
Convergence and Scalarization for Data-Parallel Architectures

Yunsup Lee1, Ronny Krashinsky2, Vinod Grover2, Stephen W. Keckler2,3, Krste Asanović1

1University of California at Berkeley, 2NVIDIA, 3The University of Texas at Austin
{yunsup,krste}@eecs.berkeley.edu, {rkrashinsky,vgrover,skeckler}@nvidia.com

Abstract
Modern throughput processors such as GPUs achieve high
performance and efficiency by exploiting data parallelism in
application kernels expressed as threaded code. One draw-
back of this approach compared to conventional vector ar-
chitectures is redundant execution of instructions that are
common across multiple threads, resulting in energy inef-
ficiency due to excess instruction dispatch, register file ac-
cesses, and memory operations. This paper proposes to alle-
viate these overheads while retaining the threaded program-
ming model by automatically detecting the scalar operations
and factoring them out of the parallel code. We have devel-
oped a scalarizing compiler that employs convergence and
variance analyses to statically identify values and instruc-
tions that are invariant across multiple threads. Our com-
piler algorithms are effective at identifying convergent ex-
ecution even in programs with arbitrary control flow, iden-
tifying two-thirds of the opportunity captured by a dynamic
oracle. The compile-time analysis leads to a reduction in in-
structions dispatched by 29%, register file reads and writes
by 31%, memory address counts by 47%, and data access
counts by 38%.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation, Compilers, Op-
timization

General Terms Algorithms, Performance

Keywords CUDA, GPU, Scalarization

1. Introduction
Programming parallel systems is inherently challenging, and
over decades of research and development only a few mod-
els have attained broad success. Single-program multiple-
data (SPMD) accelerator languages like CUDA [19] and

This research was funded in part by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’13 February 23–27, 2013, Shenzhen, China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

OpenCL [21] have proven to be accessible and productive.
These languages allow the programmer to write code for a
single thread and then use explicit data-parallel kernel invo-
cations to attain high performance. However, although the
SPMD accelerator model is simple for the programmer, it
can introduce many hidden overheads. For example, with a
conventional CUDA compiler, approximately 30% of thread
registers replicate data that is uniform across all threads exe-
cuting a kernel. Similarly, approximately 30% of all instruc-
tions are entirely redundant across the threads.

Redundancy across threads is the key inefficiency that
this paper addresses. We do so in the context of GPU single-
instruction multiple-thread (SIMT) architectures [17], which
fetch an instruction once but then execute it on many
threads simultaneously using parallel datapaths. For exam-
ple, NVIDIA’s GPUs have a 32-wide warp, and AMD’s
GPUs have a 64-wide wavefront. Emerging GPU architec-
tures have also added scalar execution resources alongside
the parallel datapaths [1].

Our primary contribution is a compiler algorithm to
scalarize both thread registers and instructions, such that
there is only one per warp (or wavefront) instead of one per
thread. Our compiler uses two interlinked analyses to en-
able scalarization. The first, convergence analysis statically
determines program points where the threads in a warp are
guaranteed to be converged (i.e. no thread is following a
divergent control-flow path). Convergence analysis is criti-
cal for scalarization, since the compiler can only scalarize
regions that it can prove to be convergent. The second is
variance analysis, which statically determines which pro-
gram variables are guaranteed to have the same (or thread-
invariant) value across the threads in a warp. In Section 3,
we construct an intuitive argument for something that was
not immediately apparent when we began our work: con-
vergence and variance information can be usefully analyzed
together in the same pass. In fact the two are inseparable in
our implementation. We present an algorithm that iteratively
analyzes and propagates convergence and variance informa-
tion over a kernel’s program dependence graph (PDG) [10].
Scalarization then uses this analysis to convert private thread
registers into scalar registers shared across the threads in a
warp, and also converts thread instructions into scalar in-
structions that execute one operation per warp instead of one
operation per thread. Using affine analysis, our compiler also

generates warp-sequential loads and stores when the threads
in a warp access sequential (unit-stride) data in memory. For
example, a single warp-sequential load instruction can fetch
a word from memory on behalf of each of the threads in the
warp, placing the result in the same-named private register
belonging to each thread.

Section 4 characterizes 23 benchmarks and finds that the
compiler is able to keep warps converged for 66% of the
total thread execution time on average. When augmented
with simple dynamic convergence preservation, convergent
execution can improve up to 97% of total execution time.
Scalarization reduces thread register usage by 20–33% on
average depending on warp size, making it possible to either
support more threads or reduce the register file size. Further-
more, 24–31% of dynamic instruction operands are scalars.
On average our compiler scalarizes 23–29% of dynamically
dispatched instructions, reduces memory address generation
counts by 37–47%, and eliminates data access counts by
30–38%. These savings can provide proportional energy and
performance gains.

Section 5 describes how compiler convergence analysis
and scalarization are generally applicable to a variety of ac-
celerator architectures. We also discuss how our compiler
analysis enables stackless temporal-SIMT, an architecture
with the potential to bridge the performance and efficiency
characteristics of MIMD (multiple-instruction, multiple-
data) and SIMT processors. With stackless SIMT, each
thread has a dedicated program counter (PC), allowing di-
verged threads to execute independently at full throughput as
they would on a multithreaded MIMD processor. This model
eliminates the need for divergence stacks, instead relying on
compiler-managed reconvergence. With temporal-SIMT the
threads in a warp execute temporally on a single lane, al-
lowing the architecture to amortize instruction overheads.
By simply configuring a range of the warp’s registers to be
shared scalars, scalar instructions can execute on the same
datapaths as regular thread instructions.

2. Background
This section provides an overview of SPMD accelerator
programming models, SIMT accelerator architectures, and
the basic principles of scalarization.

2.1 Accelerator Programming and Architectures
SPMD accelerator languages express data-parallel compu-
tation in the form of multithreaded kernels. Inside a kernel
the programmer writes code for a single thread, and a thread
typically processes a small amount of data. For example, a
thread might compute the color of a single pixel in a graphics
application. The programmer expresses parallel computation
with explicit data-parallel kernel invocations that direct a
group of threads to execute the kernel code. In CUDA these
thread groups are termed cooperative thread arrays (CTAs),
and a CTA may have up to 1024 threads.

Explicitly data-parallel languages map naturally to highly
multithreaded architectures, such as GPUs and other mul-
ticore accelerators. These throughput architectures leverage
parallelism spatially to execute computations at a high rate
across many datapaths and cores. They also leverage paral-
lelism temporally to saturate high-bandwidth memory sys-
tems. The interleaved execution of multiple threads essen-
tially hides hardware latencies from each individual thread.
This approach simplifies the programming model since the
code written for an individual thread can simply access data
and operate on it, without great concern for the access la-
tency.

SPMD programming models also implicitly expose lo-
cality that architectures leverage for efficiency. GPUs use a
SIMT architecture that executes an instruction on parallel
datapaths for many threads at the same time, for example
32 threads in warps, using NVIDIA terminology. A warp
may issue in a single cycle if the datapath width matches the
warp width, or it may be sequenced over several cycles on
a narrower datapath. Similar to single-instruction multiple-
data (SIMD) architectures, SIMT architectures use this or-
ganization to amortize the instruction fetch and other con-
trol overheads associated with executing instructions. SIMT
architectures also derive efficiency from data locality for the
common case when the threads in a warp access neighboring
data elements. To exploit this locality, SIMT architectures
use dynamic address coalescing to turn individual element
accesses into wide block accesses that the memory system
can process more efficiently, for example with only a single
cache tag check.

2.2 Overheads of SPMD
A SIMT architecture is able to substantially reduce the pro-
gram counter and instruction fetch overheads of multithread-
ing, but many hidden overheads of the SPMD programming
model remain. Writing kernel code for a single thread at a
time is simple for the programmer and improves productiv-
ity, but with a conventional compiler this model can create a
substantial amount of redundant work across threads.

Consider the simple FIR filter example shown in Fig-
ure 1(a) in which each thread computes one output element
by convolving a range of flen input elements with an array
of flen coefficients. The compiled code is shown in Fig-
ure 1(b). Each thread maintains both a loop iteration count
(r7) and a loop end count (r3) in registers and uses counter
increment (b20) and conditional branch instructions (b24)
to execute the loop. Thus, each thread executes a substantial
amount of bookkeeping overhead in addition to the actual
multiply-adds that perform useful work. Furthermore, most
of the bookkeeping overhead is entirely redundant across
threads. Each thread maintains identical loop counts, calcu-
lates the same branch conditions, replicates the same base
addresses, and performs similar address math to retrieve data
from structured arrays.

__global__ void fir(float* samples,
float* coeffs,
int flen,
float* results)

{
int idx = threadIdx.x;
float result = 0;
for (int i=0; i<flen; i++)

result += (coeffs[i] *
samples[idx+i]);

results[idx] = result;
}

(a)

b01 BB_1:
b02 mov r9, r1; # threadIdx.x
b03 ld.u64 r1, [4096]; # samples
b04 ld.u64 r2, [4104]; # coeffs
b05 ld.u32 r3, [4112]; # flen
b06 ld.u64 r4, [4120]; # results
b07 iset.s32.gt r5, r3, 0;
b08 mov r6, 0; # init result
b09 @r5 bra BB_3;
b10 BB_2:
b11 bra BB_5;
b12 BB_3:
b13 shl r5, r9, 2; # tidx * 4
b14 iadd r1, r1, r5; # sample addr gen
b15 mov r7, 0;
b16 BB_4:
b17 ld.f32 r5, [r2]; # load coeff
b18 ld.f32 r8, [r1]; # load sample
b19 fma.f32 r6, r5, r8, r6; # fp mul add
b20 iadd r7, r7, 1; # loop bookkeeping
b21 iadd r1, r1, 4; # samples bookkeeping
b22 iadd r2, r2, 4; # coeffs bookkeeping
b23 iset.s32.lt r5, r7, r3; # test loop break
b24 @r5 bra BB_4;
b25 BB_5:
b26 shl r5, r9, 2; # tidx * 4
b27 iadd r4, r4, r5; # result addr gen
b28 st.f32 [r4], r6; # store result
b29 exit;

(b)

c01 BB_1:
c02
c03 @s ld.u64 s1, [4096]; # samples
c04 @s ld.u64 s2, [4104]; # coeffs
c05 @s ld.u32 s3, [4112]; # flen
c06 @s ld.u64 s4, [4120]; # results
c07 @s iset.s32.gt s5, s3, 0;
c08 mov r6, 0; # init result
c09 @s @s5 bra BB_3;
c10 BB_2:
c11 @s bra BB_5;
c12 BB_3:
c13
c14
c15 @s mov s7, 0;
c16 BB_4:
c17 @s ld.f32 s5, [s2]; # load coeff
c18 ldwseq.f32 r8, [s1]; # load sample
c19 fma.f32 r6, s5, r8, r6; # fp mul add
c20 @s iadd s7, s7, 1; # loop bookkeeping
c21 @s iadd s1, s1, 4; # samples bookkeeping
c22 @s iadd s2, s2, 4; # coeffs bookkeeping
c23 @s iset.s32.lt s5, s7, s3; # test loop break
c24 @s @s5 bra BB_4;
c25 BB_5:
c26
c27
c28 stwseq.f32 [s4], r6; # store result
c29 exit;

(c)

Figure 1. Simplified FIR filter code example: (a) kernel code, (b) conventional compiler output, (c) scalarizing compiler
output. In the scalarized code, register specifiers which begin with s are scalar registers and @s is used to annotate scalar
instructions. Register numbers are preserved between the conventional code and the scalarized code for clarity.

In addition to bookkeeping overheads, a SPMD program
often has redundancy in the actual data operands accessed
and computation performed by individual threads. The ker-
nel code executed by each thread can be viewed as one it-
eration of an inner loop. A single-threaded encoding of the
kernel often has “outer loop” data that could be accessed or
computed once and then used many times. However in the
SPMD program encoding, factoring out this redundant work
is not as straightforward for a programmer or compiler. For
example, in Figure 1, each thread loads the same coefficients
redundantly (b17, b22) and replicates their storage in private
registers (r5). As another example, a straightforward SPMD
coding of matrix-multiply has each thread compute the dot-
product of a shared vector (a row of the first matrix) with a
private vector (a column of the second matrix). In this formu-
lation, the load operations of the shared vector are redundant
across all threads.

2.3 Scalarization
Redundancy across threads is the key inefficiency that
scalarization targets. Figure 1(c) shows the scalarized ver-
sion of the program in Figure 1(a). The compiler analysis
required to generate this code will be described in detail in
Section 3.

The compiler statically maps replicated operands to
shared scalar registers. If we consider a single 32-thread
warp executing the example in Figure 1, the convention-
ally compiled code would use 9 registers per thread. The
scalarized code in comparison uses 2 private registers per
thread and 6 shared registers per warp, 76% fewer regis-
ters per warp (70 vs. 288). In terms of dynamic register
operands accessed, the conventionally compiled code reads

11 operands and writes 7 operands per thread per loop it-
eration. The scalarized code in comparison reads 2 private
and 9 scalar operands per iteration and writes 2 private and
5 scalar operands per iteration. Since the scalar reads and
writes only need to be performed once per warp, a 32-thread
warp would read 79% fewer source operands (73 vs. 352)
and write 69% fewer destination operands in total (69 vs.
224).

The compiler also converts redundant instructions to
scalar instructions. As described above, while conventional
SIMT architectures factor out instruction fetch overheads
across a warp, each thread still executes each operation. In
Figure 1, the conventionally compiled code executes 8 op-
erations per thread per loop iteration. The scalarized code
executes only 7 scalar (including warp-sequential) opera-
tions and 1 regular thread operation per iteration. Since the
scalar operations only execute once per warp, a 32-thread
warp would execute 85% fewer operations with the scalar-
ized code (39 vs. 256).

The compiler also generates warp-sequential loads and
stores for the input and output data that is accessed with
unit-stride addressing across threads, as further described in
Section 3.5. These accesses are coalesced statically by the
compiler, eliminating the need for dynamic coalescing. In
the conventionally compiled code, a total of 64 unique ad-
dresses are generated per warp per loop iteration, compared
to only 2 addresses per warp for the scalarized code.

2.4 Divergence Management
A SIMT architecture executes instructions at warp granular-
ity for efficiency, but it must also implement the indepen-
dent thread execution semantics of the SPMD programming

model. GPUs achieve this by maintaining a divergence stack
for each warp, and by using active masks to disable inactive
threads as the warp executes instructions. When the threads
in a warp execute branch instructions, their execution is said
to diverge if they branch in different directions. When diver-
gence occurs, a warp is split into two subsets of threads, one
for branch taken and one for branch not taken. One subset
remains active and the warp’s current active mask is updated
to reflect that subset. For the other subset, an active mask is
pushed onto the divergence stack. The warp continues exe-
cuting the first subset of threads until it reaches the recon-
vergence point, for example the join point after an if-then-
else clause. Then, the warp switches to the deferred subset
of threads that are pending on the divergence stack. Once the
second subset also reaches the reconvergence point, the warp
active mask is restored to the original set of threads and re-
convergence is achieved. Divergence and reconvergence nest
hierarchically through these stack push and pop operations.

The divergence stack may be a hardware or software
mechanism, or a combination. NVIDIA GPUs implement
the stack in hardware, but the compiler is responsible for
manipulating it in order to correctly implement independent
thread execution semantics [17]. AMD GPUs use a software
approach with explicit management of thread active masks.
The scalar unit introduced in AMD’s recent Graphics Core
Next architecture primarily executes instructions to manage
control flow and divergence [1]. Intel’s MIC accelerator sim-
ilarly handles divergence with software-managed predica-
tion [11].

3. Compiler Foundation for Scalarization
To identify redundancy across multiple threads, the compiler
must prove that a variable has a uniform value across all of
the threads in a group. This process requires two key analy-
ses. First, convergence analysis proves that the threads are in
a converged state, meaning that all of the threads in the group
are in the same point in the control-flow graph at the same
time. This analysis builds on the CUDA kernel invocation
model in which threads are launched in an initial convergent
state. It also assumes convergence at syncthreads() (i.e.
barrier synchronization) calls, which are in effect program-
mer supplied assertions that threads are converged.

Second, variance analysis determines which variables
in the converged threads have the same (uniform) value
across all threads. This analysis builds on the semantics that
kernel function call arguments are thread-invariant. Vari-
ance across threads originates with use of thread indices
(e.g. threadIdx.x in CUDA) and with volatile and atomic
memory accesses. Our compiler uses data-flow and control-
dependence analysis to determine which variables are not
dependent on thread-specific values. Such variables can be
converted safely from per-thread variables to per-warp scalar
variables.

We implement the algorithms in the context of a pro-
duction CUDA compiler, based on the LLVM infrastruc-
ture [15]. Our compiler algorithms are agnostic to the di-
vergent execution models described in Section 2.4, and are
generally applicable to SIMT architectures with scalar exe-
cution resources.

3.1 Convergence Analysis
A program point is considered convergent if and only if a
thread-group barrier placed at that point can never fail. This
property implies that either all threads in the group will ar-
rive at the barrier, or none of the threads will. Note that re-
convergence points found by an immediate post-dominator
scheme may not be considered convergent, since our defi-
nition of convergent implies that all threads are fully con-
verged rather than a subset being partially converged. Con-
vergence may be defined with respect to a particular group
size such as CTAs or warps.

To perform convergence analysis, we leverage two data
structures common to compilers. First, the control flow
graph (CFG) represents the program as a graph of basic
blocks (BBs) connected via control flow (branch, jump)
edges [24]. Instructions unrelated to control are encapsulated
within the basic blocks. Figure 2(a) shows an example CFG
containing conditional branch points, loops, and merges.
Second, we leverage a standard global data-flow represen-
tation such as static single assignment form (SSA) [8] and
the control dependence (CD) graph [10, 28] to identify ba-
sic blocks that are obviously convergent and determine a
starting point for convergence analysis. Ferrante, et al. [10]
define control dependence as follows:

Definition: If X and Y are basic blocks in a CFG, Y
is control dependent on X (written X ≺ Y) iff
1. there exists a directed path P from X to Y with any

Z in P (excluding X and Y) post-dominated by Y
and

2. X is not post-dominated by Y.

Figure 2(b) shows the control-dependence relations in the
CFG from Figure 2(a).

N1

N2

N2'

N3

N3'

N8

N8'
N4

N4'

N5

N5'
N6

N7

(a) Control flow graph

N1 N2 N2'

N3 N3'

N8

N8'

N4

N4'

N5

N5'

N6 N7

(b) Control dependence graph

Figure 2. Example control flow and dependence graphs.

The simplest approach to convergence analysis is to use
the control flow structure of the kernel. Entry and exit blocks
of a single-entry-single-exit (SESE) region have the same
convergence properties. If the entry of an SESE region R is
convergent then so is its exit. We then use the notion of re-
gions and its characterization as described in [3], where two
blocks of a CFG are in the same region if both nodes have
identical control-dependence predecessors. Such nodes are
termed control-equivalent. Since all threads of a warp (and
a thread block) are convergent at the entry block to the ker-
nel, all blocks that are control-equivalent to the entry block
must be convergent since they execute under the same con-
trol condition. Because the entry block where all threads in
the kernel start has no control-dependence predecessor, all
basic blocks with no control dependence predecessors are
marked as convergent. Using this simple notion of conver-
gence, it is easy to see from Figure 2(b) that blocks N1, N2,
N2′, N6, and N7 have no predecessors and therefore must
be convergent.

3.2 Combined Convergence and Variance Analysis
Leveraging variance analysis [26], we extend the simple
convergence analysis above to identify when basic blocks
across the threads are guaranteed to depend on the same con-
dition. The key insight is that a basic block is convergent if
and only if it is transitively control dependent only on con-
vergent blocks whose branch condition is thread-invariant
(written Tinv(block) below) and that the entry block of the
kernel is always convergent. Any result of a thread-invariant
instruction is uniform and is a candidate for scalarization.

∀b b ≺ x : convergent(b) ∧ Tinv(b)⇒ convergent(x)

Alternatively, a basic block is divergent if it is transitively
control dependent on a divergent block or it is transitively
control dependent on a block with a thread-variant branch
condition (written Tvariant(block)).

∃b b ≺ x : divergent(b) ∨ Tvariant(b)⇒ divergent(x)

Our algorithm exploits the latter characterization to mark
blocks as divergent after initially assuming, optimistically,
that all blocks are convergent. This approach fits well with
our combined variance and convergence analysis which
starts with optimistic assumptions about thread-variance.

Figure 3 describes our optimistic algorithm for variance
and convergence analysis. The first step performs initializa-
tions as follows (Figure 3(a)):

1. Optimistically mark every basic block of the kernel as
convergent.

2. Optimistically mark every instruction as thread-invariant.

3. Initialize a worklist of instructions with those that read
the thread id register, perform an atomic action on shared
memory, or access volatile memory.

worklist← ∅
for bb ∈ blocks(kernel) do

Conv(bb)← True
for instr ∈ instructions(bb) do

Invariant(instr)← True
if instr reads thread id then

worklist← worklist ∪ {instr}
end if
if instr is an atomic instruction then

worklist← worklist ∪ {instr}
end if
if instr accesses volatile memory then

worklist← worklist ∪ {instr}
end if

end for
end for

(a) Initialization.

while worklist 6= ∅ do
instr← POP (worklist)
Invariant(instr)← False
for s ∈DataF lowSucc(instr) do

if Invariant(s) = True then
worklist← worklist ∪ {s}

end if
end for
if instr is a conditional branch instruction then

for bb ∈ IteratedControlDependenceSucc(instr) do
if bb doesn′t have a syncthreads() call then

if Conv(bb) = True then
Conv(bb)← False
for i ∈ instructions(bb) do

worklist← worklist ∪ {i}
end for

end if
end if

end for
end if

end while
(b) Analysis and propagation.

Figure 3. Combined convergence and variance analysis.

The worklist always consists of currently known thread-
variant instructions and is seeded with those instructions
that cannot be proven to be thread-invariant. The second
step performs a fixed-point loop in which each step removes
an instruction from the worklist and performs the following
actions until the worklist is empty (Figure 3(b)):

1. Mark the chosen instruction, i, as thread-variant, and

2. Add every thread-invariant data-flow successor instruc-
tion of i in the SSA graph to the worklist.

3. If instruction i is a conditional branch instruction, prop-
agate divergence to all convergent blocks that are itera-
tively control dependent on i but do not contain a bar-
rier instruction. Add every instruction in blocks that are
newly marked as divergent to the worklist.

When the algorithm terminates, any blocks that are marked
convergent must be so; and any instructions not visited and
marked as thread invariant must be so as well.

3.3 Analysis Example
To illustrate the algorithm, we use the flowgraph in Fig-
ure 2(a). This example assumes that the branch condition
in the basic block N4′ is thread-variant. The corresponding
control dependencies are reflected in Figure 2(b) with dotted
lines. Note that the IteratedControlDependenceSucc of
instructions in N4′ is {N4′, N4}. The algorithm in Figure 3
will propagate divergence to the targets of these control de-
pendencies transitively, illustrated in Figure 2(b) by marking
dark divergent blocks N4′ and N4.

After the algorithm terminates, all the blocks which are
not marked as divergent (light colored in Figure 2) are con-
vergent. Block N5 is inferred as convergent simply because
N5 is control independent of N4′ (in the control depen-
dence graph), which means that all diverged threads must
pass through N5.

3.4 Convergence of Warps that Exit Early
In many CUDA applications, threads in a CTA may exit
early based on tests that check for the thread id. In the fol-
lowing, all threads with threadIdx.x greater than 3 return
and wait at the kernel exit for the rest of the warp to arrive.

__global__ void f() {

if (threadIdx.x <= 3) {

S1; } }

The compiler can safely assume that S1 is convergent since
the remaining threads are at the exit, and any scalar registers
which are otherwise holding thread-invariant values are safe
to initialize in statement S1. We extended our convergence
analysis algorithm to not propagate divergence information
across control-dependent successors of conditionals if the
exit block of the kernel is control dependent on the variant
condition.

3.5 Affine Analysis
Affine analysis is used to determine if thread-variant address
operands of load and store instructions can be converted to
warp-sequential load and store instructions. Warp-sequential
instructions access memory with a unit-stride address across
successive threads. For example, given a load instruction:

ld.type Rx, [addr]

the compiler leverages both variance and scalar evolution
analyses to determine if addr can be expressed as a simple
linear expression of the following form:

base + bitwidth(type)*threadIdx.x
Such load instructions can be transformed into a warp-
sequential instruction:

ldwseq.type Rx, [base]

in which register Rx in each thread of the warp is written
with the respective value in the loaded vector corresponding
to the thread’s index.

4. Implementation and Evaluation
We evaluate our compiler using CUDA benchmarks from
Rodinia [4] and Parboil [27]. Benchmarks in these two suites
cover compute-intensive scientific domains including bioin-
formatics, image processing, medical imaging, graph algo-
rithms, data mining, physical simulation, and pattern recog-
nition. We reduced the input dataset sizes in some cases
to make simulation time manageable. We also modified the
source code to change texture references into global memory
references, since our target abstract architecture lacks texture
caches.

The modified CUDA LLVM compiler first generates
PTX instructions annotated with convergence information
for each basic block, and variance and affine information for
all registers. The PTX source code is processed by our back-
end compiler to target the RISC-like machine ISA shown in
Figure 1. The convergence, variance, and affine information
is used by the backend compiler to map invariant values to
scalar registers, and to mark redundant instructions as scalar
instructions. Instruction scheduling and register allocation
are also performed in the backend.

We run the compiled code on our in-house simulator to
get a detailed breakdown of instructions issued, operations
executed, register reads and writes, memory address counts
and data access counts. Our simulator runs one kernel (i.e.
one grid invocation) at a time. We execute PTX source code
on Ocelot [9] to obtain reference memory dumps before and
after each kernel launch. The initial memory dump is used
to populate the initial memory state of the simulator, and
the post-kernel launch memory dump is used to verify the
kernel execution. Each benchmark’s composite kernel runs
are summed together for all results presented in this paper.

4.1 Convergence Analysis Results
The quality of convergence analysis is critical for scalariza-
tion, as the compiler can only scalarize regions that it can
prove are convergent. Convergence analysis is also impor-
tant for managing reconvergence in a stackless SIMT archi-
tecture later discussed in Section 5.2. Figure 4 shows the ef-
fectiveness of our compiler analyses. The benchmarks on the
X-axis are sorted left-to-right in decreasing effectiveness of
compiler convergence analysis. The Y-axis represents the to-
tal instructions dynamically dispatched for execution by the
microarchitecture. For each benchmark, the left bar shows
the breakdown of instructions proven convergent by differ-
ent variants of the compiler. The right bar shows the fraction
of instructions that could be proven convergent by a dynamic
oracle. The fraction of the bars labeled Diverged cannot be
proven convergent at compile time.

Simple convergence analysis, which only looks at the
shape of the control flow graph, can only keep thread exe-
cution convergent 32% of the time on average. By coupling
convergence analysis with variance analysis, the compiler is
able to determine cases where branch conditions are invari-

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r
lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

Simple CA CA/VA CA/VA + Exit opt CA/VA + Exit opt + Dynamic convergence preservation Oracle Diverged

Figure 4. Effectiveness of convergence analysis with warp size of 4 threads. The X-axis is sorted by the effectiveness of
convergence analysis done by the compiler. CA =Convergence Analysis, VA=Variance Analysis.

ant across threads, increasing convergent execution to 57%.
The exit optimization further increases convergence to 66%.
We also show results for dynamic convergence preservation,
a simple hardware mechanism that prevents warps from di-
verging when threads dynamically branch in the same direc-
tion (note that this mechanism does not imply a hardware
divergence stack). Figure 4 shows that this hardware and
software approach improves convergent execution to 97%
on average with warp size of 4 threads. With a wider warp
size, convergence identified by the compiler will remain the
same, while convergence imposed by dynamic convergence
preservation will tend to decrease because the likelihood of
a warp to diverge increases with more threads.

We also performed a limit study where we use oracle
knowledge to maximize convergence. Optimal alignment of
convergent blocks and instructions can be reduced to the
Multiple Longest Common Sequence (MLCS) problem [18].
We reduced the complexity of our MLCS implementation
by leveraging the compiler’s convergence analysis and only
analyzing divergent regions. Oracle convergence analysis
based on the dynamic instruction trace shows that the best
possible schedule can keep thread execution convergent 97%
of the time on average. Overall, oracular analysis is no better
than the combination of our convergence/variance analysis
with dynamic convergence preservation.

4.2 Scalarization Results
Figure 5(a) shows the breakdown of static instructions into
scalarized and unscalarized (labeled thread), normalized to
a baseline without scalarization (left bar in each group). On
average, the compiler scalarizes 29% of static instructions.
The total static instruction count increases by 2%, primarily
due to instructions generated to calculate the base address
of warp-sequential memory operations. Figure 5(b) shows
the breakdown of register accesses into the same categories,
relative to the same baseline (left bar in each group), for
warp sizes of 4, 8, 16, and 32. Scalarization reduces total
register requirements by 20% with a warp size of 4, and up

to 33% with a warp size of 32, as wider warp sizes amortize
more redundancy from scalarized operations.

Figure 6 shows how scalarization affects dynamic in-
struction, register, and memory activity counts. In each
graph, the left bar in each benchmark group is the baseline
without scalarization, while the remaining bars show warp
widths of 4, 8, 16, and 32 threads. We differentiate between
the number of issued instructions (Figure 6(a)) and executed
thread operations (Figure 6(b)), and each of these counts are
broken down by source: scalars, statically converged warps,
warps converged through dynamic convergence preserva-
tion, or diverged threads. Note that only one instruction is
“issued” for all the threads in a warp when it is converged.
“Operations executed” counts the total number of individual
thread operations, regardless of convergence. Scalarization
is subject to the effectiveness of convergence analysis (Fig-
ure 4), which is why benchmarks towards the left of Figure 6
have more scalar and statically converged warp instructions,
and the benchmarks towards the right have more dynami-
cally converged warp instructions.

In general, wider warp sizes decrease the instruction and
operation counts because an instruction only issues once for
all threads in a converged warp, and because scalar opera-
tions are only issued and executed once per warp. However,
the number of diverged thread instructions increases with
wider warps mainly because the likelihood of divergence in-
creases with larger groupings of threads. This effect is ap-
parent for nw, hotspot, lbm, and stencil. Still, since each
converged warp instruction represents 4–32× more opera-
tions than a diverged thread instruction (following the warp
size), the total operation count is always lower with scalar-
ization than without. The savings range from 23–29% de-
pending on warp size.

As expected, the other statistics of register read counts,
register write counts, memory address lookups, and memory
data accesses (Figures 6(c)-(f)) have roughly the same shape
as the executed thread operations. With a warp size of 4, reg-
ister reads and writes are reduced by 24%, memory address

0.0
0.2
0.4
0.6
0.8
1.0
1.2

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(a
) I

ns
tr

uc
tio

ns

Baseline without scalarization Scalar Thread

0.0
0.2
0.4
0.6
0.8
1.0
1.2

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(b
) R

eg
is

te
rs

Series1 Series2 Series3

Figure 5. Static Scalarization Metrics – Each group shows results for warp sizes of 4, 8, 16, and 32.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r
lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(a
) I

ns
tr

uc
tio

ns
 is

su
ed

Baseline without scalarization (warpsize of 4) Scalar Converged warp (static) Converged warp (dynamic) Diverged thread

0.0
0.2
0.4
0.6
0.8
1.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(b
) O

ps
 e

xe
cu

te
d

Series2 Series3 Series4 Series5 Series1

0.0
0.2
0.4
0.6
0.8
1.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(c
) R

eg
 r

ea
ds

Baseline without scalarization Scalar Thread

0.0
0.2
0.4
0.6
0.8
1.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(d
) R

eg
 w

ri
te

s

Baseline Scalar Register Reads/Writes Thread Private Registers Reads/Writes

0.0
0.2
0.4
0.6
0.8
1.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(e
) M

em
 a

dd
r'

s

Baseline without scalarization Scalar Warp-sequential Thread

0.0
0.2
0.4
0.6
0.8
1.0

mm
nn

lav
aM

D

ga
uss

ian

bfs

ba
ck

pro
p

str
eam

clu
ste

r lud

sra
d-v

1 fft

sra
d-v

2
mri-

q
cu

tcp

nw

ho
tsp

ot lbm

cfd

ste
nc

il

leu
ko

cy
te

pa
thf

ind
er

he
art

wall

spm
v

km
ean

s

av
era

ge

(f
) M

em
 d

at
a

Baseline Scalar Addresses/Data Warp-Sequential Addresses/Data Thread Private Addresses/Data

Figure 6. Dynamic Scalarization Metrics – Each group shows results for warp sizes of 4, 8, 16, and 32.

counts going to the innermost cache are reduced by 37%, and
the number of memory data elements accessed is reduced
by 30%. With wider warp sizes, scalar register accesses and
scalar memory operations are more effectively amortized,
and warp-sequential memory address activity similarly de-
creases (though the data counts stay constant). With a warp
size of 32, register reads and writes are reduced by 31%,
memory address counts are reduced by 47%, and data ac-
cess counts go down by 38%.

5. Architecture Implications of Scalarization
Compile-time convergence analysis and scalarization can
improve efficiency and performance in various contexts. The
algorithms in our paper apply to existing processors, and
they may also enable new hardware microarchitectures.

5.1 Scalarization in SIMT Microarchitectures
Figure 7 shows a range of SIMT microarchitectures ex-
tended with scalarization support. The same instruction-set
architecture that we target in Section 3 applies to all of these
microarchitectures, as do the microarchitecture-neutral re-
sults in Section 4. Figure 7(a) shows a traditional SIMT mi-
croarchitecture extended with a scalar unit on the left. A
warp is mapped across the SIMT lanes with one thread per
lane. In contrast to the wide SIMT unit, the scalar unit has
a 1-wide datapath with a scalar register file and resources
to execute scalar instructions. Scalarization reduces overall
register file capacity by eliminating redundant operand stor-
age, or alternatively allows a register file of a given size to
map more threads. Scalar instructions improve performance
as they allow regular SIMT instructions to execute in paral-
lel, and they reduce energy by eliminating replicated work.
Figure 7(b) shows an alternative microarchitecture which ex-
ecutes scalar instructions on a single lane instead of a sepa-
rate unit, thus avoiding the area overhead when scalarization
is not used. This architecture still reduces energy by only ac-
tivating one lane when executing scalar instructions, but it
would not reduce register pressure or improve performance.

Scalarization may also help enable new microarchitec-
tures with better divergent-thread performance. In spatial-
SIMT GPUs, divergence can be a performance bottleneck
since throughput and efficiency are halved each time the
threads in a warp diverge [2]. With complete divergence,
only one of the warp’s threads executes instructions at a time.
A potential solution is a temporal-SIMT microarchitecture,
as shown in Figure 7(c). In temporal-SIMT lanes fetch and
execute instructions independently. A warp is mapped to a
single lane, and the threads in a converged warp dispatch
an instruction one after the other over successive cycles. In
this way the temporal-SIMT lane amortizes instruction over-
heads similar to a 1-lane vector machine [25]. When threads
are diverged, on the other hand, instructions simply dispatch
for a single cycle and the independent lanes essentially op-
erate as a traditional multithreaded MIMD processor.

W0.S

W0.T0.R
W0.T1.R
W0.T2.R
W0.T3.R

W1.S

W1.T0.R
W1.T1.R
W1.T2.R
W1.T3.R

W0.T0.R
W0.S

W1.T0.R
W1.S

W0.T1.R

W1.T1.R

W2.S

W2.T0.R
W2.T1.R
W2.T2.R
W2.T3.R

W0.T2.R

W1.T2.R

W0.T0.R
W1.T0.R

W0.T1.R
W1.T1.R

W0.T2.R
W1.T2.R

W2.T0.R
W3.T0.R

W2.T1.R
W3.T1.R

W2.T2.R
W3.T2.R

W0.S
W1.S
W2.S
W3.S

W31.S

W31.T0.R
W31.T1.R
W31.T2.R
W31.T3.R

W0.T31.R

W1.T31.R

W0.T31.R
W1.T31.R
W2.T31.R
W3.T31.R

(a) Spatial-SIMT with scalar unit

(b) Spatial-SIMT with scalars in lane 0

(c) Temporal-SIMT with scalars in each laneW: warp

T: thread

R: thread
registers

S: scalar
registers

legend

Figure 7. SIMT microarchitectures with scalarization sup-
port

Temporal-SIMT is a particularly good match for efficient
scalarization. As shown in Figure 7(c), the register file map-
pings are configured to allocate a set of scalar registers for
each warp. No physical partitioning of the register file is nec-
essary (as in Figure 7(a)), and no register file slots are wasted
(as in Figure 7(b)). Regular thread instructions can directly
source operands from scalar registers instead of their usual
private registers. The register file is only read once as the first
thread dispatches, and the scalar operand is then held in a
pipeline register as other threads dispatch. When a scalar in-
struction executes on a temporal-SIMT architecture, it sim-
ply dispatches once for the warp instead once per thread.
Note that there will be no additional ports added to the reg-
ister file or the instruction cache if the microarchitecture con-
tinues to issue one instruction per cycle. Scalarization on a
temporal-SIMT architecture will improve both performance
and energy, while requiring only minimal hardware modifi-
cation and no separate scalar execution resources.

5.2 Stackless SIMT
The divergence stacks used in current GPUs (Section 2.4)
have several drawbacks. First, as mentioned above, execu-
tion efficiency drops each time the threads in a warp di-
verge. The warp itself executes all of its composite thread
code paths serially, so no parallelism is possible between di-
verged threads in the same warp. Secondly, in current SIMT
compilers, achieving correct execution in the presence of un-
structured control flow is a major challenge [29]. Finally, the
divergence stack creates a pitfall where the SPMD model
can break down: since the “threads” in a warp do not truly
execute asynchronously. Threads can only synchronize at

warp (or CTA) granularity, and threads in the same warp are
only able to communicate when their execution is conver-
gent [20].

These drawbacks of SIMT could all be addressed by map-
ping SPMD kernels to a future stackless temporal-SIMT ar-
chitecture. Similar to MIMD, such an architecture would
provision a hardware PC per thread and allow diverged
threads to truly execute independently. Compiler conver-
gence analysis is an important enabler for this form of stack-
less SIMT since, without a stack, hardware has no way to
reconverge diverged warps. To enable compiler-managed
reconvergence, the architecture can provide a syncwarp in-
struction that acts as a barrier for currently executing threads.
The compiler simply places a syncwarp in blocks it identi-
fies as convergent, and as long as all threads make progress,
the warp will eventually reconverge at this instruction. How-
ever, placing a syncwarp in every convergent block incurs
an overhead that is often not necessary. We can place these
synchronization operations only at those convergent blocks
that have at least one divergent predecessor, thus ensuring
that scalar registers are only written in convergent blocks
guarded by syncwarp instructions. In the example shown in
Figure 2(a), node N5 must be guarded by a syncwarp.

6. Related Work
Our convergence analysis is based on the variance analysis
described by Stratton et al. [26]. Their work identifies data
accesses that are thread-invariant or will give the same value
across the threads of a CTA. Their basic variance analysis
was used to optimize CUDA programs when compiled to
multicore CPUs. We extend their basic variance analysis al-
gorithm to track not just thread-variant data, but also control
divergence. We make optimistic assumptions about conver-
gence and thread-invariant data and then track thread-variant
information and divergent information together.

Coutinho et al. [7] describe what they call “divergence
analysis,” which is also an extension of the approach of [26].
Their analysis finds divergent values, by first converting SSA
information into gated single assignment [22], and then re-
placing control-flow merges with a predicate select operator.
Their end algorithm is relatively simple because it can use
data-flow analysis to propagate divergence information, but
it requires a change of representation. However their diver-
gent values are similar to thread-variant values as described
in [26].

Collange [5] presents work with goals similar to ours, but
uses an approach like that described in [7]. Collange does not
use a gated representation but instead performs a symbolic
analysis on a lattice of tags, which encodes and tracks align-
ment of various instruction operands. Coutinho et al. [7] and
Collange [5] do not perform convergence analysis, which is
important for exploiting scalar code generation.

Karrenberg and Hack [13] describe an analysis based on
a data-flow lattice approach which is similar to our affine

analysis. However, their analysis is geared towards vector-
ization, rather than scalarization. Also, their analysis does
not use control dependence information, which is useful in
our case to perform convergence analysis.

The ISPC language includes explicit uniform data types
that allow a program to indicate scalar values in source
code [23]. While this approach may be well matched to
tightly coupled SIMD architectures, our approach relieves
the programmer from this burden and uses the compiler to
discover uniform values that a programmer may not be able
to specify. Furthermore ISPC does not have any explicit
notion of convergence.

Kerr et al. [14] implement a thread-invariant expression
elimination pass, also based on [26]. The focus of their
optimization pass is different than ours; they use common
subexpression elimination on invariants after vectorization,
whereas we allocate invariants to scalar register.

Lee et al. [16] explore a range of vector, vector-thread,
and SIMT architectures, comparing area and energy effi-
ciency on regular and irregular codes. While the architec-
tures they explore overlap with some of the scalar-SIMT ar-
chitectures we describe in Section 5, their work does not
examine efficiency optimizations enabled by convergence
analysis.

Collange proposes a stackless SIMT architecture which
implements reconvergence in hardware by comparing thread
PCs every cycle [6]. This approach is different and less effi-
cient than ours in which the compiler uses a syncwarp in-
struction to reconverge diverged warps. Intel’s Sandy Bridge
GPU [12] maintains a PC per thread, but threads do not truly
execute independently. Instead, the compiler must sequence
through all code paths, and PC comparators are used to mask
inactive threads.

7. Conclusions
This paper presented new compiler algorithms for thread
convergence and variable variance analysis that elides re-
dundant instructions and register accesses in threaded code
through a technique called scalarization. Our compiler algo-
rithms are extremely effective at identifying convergent exe-
cution even in programs with arbitrary control flow, identify-
ing two thirds of the instructions captured by a dynamic ora-
cle. Simple hardware mechanisms can boost this to 100%.
The compile-time analysis leads to a reduction in opera-
tions executed and register accesses of 23–31% depending
on warp size.

Compiler convergence analysis and scalarization may
enable alternative hardware architectures such as stack-
less temporal-SIMT. We anticipate additional optimizations,
such as scalarizing across subsets of warps, will provide
even greater benefits. We plan to further quantify the bene-
fits of scalarization on various microarchitectures, including
ones that dynamically scalarize instructions and operands
without compiler guidance.

Acknowledgments
We thank members of the NVIDIA compiler team includ-
ing Xiangyun Kong and Gautam Chakrabarti for various im-
provements to the variance analysis algorithm, and Manju-
nath Kudlur and Jaydeep Marathe for valuable discussions
on the convergence analysis algorithm. We also thank mem-
bers of the NVIDIA research group for their feedback on this
work, and in particular Mojtaba Mehrara and Greg Diamos
for their contributions to concepts and infrastructure. This
research was funded in part by DARPA contracts HR0011-
10-9-0008 and HR0011-11-C-0100, and an NVIDIA gradu-
ate fellowship.

References
[1] AMD. AMD Graphics Core Next (GCN). AMD Fusion

Developer Summit, June 2011. URL http://developer.

amd.com/afds/assets/presentations/2620 final.pdf.
[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In
International Symposium on Performance Analysis of Systems and
Software, pages 163–174, April 2009.

[3] T. Ball. What’s in a Region?: or Computing Control Dependence
Regions in Near-linear Time for Reducible Control Flow. ACM Letters
on Programming Languages and Systems, 2(1-4), March 1993.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Com-
puting. In International Symposium on Workload Characterization,
pages 44 –54, October 2009.

[5] S. Collange. Identifying Scalar Behavior in CUDA Kernels. Technical
Report hal-00555134, Université de Lyon, January 2011.

[6] S. Collange. Stack-less SIMT Reconvergence at Low Cost. Technical
Report hal-00622654, Université de Lyon, September 2011.

[7] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira. Divergence
Analysis and Optimizations. In International Conference on Parallel
Architectures and Compilation Techniques, pages 320–329, October
2011.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13:451–490, October 1991.

[9] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark. Ocelot: a Dy-
namic Optimization Framework for Bulk-synchronous Applications in
Heterogeneous Systems. In International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 353–364, September
2010.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Depen-
dence Graph and its Use in Optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9:319–349, July 1987.

[11] Intel. A First Look at the Larrabee New Instructions (LRBni). Intel
White Paper, 2009.

[12] Intel. Intel HD Graphics OpenSource PRM Volume 4 Part 2: Sub-
system and Cores. Intel Programmer’s Reference Manual, February
2010.

[13] R. Karrenberg and S. Hack. Whole-function Vectorization. In In-
ternational Symposium on Code Generation and Optimization, pages
141–150, April 2011.

[14] A. Kerr, G. Diamos, and S. Yalamanchili. Dynamic Compilation of
Data-parallel Kernels for Vector Processors. In International Sympo-
sium on Code Generation and Optimization, pages 23–32, April 2012.

[15] C. Lattner and V. Adve. LLVM: A Compilation Framework for Life-
long Program Analysis and Transformation. In International Sym-
posium on Code Generation and Optimization, pages 75–88, March
2004.

[16] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović. Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerators. In International Symposium
on Computer Architecture, pages 129–140, June 2011.

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
28(2):39–55, March/April 2008.

[18] D. Maier. The Complexity of Some Problems on Subsequences and
Supersequences. Journal of the ACM, 25(2):322–336, 1978.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. ACM Queue, 6(2):40–53, March/April
2008.

[20] NVIDIA. NVIDIA CUDA C Programming Guide 4.2, April 2012.
[21] OpenCL. The OpenCL Specification Version 1.2. Khronos OpenCL

Working Group, 2011.
[22] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe. The Program

Dependence Web: a Representation Supporting Control-, Data-, and
Demand-driven Interpretation of Imperative Languages. In ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, pages 257–271, June 1990.

[23] M. Pharr and W. R. Mark. ispc: A SPMD Compiler for High-
Performance CPU Programming. In Innovative Parallel Computing
(InPar), May 2012.

[24] J. H. Reif and H. R. Lewis. Efficient Symbolic Analysis of Programs.
Journal of Computer and System Sciences, 32(3):280–314, June 1986.

[25] R. M. Russell. The CRAY-1 Computer System. Communications of
the ACM, 21(1):63–72, January 1978.

[26] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu,
and W. mei W. Hwu. Efficient Compilation of Fine-grained SPMD-
threaded Programs for Multicore CPUs. In International Symposium
on Code Generation and Optimization, pages 111–119, April 2010.

[27] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu. Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Comput-
ing. Technical Report IMPACT-12-01, University of Illinois, Urbana-
Champaign, March 2012.

[28] M. Weiss. The Transitive Closure of Control Dependence: the Iterated
Join. ACM Letters on Programming Languages and Systems, 1:178–
190, June 1992.

[29] H. Wu, G. Diamos, S. Li, and S. Yalamanchili. Characterization and
Transformation of Unstructured Control Flow in Bulk Synchronous
GPU Applications. International Journal of High Performance Com-
puting Applications, 26(2):170–185, May 2012.

