
1

An FPGA Host-Multithreaded Functional Model for SPARC v8
Zhangxi Tan

Computer Science Division
UC Berkeley, USA

xtan@cs.berkeley.edu

Krste Asanovic
Computer Science Division

UC Berkeley, USA
krste@cs.berkeley.edu

David Patterson
Computer Science Division

UC Berkeley, USA
pattersn@cs.berkeley.edu

1. Introduction
The RAMP project [1] aims to create a FPGA based hardware

emulator for future manycore systems, which will scale to 1000

processor cores on several multi-FPGA boards, such as BEE3 board

[2]. At the same time, the emulated processor cores can support

running real life workload (e.g OS and unmodified application

binaries) in a cycle accurate manner given a user defined timing model.

In this work, we introduce a fine-grained multithreading architecture to

build 512 independent SPARC v8 integer functional contexts running

at over 150 MHz on a single Xilinx Virtex 5 LX110T FPGA with over

1 GIPS peak emulation throughput. The functional model fully

complies with the SPARC v8 standard. Therefore, it is easy to run real

OS (e.g. Debian Linux) and diagnostics. With a smaller FPGA, we can

build a low cost (<$500) practical 64-way or 128-way multicore

emulator that has cycle accurate timing model as well as floating point

support.

2. Related Work
Besides the timing emulation model, the study of efficient functional

emulation model already drew a lot attentions in the community [3, 4,

5]. Most of previous works [3, 4] attempts to directly map a soft-core

processor to FPGA fabric with only a few modifications. This

approach suffers from poor per FPGA core count and low clock

frequency. In addition, it still takes dozens of high-end FPGAs to

implement a 1000 core system at a high cost that only large research

groups in university or industry can afford. In [5], a software and

hardware hybrid simulation technique is discussed. By exploiting time-

multiplexed interleaving, a 90 MHz 16-context SPARC v9 functional

pipeline is built on a single Virtex-II FPGA. Though the time-

multiplexed technique seems promising, we still believe a good

understanding of modern FPGA architecture plus careful engineering

will help to create a functional model purely in hardware, which will

have a much higher density and even better aggregated performance.

3. Design Methodology
One optimization goal in our design is to achieve a high aggregate

emulated instruction throughput given the capacity constraint of

FPGA, i.e. MIPS/FPGA. It can be written as the following equation

𝑀𝐼𝑃𝑆𝑝𝑒𝑟 𝐹𝑃𝐺𝐴 =
𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

𝐶𝑃𝐼𝑖𝑑𝑒𝑎𝑙 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 ∗ 𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦
× # 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠

We argue that simply duplicating CPU pipelines is suboptimal. First,

most of soft-core processors on FPGA run under 100 MHz, which is

way slower than state-of-the-art memory interfaces. Second, standard

single issue in-order pipeline has a higher actual CPI due to high cache

miss penalty (20~30 cycles). On the other hand, we believe fine-

grained host-multithreading is a more efficient approach to improve the

pipeline utilization on FPGA moreover the computation density. In

above equation, the miss penalty can be reduced to
𝑚𝑖𝑠𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠
 . If

there are enough threads, the miss penalty is just 1.

We also seriously reconsider some traditional RISC pipeline

optimizations on FPGA such as forwarding network and delay slot.

Our initial result on LEON processor [6] in Table 1 quantifies the area

and clock frequency differences on a Xilinx Virtex II Pro FPGA after

removing pipeline forwarding logic. Under different logic synthesis

optimization strategies, the pipeline area is reduced by 26%~32% and

frequency is boosted by 18%~58%. However, the spirit of RISC

"simpler, smaller and faster" still applies.

Over the years, there have been many improvements in FPGA

architecture. For example, powerful embedded DSPs are introduced to

provide extra computation capacity. Bandwidth and capacity of BRAM

and LUTRAM are nearly doubled in each generation. However, few

FPGA processor designs make good use of these enhanced structures,

which can fundamentally affect design density and clock frequency.

Most of designs focus on functional only, and leave design mapping to

CAD tools. Our functional model is designed with FPGA fabric in

mind. Area, clock frequency, routing delay and reliability were

deliberately considered at very early stage of the design phase.

Overall, our design will run at over 150 MHz on Xilinx Virtex 5

LX110T FPGAs. If we assume a perfect memory model (fixed

latency), we can have a rough comparison of emulated instruction

throughput between 8 multithreaded functional models and 8 standard

LEON cores running at 100 MHz on a single FPGA. Besides

supporting more emulated contexts, the multithreaded implementation

can have an aggregated throughput over 1 GIPS/FPGA, while the

standard version can only reach 533 MIPS per FPGA1.

4. Pipeline Architecture
Figure 1 shows the architecture of the functional model pipeline.

Currently, only a single-issue in-order integer pipeline is implemented.

Each pipeline supports up to 64 independent SPARC v8 contexts by

fine-grained hardware multithreading with zero context switch

overhead. Instruction streams from different threads are issued by a

static round-robin scheduler. If a long latency instruction (e.g. memory

load/store) is executed, the pipeline will tag the issue thread and make

no changes to the thread’s architecture registers. When the same thread

is scheduled in the next round, the instruction will be ‘replayed’. If the

result is available, the thread will commit the result and continue to

execute the next instruction. Ideally, the access latency is hidden by

interleaved execution of other threads. On large FPGAs, we can

increase the overall throughput by including multiple pipelines. Figure

2 shows eight pipelines grouped into two clusters in a Xilinx Virtex 5

LX110T FPGA on BEE3 board. Four pipelines in each cluster share

one DDR2 memory controller. This model is used to emulate a non-

cache-coherent distributed memory system (e.g. data centers). With a

different cache/memory subsystem, the multithreaded functional model

can also be used to emulate shared-memory multicore systems.

Internally, the functional pipeline only implements a subset of SPARC

ISA for minimal area. Microcode handles complex instructions that

require a sequence of operations (e.g. atomic operations) or special

architecture support, or less frequent operations such as traps and

interrupts. Although microcode adds a little complexity at decoding

stage, it eliminates a lot of more expensive structures are eliminated.

For example, 3-read port register file (for some SPARC store

1 We assume a fixed actual CPI of 1.5 for LEON. Multithreaded model

has a higher miss rate due to smaller per thread cache, i.e. 10% miss

for I and 30% miss for D. Loads and stores constitute 30% of the

instruction mix.

2

instructions) might potentially double the dual-port BRAM

requirements, while BRAM is one of the critical FPGA resources for

state storage and cache.

Per-thread State Storage

To minimize the cost of per-thread state storage, we choose to

implement three register windows for each hardware SPARC context

(thread). The SPARC specification requires at least two register

windows. Three is the maximum number that falls in the 64 boundary

(low bound of power of two). The 3-window register file is aligned in a

64 32-bit word chunk in BRAM. Eight of the 64 words in one chunk

are used as trap base register (TBR) and scratchpad registers (non-

architecture register) in microcode mode. In total, each multithreaded

register file consumes eight 18kb BRAM blocks. Other special

architecture registers, such as PC/nPC and PSR (processor state

register), are mapped to distributed LUTRAMs. All registers can be

easily indexed by encoding the thread ID as MSBs of register address.

DSP Mapped ALU

To accelerate digital signal processing, most of FPGAs come with

dozens of hard DSP blocks, which are greatly enhanced over the

generations. DSP blocks are no longer a simple multiplier-accumulator

(MAC). In the latest Xilinx Virtex 5 FPGA, each DSP block is

extended to perform 48-bit two's complement add/substract and bit-

wise logic operations. A 48-bit pattern detector is also included. We

find most of SPARC instructions can be mapped to a single DSP block,

including all simple arithmetic/logic instructions and address

calculation for LD/ST and JMPL/CALL instructions. Besides, the

pattern detector in DSP can be used to generate the ALU zero flag,

which consumes the most FPGA resource among the four architecture

flags, i.e. negate, zero, carry, overflow. Table 2 presents the area save

(in 6-input LUT) when mapping 32-bit and 64-bit ALU in DSP block.

The baseline SPARC 32-bit v8 pipeline (without forwarding logic)

consumes around 1,500 LUTs. With different CAD tools and

constraints, DSP based ALU saves around 5%~10% of the LUTs.

Moreover, DSP based ALU can work at over 400 MHz compared to

<200 MHz implementation in LUT with standard FPGA routing.

Host-level Caching

In order to reduce host memory traffic, we designed small per-thread

split I/D host caches. We choose to implement the simplest direct-

mapped write-back and write-allocate cache. The block size is 32

bytes, which matches the burst size of DDR2 memory controller on

BEE3. Under a 64-thread configuration, each thread can have a 256-

byte I-cache as well as a 256-byte D-cache. The cache tag is physical

and indexed by either physical address or virtual address, because the

cache size is smaller than the page size. The I/D caches (including

tags) are mapped to eighteen 18kb BRAM blocks, which accounts for

69% of total per pipeline BRAM usage.

The cache controller is non-blocking to allow accesses from different

threads. To be more specific, it allows a total of 64 outstanding

requests coming from 64 different threads. In addition, the cache refill

and access paths are completely decoupled by using different physical

BRAM ports. Figure 3 shows the D-cache controller along with

corresponding pipeline stages. Routing and wide bus multiplexers are

well planned in order to achieve the highest performance.

Reliability Concerns

As the transistors keep shrinking, soft-errors become more critical than

before. Lesea shows BRAM soft-error rates in the recent 65nm Xilinx

FPGA nearly doubled compared to previous 90nm generation [7].

Furthermore, eventually we still need dozens of FPGAs in an O(10K)

emulation system by stacking up multiple BEE3 boards. The total

failure rate for the whole system can be even worse. On Xilinx Virtex 5

FPGA, for the first time hardware ECC primitives are introduced to

protect BRAM content. In our design, all the BRAMs are either

protected by these embedded ECC blocks or parity bit generated by

logic. Error detection/correction status is also outputted to special

monitor circuit. Additionally, content in LUTRAMs can also be

protected with parity bit by adding extra LUT resource for parity

generation and storage.

Fine-tuned Physical Implementation

To achieve an optimal clock frequency, the whole architecture is

aggressively pipelined to 11 physical stages. Pipeline stages near

dedicated FPGA primitives such as BRAMs and DSPs are heavily

engineered. Some of the pipeline stages are dedicated to route global

signals and avoid long combinatorial paths.

All the BRAMs and LUTRAMs are either double clocked or work with

both clock edges to double bandwidth. DSP blocks are also double

clocked to reduce latency. One observation behind this is that hard

blocks such as BRAMs can generally run twice as fast as the rest of

logic implemented in LUT, which is limited by routing. Double

clocking schemes will create a timing-balanced design. Another reason

is because BRAM is still the critical resource that limits our design

density. Double clocking can avoid the need of duplicating storage in

order to provide more read/write ports.

5. Status and Future Work
We have already completed the Systemverilog design of the functional

model, which currently has over 6000 lines of code. The Xilinx

Virtex5 FPGA is the first target we support because of platform

availability, though the code is constructed in a way to support multiple

FPGA architectures (e.g. Altera Stratix III). We are now in the process

of functional verification using the SPARC v8 verification suite

donated from SPARC International. At the same time, we are working

closely with major FPGA CAD vendors (Mentor Graphics and

Synplicity) in order to deliver a synthesizable RTL release to the

community by late this summer under BSD license.

In the near future, we plan to integrate an IEEE 754 FPU and a simple

in-order timing model. A 64-way/128-way cycle accurate emulator will

be developed on low cost single Xilinx Virtex 5 FPGA board. Adding

complete MMU/TLB implementation as well as I/O and interconnect

are also on our schedule in order to support manycore OS research. We

would also like to answer other emulation performance questions such

as trading thread state for more host-level caching.

6. References
[1] RAMP: Research Accelerator for Multiple Processors.

http://ramp.eecs.berkeley.edu

[2] BEE3: http://research.microsoft.com/projects/BEE3/

[3] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, P.-Y. Droz,

RAMP Blue: A Message-Passing Manycore System, International

Symposium on Field Programmable Logic and Applications,

August 2007

[4] S. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, T. Suh. An

FPGA-based Pentium® in a complete desktop system. the

International Symposium on Field Programmable Gate Arrays,

February 2007.

[5] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, K. Mai., A

Complexity-Effective Architecture for Accelerating Full-System

Multiprocessor Simulations Using FPGAs, International

Symposium on Field Programmable Gate Arrays, February 2008

[6] Leon3 processor, http://www.gaisler.com.

[7] A. Lesea, Continuing Experiments of Atmospheric Neutron

Effects on Deep Submicron Integrated Circuits, Xilinx White

Paper 286 for Virtex and Spartan FPGA families, March, 2008

3

Appendix

Instruction Fetch 1
(Issue address Request)

Static Thread

Selection
(Round Robin)

Special Registers

(pc/npc, wim, psr,

thread control

registers)

I-Cache

(nine 18kb

BRAMs)

Microcode ROM

Instruction Fetch 2
(compare tag)

32-bit

Instruction

Synthesized

Instruction
Tag compare result

Micro inst.

Tag/Data read

request

Decode
(Resolve Branch,

Decode register file

address)

Regfile Read
2 cycles (pipelined)

32-bit

Multithreaded

Register File

(four 36kb

BRAMs)

Decode ALU

control/Exception

Detection
imm

pc

OP2 OP1

MUL/DIV/SHF
(4 DSPs)

Simple ALU (1 DSP)

/LDST decoding

Special register

handling
(RDPSR/RDWIM)

Mem request

under cache miss

Tag

Unaligned address

detection / Store

preparation

Issue Load
(issue address)

D-Cache

(nine 18kb

BRAMs)

Trap/IRQ handling Read & Select

Tag/Data read

request

Tag / 128-bit data

Generate

microcode request

Load align /

Write Back

128-bit read & modify data

128-bit memory

interface

128-bit memory

interface

Thread

Selection

Instruction

Fetch 1

Decode

Register File

Access 1 & 2*

Execution

Memory 1

Write Back

LUT RAM (clk x2)

LUT ROM

BRAM (clk x2)

DSP (clk x2)

Instruction

Fetch 2

Register File

Access 3

Memory 2

 *An extra pipeline stage is dedicated to FPGA routing and demultiplexing operands from double-clocked BRAM.

Figure 1. Multithreaded SPARC v8 functional model (integer pipeline only)

4

Core 1

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

Core 2 Core 3 Core 4

BEE3 DDR2 Memory controller 1

144 bits

Core 5

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

Core 6 Core 7 Core 8

BEE3 DDR2 Memory controller 2

144 bits

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

 SPARC V8

Pipeline

(64 Threads)

16KB

I$

16KB

D$

Cluster 2

Cluster 1

Xilinx Virtex 5 LX110T

Figure 2. Eight multithreaded pipelines are placed on a single Xilinx Virtex 5 LX110T FPGA for emulating non-cache-coherent

distributed memory system. Four pipelines are grouped into one cluster that connects to one DDR2 memory controller. Each

pipeline has a 16KB I-Cache and a 16KB D-cache in total, which are equally partitioned among 64 threads.

Table 1. Area and performance comparison of SPARC V8 LEON3 processor after removing standard RISC pipeline optimizations

on Xilinx Virtex 2 Pro FPGA. The percentages of improvements are shown in brackets. The results are from Synplify 9.0 with two

different optimization strategies (area vs. speed).

 Original
(wo. debugging)

No forwarding
(wo. debugging)

Original
(w. debugging)

No forwarding
(w. debugging)

Area Optimized
Frequency 49.3 MHz 77.7 MHz (57.6%) 52.7 MHz 77.7 MHz (47.4%)

LUT 2637 1943 (26.3%) 3320 2457 (26.0%)

Speed Optimized
Frequency 114.6 MHz 136.1 MHz (18.8%) 123 MHz 144.9 MHz (17.8%)

LUT 3013 2035 (32.5%) 4198 2938 (30.0%)

Table 2. LUT saving of DSP mapped ALU on Xilinx Virtex 5 FPGA under different tools and constraints

Synplicity Synplify 9.2 Mentor Graphics Precision 2007a Update 3

LUT Savings
Maximum Frequency**

implemented in LUT
LUT Savings

Maximum Frequency *

implemented in LUT

32-bit ALU* 106 175 MHz 152 210 MHz

64-bit ALU 210 150 MHz 306 170 MHz

* The total base 32-bit pipeline (without forwarding logic) is around 1500 LUTs. The saving is 5%~10%.

** Frequency is after place and route with Xilinx ISE 10.1. There is no significant LUT-count change with Precision when specifying

different timing constraints. Relaxing timing constraints in Synplify will reduce the LUT-count a little bit (not shown in the table).

However, the numbers are still not as good as those from Mentor Graphics Precision.

5

RAMB18SDP RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72) RAMB36SDP (x72)

 Tag (Parity)

512 x 36

Data (ECC)

512x72x4

Prepare LD/ST

address

Memory Stage (1)

Load Select / routing

(4-1 64-bit bus MUX)

Cache FSM
(Hit, exception, etc)

Exception/Write

Back Stage

Memory Stage (2)

Read & Modify

64-bit data

Tag

replay?

Index

Pipeline Register

Write

Back

Cache

Integer Pipeline

Pipeline Register

Pipeline State

Control

Load Align/Sign

Memory

Command FIFO

64-bit data

+ Tag

128-bit data

Refill

Memory

Controller

128-bit data

Tag

Figure 3. Data cache controller and corresponding pipeline stages.

	Introduction
	Related Work
	Design Methodology
	Pipeline Architecture
	Status and Future Work
	References
	Appendix

