%) 3320 2457 (26.0%) 

Speed Optimized 
Frequency 114.6 MHz 136.1 MHz (18.8%) 123 MHz 144.9 MHz (17.8%) 

LUT 3013 2035 (32.5%) 4198 2938 (30.0%) 

 

 

Table 2. LUT saving of DSP mapped ALU on Xilinx Virtex 5 FPGA under different tools and constraints 

 

Synplicity Synplify 9.2 Mentor Graphics Precision 2007a Update 3 

LUT Savings 
Maximum Frequency** 

implemented in LUT  
LUT Savings 

Maximum Frequency * 

implemented in LUT  

32-bit ALU* 106 175 MHz 152 210 MHz 

64-bit ALU 210 150 MHz 306 170 MHz 

*     The total base 32-bit pipeline (without forwarding logic) is around 1500 LUTs. The saving is 5%~10%. 

**  Frequency is after place and route with Xilinx ISE 10.1. There is no significant LUT-count change with Precision when specifying 

different timing constraints. Relaxing timing constraints in Synplify will reduce the LUT-count a little bit (not shown in the table). 

However, the numbers are still not as good as those from Mentor Graphics Precision. 
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Figure 3. Data cache controller and corresponding pipeline stages. 
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