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Preface

This is version 1.9.1 of the RISC-V privileged architecture proposal. Changes from version 1.9
include:

• Numerous additions and improvements to the commentary sections.

• Change configuration string proposal to be use a search process that supports various formats
including Device Tree String and flattened Device Tree.

• Made misa optionally writable to support modifying base and supported ISA extensions.
CSR address of misa changed.

• Added description of debug mode and debug CSRs.

• Added a hardware performance monitoring scheme. Simplified the handling of existing hard-
ware counters, removing privileged versions of the counters and the corresponding delta reg-
isters.

• Fixed description of SPIE in presence of user-level interrupts.
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Chapter 1

Introduction

This is a draft of the privileged architecture description document for RISC-V. Feedback welcome.
Changes will occur before the final release.

This document describes the RISC-V privileged architecture, which covers all aspects of RISC-V
systems beyond the user-level ISA, including privileged instructions as well as additional function-
ality required for running operating systems and attaching external devices.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

We briefly note that the entire privileged-level design described in this document could be replaced
with an entirely different privileged-level design without changing the user-level ISA, and pos-
sibly without even changing the ABI. In particular, this privileged specification was designed to
run existing popular operating systems, and so embodies the conventional level-based protection
model. Alternate privileged specifications could embody other more flexible protection domain
models.

1.1 RISC-V Hardware Platform Terminology

A RISC-V hardware platform can contain one or more RISC-V-compatible processing cores to-
gether with other non-RISC-V-compatible cores, fixed-function accelerators, various physical mem-
ory structures, I/O devices, and an interconnect structure to allow the components to communicate.

A component is termed a core if it contains an independent instruction fetch unit. A RISC-V-
compatible core might support multiple RISC-V-compatible hardware threads, or harts, through
multithreading.

A RISC-V core might have additional specialized instruction set extensions or an added coprocessor.
We use the term coprocessor to refer to a unit that is attached to a RISC-V core and is mostly
sequenced by a RISC-V instruction stream, but which contains additional architectural state and
instruction set extensions, and possibly some limited autonomy relative to the primary RISC-V
instruction stream.

1
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We use the term accelerator to refer to either a non-programmable fixed-function unit or a core that
can operate autonomously but is specialized for certain tasks. In RISC-V systems, we expect many
programmable accelerators will be RISC-V-based cores with specialized instruction set extensions
and/or customized coprocessors. An important class of RISC-V accelerators are I/O accelerators,
which offload I/O processing tasks from the main application cores.

The system-level organization of a RISC-V hardware platform can range from a single-core micro-
controller to a many-thousand-node cluster of shared-memory manycore server nodes. Even small
systems-on-a-chip might be structured as a hierarchy of multicomputers and/or multiprocessors to
modularize development effort or to provide secure isolation between subsystems.

This document focuses on the privileged architecture visible to each hart (hardware thread) running
within a uniprocessor or a shared-memory multiprocessor.

1.2 RISC-V Privileged Software Stack Terminology

This section describes the terminology we use to describe components of the wide range of possible
privileged software stacks for RISC-V.

Figure 1.1 shows some of the possible software stacks that can be supported by the RISC-V archi-
tecture. The left-hand side shows a simple system that supports only a single application running
on an application execution environment (AEE). The application is coded to run with a particular
application binary interface (ABI). The ABI includes the supported user-level ISA plus a set of
ABI calls to interact with the AEE. The ABI hides details of the AEE from the application to al-
low greater flexibility in implementing the AEE. The same ABI could be implemented natively on
multiple different host OSs, or could be supported by a user-mode emulation environment running
on a machine with a different native ISA.

Application
ABI
AEE

Application
ABI

OS
SBI
SEE

Application
ABI

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Figure 1.1: Different implementation stacks supporting various forms of privileged execution.

Our graphical convention represents abstract interfaces using black boxes with white text, to
separate them from concrete instances of components implementing the interfaces.

The middle configuration shows a conventional operating system (OS) that can support multipro-
grammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
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SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary
image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

Most supervisor-level ISA definitions do not separate the SBI from the execution environment
and/or the hardware platform, complicating virtualization and bring-up of new hardware plat-
forms.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execu-
tion environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from
details of the hardware platform.

The various ABI, SBI, and HBIs are still a work-in-progress, but we anticipate the SBI and HBI
to support devices via virtualized device interfaces similar to virtio [3], and to support device
discovery. In this manner, only one set of device drivers need be written that can support any
OS or hypervisor, and which can also be shared with the boot environment.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE).

1.3 Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode
in one or more CSRs (control and status registers). Four RISC-V privilege levels are currently
defined as shown in Table 1.1.

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Hypervisor H
3 11 Machine M

Table 1.1: RISC-V privilege levels.

Privilege levels are used to provide protection between different components of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an
exception to be raised. These exceptions will normally cause traps into an underlying execution
environment or the HAL.

The machine level has the highest privileges and is the only mandatory privilege level for a RISC-V
hardware platform. Code run in machine-mode (M-mode) is inherently trusted, as it has low-level
access to the machine implementation. M-mode is used to manage secure execution environments
on RISC-V. User-mode (U-mode) and supervisor-mode (S-mode) are intended for conventional
application and operating system usage respectively, while hypervisor-mode (H-mode) is intended
to support virtual machine monitors.
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Each privilege level has a core set of privileged ISA extensions with optional extensions and variants.
For example, machine-mode supports several optional standard variants for address translation and
memory protection.

Although none are currently defined, future hypervisor-level ISA extensions will be added to
improve virtualization performance. One common feature to support hypervisors is to provide
a second level of translation and protection, from supervisor physical addresses to hypervisor
physical addresses.

Implementations might provide anywhere from 1 to 4 privilege modes trading off reduced isolation
for lower implementation cost, as shown in Table 1.2.

In the description, we try to separate the privilege level for which code is written, from the
privilege mode in which it runs, although the two are often tied. For example, a supervisor-
level operating system can run in supervisor-mode on a system with three privilege modes, but
can also run in user-mode under a classic virtual machine monitor on systems with two or
more privilege modes. In both cases, the same supervisor-level operating system binary code can
be used, coded to a supervisor-level SBI and hence expecting to be able to use supervisor-level
privileged instructions and CSRs. When running a guest OS in user mode, all supervisor-level
actions will be trapped and emulated by the SEE running in the higher-privilege level.

Number of levels Supported Modes Intended Usage

1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems
4 M, H, S, U Systems running Type-1 hypervisors

Table 1.2: Supported combinations of privilege modes.

All hardware implementations must provide M-mode, as this is the only mode that has unfettered
access to the whole machine. The simplest RISC-V implementations may provide only M-mode,
though this will provide no protection against incorrect or malicious application code. Many RISC-
V implementations will also support at least user mode (U-mode) to protect the rest of the system
from application code. Supervisor mode (S-mode) can be added to provide isolation between a
supervisor-level operating system and the SEE and HAL code. The hypervisor mode (H-mode) is
intended to provide isolation between a virtual machine monitor and a HEE and HAL running in
machine mode.

A hart normally runs application code in U-mode until some trap (e.g., a supervisor call or a timer
interrupt) forces a switch to a trap handler, which usually runs in a more privileged mode. The hart
will then execute the trap handler, which will eventually resume execution at or after the original
trapped instruction in U-mode. Traps that increase privilege level are termed vertical traps, while
traps that remain at the same privilege level are termed horizontal traps. The RISC-V privileged
architecture provides flexible routing of traps to different privilege layers.

Horizontal traps can be implemented as vertical traps that return control to a horizontal trap
handler in the less-privileged mode.
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1.4 Debug Mode

Implementations may also include a debug mode to support off-chip debugging and/or manufac-
turing test. Debug mode (D-mode) can be considered an additional privilege mode, with even more
access than M-mode. The separate debug specification proposal describes operation of a RISC-V
hart in debug mode. Debug mode reserves a few CSR addresses that are only accessible in D-mode,
and may also reserve some portions of the physical memory space on a platform.
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Chapter 2

Control and Status Registers (CSRs)

The SYSTEM major opcode is used to encode all privileged instructions in the RISC-V ISA. These
can be divided into two main classes: those that atomically read-modify-write control and status
registers (CSRs), and all other privileged instructions. In addition to the user-level state described
in Volume I of this manual, an implementation may contain additional CSRs, accessible by some
subset of the privilege levels using the CSR instructions described in the user-level manual. In
this chapter, we map out the CSR address space. The following chapters describe the function of
each of the CSRs according to privilege level, as well as the other privileged instructions which
are generally closely associated with a particular privilege level. Note that although CSRs and
instructions are associated with one privilege level, they are also accessible at all higher privilege
levels.

2.1 CSR Address Mapping Conventions

The standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
By convention, the upper 4 bits of the CSR address (csr[11:8]) are used to encode the read and
write accessibility of the CSRs according to privilege level as shown in Table 2.1. The top two bits
(csr[11:10]) indicate whether the register is read/write (00, 01, or 10) or read-only (11). The next
two bits (csr[9:8]) encode the lowest privilege level that can access the CSR.

The CSR address convention uses the upper bits of the CSR address to encode default access
privileges. This simplifies error checking in the hardware and provides a larger CSR space, but
does constrain the mapping of CSRs into the address space.

Implementations might allow a more-privileged level to trap otherwise permitted CSR ac-
cesses by a less-privileged level to allow these accesses to be intercepted. This change should be
transparent to the less-privileged software.

Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access a
CSR without appropriate privilege level or to write a read-only register also raise illegal instruction
exceptions. A read/write register might also contain some bits that are read-only, in which case
writes to the read-only bits are ignored.

7
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CSR Address Hex Use and Accessibility
[11:10] [9:8] [7:6]

User CSRs

00 00 XX 0x000-0x0FF Standard read/write
01 00 XX 0x400-0x4FF Standard read/write
10 00 XX 0x800-0x8FF Non-standard read/write
11 00 00-10 0xC00-0xCBF Standard read-only
11 00 11 0xCC0-0xCFF Non-standard read-only

Supervisor CSRs

00 01 XX 0x100-0x1FF Standard read/write
01 01 00-10 0x500-0x5BF Standard read/write
01 01 11 0x5C0-0x5FF Non-standard read/write
10 01 00-10 0x900-0x9BF Standard read/write shadows
10 01 11 0x9C0-0x9FF Non-standard read/write shadows
11 01 00-10 0xD00-0xDBF Standard read-only
11 01 11 0xDC0-0xDFF Non-standard read-only

Hypervisor CSRs

00 10 XX 0x200-0x2FF Standard read/write
01 10 00-10 0x600-0x6BF Standard read/write
01 10 11 0x6C0-0x6FF Non-standard read/write
10 10 00-10 0xA00-0xABF Standard read/write shadows
10 10 11 0xAC0-0xAFF Non-standard read/write shadows
11 10 00-10 0xE00-0xEBF Standard read-only
11 10 11 0xEC0-0xEFF Non-standard read-only

Machine CSRs

00 11 XX 0x300-0x3FF Standard read/write
01 11 00-10 0x700-0x79F Standard read/write
01 11 10 0x7A0-0x7AF Standard read/write debug CSRs
01 11 10 0x7B0-0x7BF Debug-mode-only CSRs
01 11 11 0x7C0-0x7FF Non-standard read/write
10 11 00-10 0xB00-0xBBF Standard read/write shadows
10 11 11 0xBC0-0xBFF Non-standard read/write shadows
11 11 00-10 0xF00-0xFBF Standard read-only
11 11 11 0xFC0-0xFFF Non-standard read-only

Table 2.1: Allocation of RISC-V CSR address ranges.

Table 2.1 also indicates the convention to allocate CSR addresses between standard and non-
standard uses. The CSR addresses reserved for non-standard uses will not be redefined by future
standard extensions. The shadow addresses are reserved to provide a read-write address via which
a higher privilege level can modify a register that is read-only at a lower privilege level. Note that
if one privilege level has already allocated a read/write shadow address, then any higher privilege
level can use the same CSR address for read/write access to the same register.

Effective virtualization requires that as many instructions run natively as possible inside a virtu-
alized environment, while any privileged accesses trap to the virtual machine monitor [1]. CSRs
that are read-only at some lower privilege level are shadowed into separate CSR addresses if they
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are made read-write at a higher privilege level. This avoids trapping permitted lower-privilege
accesses while still causing traps on illegal accesses.

Machine-mode standard read-write CSRs 0x7A0–0x7BF are reserved for use by the debug system.
Implementations should raise illegal instruction exceptions on machine-mode access to these regis-
ters.

2.2 CSR Listing

Tables 2.2–2.6 list the CSRs that have currently been allocated CSR addresses. The timers, coun-
ters, and floating-point CSRs are the only standard user-level CSRs currently defined. The other
registers are used by privileged code, as described in the following chapters. Note that not all
registers are required on all implementations.
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Number Privilege Name Description

User Trap Setup

0x000 URW ustatus User status register.
0x004 URW uie User interrupt-enable register.
0x005 URW utvec User trap handler base address.

User Trap Handling

0x040 URW uscratch Scratch register for user trap handlers.
0x041 URW uepc User exception program counter.
0x042 URW ucause User trap cause.
0x043 URW ubadaddr User bad address.
0x044 URW uip User interrupt pending.

User Floating-Point CSRs

0x001 URW fflags Floating-Point Accrued Exceptions.
0x002 URW frm Floating-Point Dynamic Rounding Mode.
0x003 URW fcsr Floating-Point Control and Status Register (frm + fflags).

User Counter/Timers

0xC00 URO cycle Cycle counter for RDCYCLE instruction.
0xC01 URO time Timer for RDTIME instruction.
0xC02 URO instret Instructions-retired counter for RDINSTRET instruction.
0xC03 URO hpmcounter3 Performance-monitoring counter.
0xC04 URO hpmcounter4 Performance-monitoring counter.

...
0xC1F URO hpmcounter31 Performance-monitoring counter.
0xC80 URO cycleh Upper 32 bits of cycle, RV32I only.
0xC81 URO timeh Upper 32 bits of time, RV32I only.
0xC82 URO instreth Upper 32 bits of instret, RV32I only.
0xC83 URO hpmcounter3h Upper 32 bits of hpmcounter3, RV32I only.
0xC84 URO hpmcounter4h Upper 32 bits of hpmcounter4, RV32I only.

...
0xC9F URO hpmcounter31h Upper 32 bits of hpmcounter31, RV32I only.

Table 2.2: Currently allocated RISC-V user-level CSR addresses.
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Number Privilege Name Description

Supervisor Trap Setup

0x100 SRW sstatus Supervisor status register.
0x102 SRW sedeleg Supervisor exception delegation register.
0x103 SRW sideleg Supervisor interrupt delegation register.
0x104 SRW sie Supervisor interrupt-enable register.
0x105 SRW stvec Supervisor trap handler base address.

Supervisor Trap Handling

0x140 SRW sscratch Scratch register for supervisor trap handlers.
0x141 SRW sepc Supervisor exception program counter.
0x142 SRW scause Supervisor trap cause.
0x143 SRW sbadaddr Supervisor bad address.
0x144 SRW sip Supervisor interrupt pending.

Supervisor Protection and Translation

0x180 SRW sptbr Page-table base register.

Table 2.3: Currently allocated RISC-V supervisor-level CSR addresses.

Number Privilege Name Description

Hypervisor Trap Setup

0x200 HRW hstatus Hypervisor status register.
0x202 HRW hedeleg Hypervisor exception delegation register.
0x203 HRW hideleg Hypervisor interrupt delegation register.
0x204 HRW hie Hypervisor interrupt-enable register.
0x205 HRW htvec Hypervisor trap handler base address.

Hypervisor Trap Handling

0x240 HRW hscratch Scratch register for hypervisor trap handlers.
0x241 HRW hepc Hypervisor exception program counter.
0x242 HRW hcause Hypervisor trap cause.
0x243 HRW hbadaddr Hypervisor bad address.
0x244 HRW hip Hypervisor interrupt pending.

Hypervisor Protection and Translation

0x28X TBD TBD TBD.

Table 2.4: Currently allocated RISC-V hypervisor-level CSR addresses.
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Number Privilege Name Description

Machine Information Registers

0xF11 MRO mvendorid Vendor ID.
0xF12 MRO marchid Architecture ID.
0xF13 MRO mimpid Implementation ID.
0xF14 MRO mhartid Hardware thread ID.

Machine Trap Setup

0x300 MRW mstatus Machine status register.
0x301 MRW misa ISA and extensions
0x302 MRW medeleg Machine exception delegation register.
0x303 MRW mideleg Machine interrupt delegation register.
0x304 MRW mie Machine interrupt-enable register.
0x305 MRW mtvec Machine trap-handler base address.

Machine Trap Handling

0x340 MRW mscratch Scratch register for machine trap handlers.
0x341 MRW mepc Machine exception program counter.
0x342 MRW mcause Machine trap cause.
0x343 MRW mbadaddr Machine bad address.
0x344 MRW mip Machine interrupt pending.

Machine Protection and Translation

0x380 MRW mbase Base register.
0x381 MRW mbound Bound register.
0x382 MRW mibase Instruction base register.
0x383 MRW mibound Instruction bound register.
0x384 MRW mdbase Data base register.
0x385 MRW mdbound Data bound register.

Table 2.5: Currently allocated RISC-V machine-level CSR addresses.
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Number Privilege Name Description

Machine Counter/Timers

0xB00 MRW mcycle Machine cycle counter.
0xB02 MRW minstret Machine instructions-retired counter.
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter.
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter.

...
0xB1F MRW mhpmcounter31 Machine performance-monitoring counter.
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32I only.
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only.
0xB83 MRW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32I only.
0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32I only.

...
0xB9F MRW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32I only.

Machine Counter Setup

0x320 MRW mucounteren User-mode counter enable.
0x321 MRW mscounteren Supervisor-mode counter enable.
0x322 MRW mhcounteren Hypervisor-mode counter enable.
0x323 MRW mhpmevent3 Machine performance-monitoring event selector.
0x324 MRW mhpmevent4 Machine performance-monitoring event selector.

...
0x33F MRW mhpmevent31 Machine performance-monitoring event selector.

Debug/Trace Registers (shared with Debug Mode)

0x7A0 MRW tselect Debug/Trace trigger register select.
0x7A1 MRW tdata1 First Debug/Trace trigger data register.
0x7A2 MRW tdata2 Second Debug/Trace trigger data register.
0x7A3 MRW tdata3 Third Debug/Trace trigger data register.

Debug Mode Registers

0x7B0 DRW dcsr Debug control and status register.
0x7B1 DRW dpc Debug PC.
0x7B2 DRW dscratch Debug scratch register.

Table 2.6: Currently allocated RISC-V machine-level CSR addresses.
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2.3 CSR Field Specifications

The following definitions and abbreviations are used in specifying the behavior of fields within the
CSRs.

Reserved Writes Ignored, Reads Ignore Values (WIRI)

Some read-only and read/write registers have read-only fields reserved for future use. These reserved
read-only fields should be ignored on a read. Writes to these fields have no effect, unless the whole
CSR is read-only, in which case writes might raise an illegal instruction exception. These fields are
labeled WIRI in the register descriptions.

Reserved Writes Preserve Values, Reads Ignore Values (WPRI)

Some whole read/write fields are reserved for future use. Software should ignore the values read
from these fields, and should preserve the values held in these fields when writing values to other
fields of the same register. These fields are labeled WPRI in the register descriptions.

To simplify the software model, any backward-compatible future definition of previously reserved
fields within a CSR must cope with the possibility that a non-atomic read/modify/write sequence
is used to update other fields in the CSR. Alternatively, the original CSR definition must specify
that subfields can only be updated atomically, which may require a two-instruction clear bit/set
bit sequence in general that can be problematic if intermediate values are not legal.

Write/Read Only Legal Values (WLRL)

Some read/write CSR fields specify behavior for only a subset of possible bit encodings, with other
bit encodings reserved. Software should not write anything other than legal values to such a field,
and should not assume a read will return a legal value unless the last write was of a legal value,
or the register has not been written since another operation (e.g., reset) set the register to a legal
value. These fields are labeled WLRL in the register descriptions.

Hardware implementations need only implement enough state bits to differentiate between the
supported values, but must always return the complete specified bit-encoding of any supported
value when read.

Implementations are permitted but not required to raise an illegal instruction exception if an
instruction attempts to write a non-supported value to a CSR field. Hardware implementations
can return arbitrary bit patterns on the read of a CSR field when the last write was of an illegal
value, but the value returned should deterministically depend on the previous written value.

Write Any Values, Reads Legal Values (WARL)

Some read/write CSR fields are only defined for a subset of bit encodings, but allow any value to be
written while guaranteeing to return a legal value whenever read. Assuming that writing the CSR
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has no other side effects, the range of supported values can be determined by attempting to write
a desired setting then reading to see if the value was retained. These fields are labeled WARL in
the register descriptions.

Implementations will not raise an exception on writes of unsupported values to an WARL field.
Implementations must always deterministically return the same legal value after a given illegal
value is written.
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Chapter 3

Machine-Level ISA

This chapter describes the machine-level operations available in machine-mode (M-mode), which is
the highest privilege mode in a RISC-V system. M-mode is the only mandatory privilege mode in
a RISC-V hardware implementation. M-mode is used for low-level access to a hardware platform
and is the first mode entered at reset. M-mode can also be used to implement features that are too
difficult or expensive to implement in hardware directly. The RISC-V machine-level ISA contains
a common core that is extended depending on which other privilege levels are supported and other
details of the hardware implementation.

3.1 Machine-Level CSRs

In addition to the machine-level CSRs described in this section, M-mode code can access all CSRs
at lower privilege levels.

3.1.1 Machine ISA Register misa

The misa register is an XLEN-bit WARL read-write register reporting the ISA supported by the
hart. This register must be readable in any implementation, but a value of zero can be returned to
indicate the misa register has not been implemented, requiring that CPU capabilities be determined
through a separate non-standard mechanism.

XLEN-1 XLEN-2 XLEN-3 26 25 0

Base (WARL) WIRI Extensions (WARL)

2 XLEN-28 26

Figure 3.1: Machine ISA register (misa).

The Base field encodes the native base integer ISA width as shown in Table 3.1. The Base field may
be writable in implementations that support multiple base ISA widths. The Base field is always
set to the widest supported ISA variant at reset.

The base can be quickly ascertained using branches on the sign of the returned misa value, and

17
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Value Description

1 32
2 64
3 128

Table 3.1: Encoding of Base field in misa

possibly a shift left by one and a second branch on the sign. These checks can be written in
assembly code without knowing the register width (XLEN) of the machine. The base width is
given by XLEN = 2Base+4.

The Extensions field encodes the presence of the standard extensions, with a single bit per letter
of the alphabet (bit 0 encodes presence of extension “A” , bit 1 encodes presence of extension “B”,
through to bit 25 which encodes “Z”). The “I” bit will be set for RV32I, RV64I, RV128I base ISAs,
and the “E” bit will be set for RV32E. The Extension is a WARL field that can contain writable
bits where the implementation allows the supported ISA to be modified. At reset, the Extension
field should contain the maximal set of supported extensions, and I should be selected over E if
both are available.

The “G” bit is used as an escape to allow expansion to a larger space of standard extension names.

G is used to indicate the combination IMAFD, so is redundant in the misa register, hence we
reserve the bit to indicate that additional standard extensions are present.

The “U”,“S”, and “H” bits will be set if there is support for user, supervisor, and hypervisor
privilege modes respectively.

The “X” bit will be set if there are any non-standard extensions.

The misa register exposes a rudimentary catalog of CPU features to machine-mode code. More
extensive information can be obtained in machine mode by probing other machine registers, and
examining other ROM storage in the system as part of the boot process.

We require that lower privilege levels execute environment calls instead of reading CPU
registers to determine features available at each privilege level. This enables virtualization layers
to alter the ISA observed at any level, and supports a much richer command interface without
burdening hardware designs.
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Bit Character Description

0 A Atomic extension
1 B Tentatively reserved for Bit operations extension
2 C Compressed extension
3 D Double-precision floating-point extension
4 E RV32E base ISA
5 F Single-precision floating-point extension
6 G Additional standard extensions present
7 H Hypervisor mode implemented
8 I RV32I/64I/128I base ISA
9 J Reserved

10 K Reserved
11 L Tentatively reserved for Decimal Floating-Point extension
12 M Integer Multiply/Divide extension
13 N User-level interrupts supported
14 O Reserved
15 P Tentatively reserved for Packed-SIMD extension
16 Q Quad-precision floating-point extension
17 R Reserved
18 S Supervisor mode implemented
19 T Tentatively reserved for Transactional Memory extension
20 U User mode implemented
21 V Tentatively reserved for Vector extension
22 W Reserved
23 X Non-standard extensions present
24 Y Reserved
25 Z Reserved

Table 3.2: Encoding of Base field in misa. All bits that are reserved for future use must return
zero when read.
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3.1.2 Machine Vendor ID Register mvendorid

The mvendorid CSR is an XLEN-bit read-only register encoding the manufacturer of the part.
This register must be readable in any implementation, but a value of 0 can be returned to indicate
the field is not implemented or that this is a non-commercial implementation.

XLEN-1 0

Vendor

XLEN

Figure 3.2: Vendor ID register (mvendorid).

Non-zero vendor IDs will be allocated by the RISC-V Foundation to commercial vendors of
RISC-V chips.

3.1.3 Machine Architecture ID Register marchid

The marchid CSR is an XLEN-bit read-only register encoding the base microarchitecture of the
hart. This register must be readable in any implementation, but a value of 0 can be returned to
indicate the field is not implemented. The combination of mvendorid and marchid should uniquely
identify the type of hart microarchitecture that is implemented.

XLEN-1 0

Architecture ID

XLEN

Figure 3.3: Machine Architecture ID register (marchid).

Open-source project architecture IDs are allocated globally by the RISC-V Foundation, and have
non-zero architecture IDs with a zero most-significant-bit (MSB). Commercial architecture IDs are
allocated by each commercial vendor independently, but must have the MSB set and cannot contain
zero in the remaining XLEN-1 bits.

The intent is for the architecture ID to represent the microarchitecture associated with the repo
around which development occurs rather than a particular organization. Commercial fabrica-
tions of open-source designs should (and might be required by the license to) retain the original
architecture ID. This will aid in reducing fragmentation and tool support costs, as well as provide
attribution. Open-source architecture IDs should be administered by the Foundation and should
only be allocated to released, functioning open-source projects. Commercial architecture IDs can
be managed independently by any registered vendor but are required to have IDs disjoint from
the open-source architecture IDs (MSB set) to prevent collisions if a vendor wishes to use both
closed-source and open-source microarchitectures.

The convention adopted within the following Implementation field can be used to segregate
branches of the same architecture design, including by organization. The misa register also helps
distinguish different variants of a design, as does the configuration string if present.

3.1.4 Machine Implementation ID Register mimpid

The mimpid CSR provides a unique encoding of the version of the processor implementation. This
register must be readable in any implementation, but a value of 0 can be returned to indicate that
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the field is not implemented. The Implementation value should reflect the design of the RISC-V
processor itself and not any surrounding system.

XLEN-1 0

Implementation

XLEN

Figure 3.4: Machine Implementation ID register (mimpid).

The format of this field is left to the provider of the architecture source code, but will be often
be printed by standard tools as a hexadecimal string without any leading or trailing zeros, so the
Implementation value should be left-justified (i.e., filled in from most-significant nibble down)
with subfields aligned on nibble boundaries to ease human readability.

3.1.5 Hart ID Register mhartid

The mhartid register is an XLEN-bit read-only register containing the integer ID of the hardware
thread running the code. This register must be readable in any implementation. Hart IDs might
not necessarily be numbered contiguously in a multiprocessor system, but at least one hart must
have a hart ID of zero.

XLEN-1 0

Hart ID

XLEN

Figure 3.5: Hart ID register (mhartid).

In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and so require
one hart to have a known hart ID of zero.

For efficiency, system implementers should aim to reduce the magnitude of the largest hart
ID used in a system.

3.1.6 Machine Status Register (mstatus)

The mstatus register is an XLEN-bit read/write register formatted as shown in Figure 3.6. The
mstatus register keeps track of and controls the hart’s current operating state. Restricted views of
the mstatus register appear as the hstatus and sstatus registers in the H and S privilege-level
ISAs respectively.

3.1.7 Privilege and Global Interrupt-Enable Stack in mstatus register

Interrupt-enable bits, MIE, HIE, SIE, and UIE, are provided for each privilege mode. These
bits are primarily used to guarantee atomicity with respect to interrupt handlers at the current
privilege level. When a hart is executing in privilege mode x, interrupts are enabled when x IE=1.
Interrupts for lower privilege modes are always disabled, whereas interrupts for higher privilege
modes are always enabled. Higher-privilege-level code can use separate per-interrupt enable bits
to disable selected interrupts before ceding control to a lower privilege level.
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XLEN-1 XLEN-2 29 28 24 23 20 19 18 17 16 15

SD WPRI VM[4:0] (WARL) WPRI MXR PUM MPRV XS[1:0]

1 XLEN-30 5 4 1 1 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FS[1:0] MPP[1:0] HPP[1:0] SPP MPIE HPIE SPIE UPIE MIE HIE SIE UIE

2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.6: Machine-mode status register (mstatus).

The xIE bits are located in the low-order bits of mstatus, allowing them to be atomically set or
cleared with a single CSR instruction.

To support nested traps, each privilege mode x has a two-level stack of interrupt-enable bits and
privilege modes. x PIE holds the value of the interrupt-enable bit active prior to the trap, and x PP
holds the previous privilege mode. The x PP fields can only hold privilege modes up to x, so MPP
and HPP are two bits wide, SPP is one bit wide, and UPP is implicitly zero. When a trap is taken
from privilege mode y into privilege mode x, x PIE is set to the value of y IE; x IE is set to 0; and
x PP is set to y.

For lower privilege modes, any trap (synchronous or asynchronous) is usually taken at a higher
privilege mode with interrupts disabled. The higher-level trap handler will either service the trap
and return using the stacked information, or, if not returning immediately to the interrupted
context, will save the privilege stack before re-enabling interrupts, so only one entry per stack is
required.

The MRET, HRET, SRET, or URET instructions are used to return from traps in M-mode, H-
mode, S-mode, or U-mode respectively. When executing an xRET instruction, supposing x PP
holds the value y, y IE is set to x PIE; the privilege mode is changed to y; x PIE is set to 1; and
x PP is set to U (or M if user-mode is not supported).

When the stack is popped, the lowest-supported privilege mode with interrupts enabled is added
to the bottom of stack to help catch errors that cause invalid entries to be popped off the stack.

x PP fields are WLRL fields that need only be able to store supported privilege modes.

If the machine provides only U and M modes, then only a single hardware storage bit is required
to represent either 00 or 11 in MPP. If the machine provides only M mode, then MPP is
hardwired to 11.

User-level interrupts are an optional extension and have been allocated the ISA extension letter N.
If user-level interrupts are omitted, the UIE and UPIE bits are hardwired to zero. For all other
supported privilege modes x, the x IE, x PIE, and x PP fields are required to be implemented.

User-level interrupts are primarily intended to support secure embedded systems with only M-
mode and U-mode present.
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3.1.8 Virtualization Management Field in mstatus Register

The virtualization management field VM[4:0] indicates the currently active scheme for virtualiza-
tion, including virtual memory translation and protection. Table 3.3 shows the currently defined
virtualization schemes. Only the Mbare mode is mandatory for a RISC-V hardware implementa-
tion. The Mbare, Mbb, and Mbbid schemes are described in Sections 3.7–3.8, while the page-based
virtual memory schemes are described in later chapters.

Each setting of the VM field defines operation at all supported privilege levels, and the behavior
of some VM settings might differ depending on the privilege levels supported in hardware.

Value Abbreviation Modes Required Description

0 Mbare M No translation or protection.
1 Mbb M, U Single base-and-bound.
2 Mbbid M, U Separate instruction and data base-and-bound.

3–7 Reserved

8 Sv32 M, S, U Page-based 32-bit virtual addressing.
9 Sv39 M, S, U Page-based 39-bit virtual addressing.

10 Sv48 M, S, U Page-based 48-bit virtual addressing.
11 Sv57 M, S, U Reserved for page-based 57-bit virtual addressing.
12 Sv64 M, S, U Reserved for page-based 64-bit virtual addressing.

13–31 Reserved

Table 3.3: Encoding of virtualization management field VM[4:0].

Mbare corresponds to no memory management or translation, and so all effective addresses regard-
less of privilege mode are treated as machine physical addresses. Mbare is the mode entered at
reset.

Mbb is a base-and-bounds architectures for systems with at least two privilege levels (U and M).
Mbb is suited for systems that require low-overhead translation and protection for user-mode code,
and that do not require demand-paged virtual memory (swapping is supported). A variant Mbbid
provides separate address and data segments to allow an execute-only code segment to be shared
between processes.

Sv32 is a page-based virtual-memory architecture for RV32 systems providing a 32-bit virtual
address space designed to support modern supervisor-level operating systems, including Unix-based
systems.

Sv39 and Sv48 are page-based virtual-memory architectures for RV64 systems providing a 39-bit
or 48-bit virtual address space respectively to support modern supervisor-level operating systems,
including Unix-based systems.

Sv32, Sv39, and Sv48 require implementations to support M, S, and U privilege levels. If H-mode
is also present, additional operations are defined for hypervisor-level code to support multiple
supervisor-level virtual machines. Hypervisor-mode support for virtual machines has not yet been
defined.

The existing Sv39 and Sv48 schemes can be readily extended to Sv57 and Sv64 virtual address
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widths. Sv52, Sv60, Sv68, and Sv76 virtual address space widths are tentatively planned for
RV128 systems, where virtual address widths under 68 bits are intended for applications requiring
128-bit integer arithmetic but not larger address spaces.

Wider virtual address widths incur microarchitectural costs for wider internal registers as
well as longer page-table searches on address-translation cache misses, so we support a range of
virtual address widths where each wider width adds one more level to the in-memory page table.
A single hardware page-table walker design can easily support multiple virtual address widths,
but requires internal hardware registers to support the widest width.

Our current definition of the virtualization management schemes only supports the same base
architecture at every privilege level. Variants of the virtualization schemes can be defined to
support narrow widths at lower-privilege levels, e.g., to run RV32 code on an RV64 system.

VM is a WARL field, so whether a VM setting is supported by an implementation can be deter-
mined by writing the value to VM, then reading the value back from VM to see if the same value
was returned.

3.1.9 Memory Privilege in mstatus Register

The MPRV bit modifies the privilege level at which loads and stores execute. When MPRV=0,
translation and protection behave as normal. When MPRV=1, data memory addresses are trans-
lated and protected as though the current privilege mode were set to MPP. Instruction address-
translation and protection are unaffected.

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 4.13) will succeed.
When MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed.

The MPRV and MXR mechanisms were conceived to improve the efficiency of M-mode routines
that emulate missing hardware features, e.g., misaligned loads and stores. MPRV obviates the
need to perform address translation in software. MXR allows instruction words to be loaded
from pages marked execute-only.

For simplicity, MPRV and MXR are in effect regardless of privilege mode, but in normal
use will only be enabled for short sequences in machine mode.

The PUM (Protect User Memory) bit modifies the privilege with which S-mode loads, stores, and
instruction fetches access virtual memory. When PUM=0, translation and protection behave as
normal. When PUM=1, S-mode memory accesses to pages that are accessible by U-mode (U=1 in
Figure 4.13) will fault. PUM has no effect when page-based virtual memory is not in effect. Note
that, while PUM is ordinarily ignored when not executing in S-mode, it is in effect when MPRV=1
and MPP=S.

3.1.10 Extension Context Status in mstatus Register

Supporting substantial extensions is one of the primary goals of RISC-V, and hence we define a
standard interface to allow unchanged privileged-mode code, particularly a supervisor-level OS, to
support arbitrary user-mode state extensions.
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To date, there are no standard extensions that define additional state beyond the floating-point
CSR and data registers.

The FS[1:0] read/write field and the XS[1:0] read-only field are used to reduce the cost of context
save and restore by setting and tracking the current state of the floating-point unit and any other
user-mode extensions respectively. The FS field encodes the status of the floating-point unit,
including the CSR fcsr and floating-point data registers f0–f31, while the XS field encodes the
status of any additional user-mode extensions and associated state. These fields can be checked
by a context switch routine to quickly determine whether a state save or restore is required. If a
save or restore is required, additional instructions and CSRs are typically required to effect and
optimize the process.

The design anticipates that most context switches will not need to save/restore state in either
or both of the floating-point unit or other extensions, so provides a fast check via the SD bit.

The FS and XS fields use the same status encoding as shown in Table 3.4, with the four possible
status values being Off, Initial, Clean, and Dirty.

Status FS Meaning XS Meaning

0 Off All off
1 Initial None dirty or clean, some on
2 Clean None dirty, some clean
3 Dirty Some dirty

Table 3.4: Encoding of FS[1:0] and XS[1:0] status fields.

In systems that do not implement S-mode and do not have a floating-point unit, the FS field is
hardwired to zero.

In systems without additional user extensions requiring new state, the XS field is hardwired to
zero. Every additional extension with state has a local status register encoding the equivalent of
the XS states. If there is only a single additional extension, its status can be directly mirrored in
the XS field. If there is more than one additional extension, the XS field represents a summary of
all extensions’ status as shown in Table 3.4.

The XS field effectively reports the maximum status value across all user-extension status fields,
though individual extensions can use a different encoding than XS.

The SD bit is a read-only bit that summarizes whether either the FS field or XS field signals the
presence of some dirty state that will require saving extended user context to memory. If both XS
and FS are hardwired to zero, then SD is also always zero.

When an extension’s status is set to Off, any instruction that attempts to read or write the corre-
sponding state will cause an exception. When the status is Initial, the corresponding state should
have an initial constant value. When the status is Clean, the corresponding state is potentially
different from the initial value, but matches the last value stored on a context swap. When the
status is Dirty, the corresponding state has potentially been modified since the last context save.

During a context save, the responsible privileged code need only write out the corresponding state
if its status is Dirty, and can then reset the extension’s status to Clean. During a context restore,
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the context need only be loaded from memory if the status is Clean (it should never be Dirty at
restore). If the status is Initial, the context must be set to an initial constant value on context
restore to avoid a security hole, but this can be done without accessing memory. For example, the
floating-point registers can all be initialized to the immediate value 0.

The FS and XS fields are read by the privileged code before saving the context. The FS field is
set directly by privileged code when resuming a user context, while the XS field is set indirectly by
writing to the status register of the individual extensions. The status fields will also be updated
during execution of instructions, regardless of privilege mode.

Extensions to the user-mode ISA often include additional user-mode state, and this state can be
considerably larger than the base integer registers. The extensions might only be used for some
applications, or might only be needed for short phases within a single application. To improve
performance, the user-mode extension can define additional instructions to allow user-mode software
to return the unit to an initial state or even to turn off the unit.

For example, a coprocessor might require to be configured before use and can be “unconfigured”
after use. The unconfigured state would be represented as the Initial state for context save. If the
same application remains running between the unconfigure and the next configure (which would
set status to Dirty), there is no need to actually reinitialize the state at the unconfigure instruction,
as all state is local to the user process, i.e., the Initial state may only cause the coprocessor state
to be initialized to a constant value at context restore, not at every unconfigure.

Executing a user-mode instruction to disable a unit and place it into the Off state will cause an
illegal instruction exception to be raised if any subsequent instruction tries to use the unit before
it is turned back on. A user-mode instruction to turn a unit on must also ensure the unit’s state is
properly initialized, as the unit might have been used by another context meantime.

Table 3.5 shows all the possible state transitions for the FS or XS status bits. Note that the standard
floating-point extensions do not support user-mode unconfigure or disable/enable instructions.

Standard privileged instructions to initialize, save, and restore extension state are provided to
insulate privileged code from details of the added extension state by treating the state as an
opaque object.

Many coprocessor extensions are only used in limited contexts that allows software to safely
unconfigure or even disable units when done. This reduces the context-switch overhead of large
stateful coprocessors.

We separate out floating-point state from other extension state, as when a floating-point
unit is present the floating-point registers are part of the standard calling convention, and so
user-mode software cannot know when it is safe to disable the floating-point unit.

The XS field provides a summary of all added extension state, but additional microarchitectural
bits might be maintained in the extension to further reduce context save and restore overhead.

The SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e.,
SD=((FS==11) OR (XS==11))). This allows privileged code to quickly determine when no addi-
tional context save is required beyond the integer register set and PC.

The floating-point unit state is always initialized, saved, and restored using standard instructions
(F, D, and/or Q), and privileged code must be aware of FLEN to determine the appropriate space
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Current State Off Initial Clean Dirty
Action

At context save in privileged code

Save state? No No No Yes
Next state Off Initial Clean Clean

At context restore in privileged code

Restore state? No Yes, to initial Yes, from memory N/A
Next state Off Initial Clean N/A

Execute instruction to read state

Action? Exception Execute Execute Execute
Next state Off Initial Clean Dirty

Execute instruction to modify state, including configuration

Action? Exception Execute Execute Execute
Next state Off Dirty Dirty Dirty

Execute instruction to unconfigure unit

Action? Exception Execute Execute Execute
Next state Off Initial Initial Initial

Execute instruction to disable unit

Action? Execute Execute Execute Execute
Next state Off Off Off Off

Execute instruction to enable unit

Action? Execute Execute Execute Execute
Next state Initial Initial Initial Initial

Table 3.5: FS and XS state transitions.

to reserve for each f register.

In a supervisor-level OS, any additional user-mode state should be initialized, saved, and re-
stored using SBI calls that treats the additional context as an opaque object of a fixed maximum
size. The implementation of the SBI initialize, save, and restore calls might require additional
implementation-dependent privileged instructions to initialize, save, and restore microarchitectural
state inside a coprocessor.

All privileged modes share a single copy of the FS and XS bits. In a system with more than one
privileged mode, supervisor mode would normally use the FS and XS bits directly to record the
status with respect to the supervisor-level saved context. Other more-privileged active modes must
be more conservative in saving and restoring the extension state in their corresponding version of
the context, but can rely on the Off state to avoid save and restore, and the Initial state to avoid
saving the state.

In any reasonable use case, the number of context switches between user and supervisor level
should far outweigh the number of context switches to other privilege levels. Note that coproces-
sors should not require their context to be saved and restored to service asynchronous interrupts,
unless the interrupt results in a user-level context swap.
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3.1.11 Machine Trap-Vector Base-Address Register (mtvec)

The mtvec register is an XLEN-bit read/write register that holds the base address of the M-mode
trap vector.

XLEN-1 2 1 0

Trap-Vector Base Address (WARL) 0

XLEN-2 2

Figure 3.7: Machine trap-vector base-address register (mtvec).

The mtvec register must always be implemented, but can contain a hardwired read-only value. If
mtvec is writable, the set of values the register may hold can vary by implementation. The value
in the mtvec register must always be aligned on a 4-byte boundary (the low two bits are always
zero). The value returned by reading a variable mtvec register should always match the value used
to generate the handler PC address when handling traps.

We allow for considerable flexibility in implementation of the trap vector base address. On the
one hand, we do not wish to burden low-end implementations with a large number of state bits,
but on the other hand, we wish to allow flexibility for larger systems.

By default, all traps into machine mode cause the pc to be set to the value in mtvec. Additional
trap vector entry points can be defined by implementations to allow more rapid identification and
service of certain trap causes.

The location of the reset vector and non-maskable interrupt vector are implementation-defined.

Reset, NMI vectors, and other interrupt vector default locations are given in a platform specifi-
cation.

3.1.12 Machine Trap Delegation Registers (medeleg and mideleg)

By default, all traps at any privilege level are handled in machine mode, though a machine-mode
handler can redirect traps back to the appropriate level with the MRET instruction (Section 3.2.1).
To increase performance, implementations can provide individual read/write bits within medeleg

and mideleg to indicate that certain exceptions and interrupts should be processed directly by a
lower privilege level. The machine exception delegation register (medeleg) and machine interrupt
delegation register (mideleg) are XLEN-bit read/write registers.

In systems with all four privilege modes (M/H/S/U), a set bit in medeleg or mideleg will delegate
any corresponding trap in U-mode, S-mode, or H-mode to the H-mode trap handler. H-mode may
in turn set corresponding bits in the hedeleg and hideleg registers to delegate traps that occur
in S-mode or U-mode to the S-mode trap handler. If U-mode traps are supported, S-mode may in
turn set corresponding bits in the sedeleg and sideleg registers to delegate traps that occur in
U-mode to the U-mode trap handler.

In systems with three privilege modes (M/S/U), setting a bit in medeleg or mideleg will delegate
the corresponding trap in S-mode or U-mode to the S-mode trap handler. If U-mode traps are
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supported, S-mode may in turn set corresponding bits in the sedeleg and sideleg registers to
delegate traps that occur in U-mode to the U-mode trap handler.

In systems with two privilege modes (M/U) and support for U-mode traps, setting a bit in medeleg

or mideleg will delegate the corresponding trap in U-mode to the U-mode trap handler.

If systems with only M-mode, or with both M-mode and U-mode but without U-mode trap support,
the medeleg and mideleg registers should be hardwired to zero.

When a trap is delegated to a less-privileged mode x, the x cause register is written with the trap
cause; the x epc register is written with the virtual address of the instruction that took the trap;
the x PP field of mstatus is written with the active privilege mode at the time of the trap; the
x PIE field of mstatus is written with the value of the active interrupt-enable bit at the time of the
trap; and the x IE field of mstatus is cleared. The mcause and mepc registers and the MPP and
MPIE fields of mstatus are not written.

An implementation shall not hardwire any delegation bits to one, i.e., any trap that can be delegated
must support not being delegated. An implementation can choose to subset the delegatable traps,
with the supported delegatable bits found by writing one to every bit location, then reading back
the value in medeleg or mideleg to see which bit positions hold a one.

XLEN-1 0

Synchronous Exceptions (WARL)

XLEN

Figure 3.8: Machine Exception Delegation Register medeleg.

medeleg has a bit position allocated for every synchronous exception shown in Table 3.6, with the
index of the bit position equal to the value returned in the mcause register (i.e., setting bit 8 allows
user-mode environment calls to be delegated to a lower-privilege trap handler).

XLEN-1 0

Interrupts (WARL)

XLEN

Figure 3.9: Machine Exception Delegation Register mideleg.

mideleg holds trap delegation bits for individual interrupts, with the layout of bits matching those
in the mip register (i.e., STIP interrupt delegation control is located in bit 5).

3.1.13 Machine Interrupt Registers (mip and mie)

The mip register is an XLEN-bit read/write register containing information on pending interrupts,
while mie is the corresponding XLEN-bit read/write register containing interrupt enable bits. Only
the bits corresponding to lower-privilege software interrupts (USIP, SSIP, HSIP) and timer inter-
rupts (UTIP, STIP and HTIP) in mip are writable through this CSR address; the remaining bits
are read-only.

Restricted views of the mip and mie registers appear as the hip/hie, sip/sie, and uip/uie registers
in H-mode, S-mode, and U-mode respectively. If an interrupt is delegated to privilege mode x by
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setting a bit in the mideleg register, it becomes visible in the x ip register and is maskable using
the x ie register. Otherwise, the corresponding bits in x ip and x ie appear to be hardwired to
zero.

XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0

WIRI MEIP HEIP SEIP UEIP MTIP HTIP STIP UTIP MSIP HSIP SSIP USIP

XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.10: Machine interrupt-pending register (mip).

XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0

WPRI MEIE HEIE SEIE UEIE MTIE HTIE STIE UTIE MSIE HSIE SSIE USIE

XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.11: Machine interrupt-enable register (mie).

The MTIP, HTIP, STIP, UTIP bits correspond to timer interrupt-pending bits for machine, hyper-
visor, supervisor, and user timer interrupts, respectively. The MTIP bit is read-only and is cleared
by writing to the memory-mapped machine-mode timer compare register. The UTIP, STIP and
HTIP bits may be written by M-mode software to deliver timer interrupts to lower privilege levels.
User, supervisor and hypervisor software may clear the UTIP, STIP and HTIP bits with calls to
the AEE, SEE, or HEE, respectively.

There is a separate timer interrupt-enable bit, named MTIE, HTIE, STIE, and UTIE for M-mode,
H-mode, S-mode, and U-mode timer interrupts respectively.

Each lower privilege level has a separate software interrupt-pending bit (HSIP, SSIP, USIP), which
can be both read and written by CSR accesses from code running on the local hart at the associated
or any higher privilege level. The machine-level MSIP bits are written by accesses to memory-
mapped control registers, which are used by remote harts to provide machine-mode interprocessor
interrupts. Interprocessor interrupts for lower privilege levels are implemented through ABI, SBI
or HBI calls to the AEE, SEE or HEE respectively, which might ultimately result in a machine-
mode write to the receiving hart’s MSIP bit. A hart can write its own MSIP bit using the same
memory-mapped control register.

We only allow a hart to directly write its own HSIP, SSIP, or USIP bits when running in
appropriate mode, as other harts might be virtualized and possibly descheduled by higher privilege
levels. We rely on ABI, SBI, and HBI calls to provide interprocessor interrupts for this reason.
Machine-mode harts are not virtualized and can directly interrupt other harts by setting their
MSIP bits, typically using uncached I/O writes to memory-mapped control registers depending
on the platform specification.

The MEIP, HEIP, SEIP, UEIP bits correspond to external interrupt-pending bits for machine,
hypervisor, supervisor, and user external interrupts, respectively. These bits are read-only and
are set and cleared by a platform-specific interrupt controller, such as the standard platform-level
interrupt controller specified in Chapter 7. There is a separate external interrupt-enable bit, named
MEIE, HEIE, SEIE, and UEIE for M-mode, H-mode, S-mode, and U-mode external interrupts
respectively.

The non-maskable interrupt is not made visible via the mip register as its presence is implicitly
known when executing the NMI trap handler.
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For all the various interrupt types (software, timer, and external), if a privilege level is not sup-
ported, the associated pending and interrupt-enable bits are hardwired to zero in the mip and mie

registers respectively. Hence, these are all effectively WARL fields.

Implementations can add additional platform-specific machine-level interrupt sources to the high
bits of these registers, though the expectation is that most external interrupts will be routed
through the platform interrupt controller and be delivered via MEIP.

An interrupt i will be taken if bit i is set in both mip and mie, and if interrupts are globally enabled.
By default, M-mode interrupts are globally enabled if the hart’s current privilege mode is less than
M, or if the current privilege mode is M and the MIE bit in the mstatus register is set. If bit i
in mideleg is set, however, interrupts are considered to be globally enabled if the hart’s current
privilege mode equals the delegated privilege mode (H, S, or U) and that mode’s interrupt enable
bit (HIE, SIE or UIE in mstatus) is set, or if the current privilege mode is less than the delegated
privilege mode.

Multiple simultaneous interrupts and traps at the same privilege level are handled in the following
decreasing priority order: external interrupts, software interrupts, timer interrupts, then finally any
synchronous traps.

3.1.14 Machine Timer Registers (mtime and mtimecmp)

Platforms provide a real-time counter, exposed as a memory-mapped machine-mode register, mtime.
mtime must run at constant frequency, and the platform must provide a mechanism for determining
the timebase of mtime.

The mtime register has a 64-bit precision on all RV32, RV64, and RV128 systems. Platforms provide
a 64-bit memory-mapped machine-mode timer compare register (mtimecmp), which causes a timer
interrupt to be posted when the mtime register contains a value greater than or equal to the value
in the mtimecmp register. The interrupt remains posted until it is cleared by writing the mtimecmp

register. The interrupt will only be taken if interrupts are enabled and the MTIE bit is set in the
mie register.

63 0

mtime

64

Figure 3.12: Machine time register (memory-mapped control register).

63 0

mtimecmp

64

Figure 3.13: Machine time compare register (memory-mapped control register).

The timer facility is defined to use wall-clock time rather than a cycle counter to support modern
processors that run with a highly variable clock frequency to save energy through dynamic voltage
and frequency scaling.
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Accurate real-time clocks (RTCs) are relatively expensive to provide (requiring a crystal
or MEMS oscillator) and have to run even when the rest of system is powered down, and so
there is usually only one in a system located in a different frequency/voltage domain from the
processors. Hence, the RTC must be shared by all the harts in a system and accesses to the RTC
will potentially incur the penalty of a voltage-level-shifter and clock-domain crossing. It is thus
more natural to expose mtime as a memory-mapped register than as a CSR.

Lower privilege levels do not have their own timecmp registers. Instead, machine-mode
software can implement any number of virtual timers on a hart by multiplexing the next timer
interrupt into the mtimecmp register.

Simple fixed-frequency systems can use a single clock for both cycle counting and wall-clock
time.

In RV32, memory-mapped writes to mtimecmp modify only one 32-bit part of the register. The
following code sequence sets a 64-bit mtimecmp value without spuriously generating a timer interrupt
due to the intermediate value of the comparand:

# New comparand is in a1:a0.

li t0, -1

sw t0, mtimecmp # No smaller than old value.

sw a1, mtimecmp+4 # No smaller than new value.

sw a0, mtimecmp # New value.

Figure 3.14: Sample code for setting the 64-bit time comparand in RV32 assuming the registers
live in a strongly ordered I/O region.

3.1.15 Hardware Performance Monitor

M-mode includes a basic hardware performance monitoring facility. The mcycle CSR holds a count
of the number of cycles the hart has executed since some arbitrary time in the past. The minstret

CSR holds a count of the number of instructions the hart has retired since some arbitrary time in
the past. The mcycle and minstret registers have 64-bit precision on all RV32, RV64, and RV128
systems.

The hardware performance monitor includes 29 additional event counters, mhpmcounter3–
mhpmcounter31. The event selector CSRs, mhpmevent3–mhpmevent31, are WARL registers that
control which event causes the corresponding counter to increment. The meaning of these events
is defined by the platform, but event 0 is reserved to mean “no event.” All counters should be
implemented, but a legal implementation is to hard-wire both the counter and its corresponding
event selector to 0.

All of these counters have 64-bit precision on RV32, RV64, and RV128.

On RV32 only, reads of the mcycle, minstret, and mhpmcountern CSRs return the low 32 bits, while
reads of the mcycleh, minstreth, and mhpmcounternh CSRs return bits 63–32 of the corresponding
counter.

On RV128 systems, the 64-bit values in mcycle, minstret, and mhpmcountern are sign-extended
to 128-bits when read.

On RV128 systems, both signed and unsigned 64-bit values are held in a canonical form with
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63 0

mcycle

minstret

XLEN-1 0

mhpmcounter3 mhpmevent3

mhpmcounter4 mhpmevent4
...

...
mhpmcounter30 mhpmevent30

mhpmcounter31 mhpmevent31

64 XLEN

Figure 3.15: Hardware performance monitor counters.

31 0

mcycleh

minstreth

mhpmcounter3h

mhpmcounter4h

...

mhpmcounter30h

mhpmcounter31h

32

Figure 3.16: Upper 32 bits of hardware performance monitor counters, RV32 only.

bit 63 repeated in all higher bit positions. The counters are 64-bit values even in RV128,
and so the counter CSR reads preserve the sign-extension invariant. Implementations may
choose to implement fewer bits of the counters, provided software would be unlikely to experi-
ence wraparound (e.g., 263 instructions executed) and thereby avoid having to actually implement
the sign-extension circuitry.

3.1.16 Machine Counter-Enable Registers (m[h|s|u]counteren)

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 3.17: Machine counter-enable registers (mhcounteren, mscounteren, mucounteren).

The machine counter-enable registers, mhcounteren, mscounteren, and mucounteren, control the
availability of the hardware performance monitoring counters to hypervisor, supervisor, and user
modes, respectively.

When the CY, TM, IR, or HPMn bit in the mhcounteren register is clear, attempts to read
the cycle, time, instret, or hpmcountern register while executing in H-mode will cause an illegal
instruction exception. When one of these bits is set, access to the corresponding register is permitted
in H-mode. The same bit positions in the mscounteren register analogously control access to these
registers while executing in S-mode. The same bit positions in the mucounteren register analogously
control access to these registers while executing in U-mode.

Each counter-enable register must be implemented if the corresponding privilege mode is imple-
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mented. However, any of the bits may contain a hardwired value of zero, indicating reads to the
corresponding counter will cause an exception when executing in the corresponding privilege mode.
Hence, they are effectively WARL fields.

The counter-enable bits support two common use cases with minimal hardware. For systems that
do not need high-performance timers and counters, machine-mode software can trap accesses and
implement all features in software. For systems that need high-performance timers and counters
but are not concerned with obfuscating the underlying hardware counters, the counters can be
directly exposed to lower privilege modes.

The cycle, instret, and hpmcountern CSRs are read-only shadows of mcycle, minstret, and
mhpmcountern, respectively. The time CSR is a read-only shadow of the memory-mapped mtime

register.

Implementations can convert reads of the time CSR into loads to the memory-mapped mtime

register, or hard-wire the TM bits in mxcounteren to 0 and emulate this functionality in M-mode
software.

3.1.17 Machine Scratch Register (mscratch)

The mscratch register is an XLEN-bit read/write register dedicated for use by machine mode.
Typically, it is used to hold a pointer to a machine-mode hart-local context space and swapped
with a user register upon entry to an M-mode trap handler.

XLEN-1 0

mscratch

XLEN

Figure 3.18: Machine-mode scratch register.

The MIPS ISA allocated two user registers (k0/k1) for use by the operating system. Although
the MIPS scheme provides a fast and simple implementation, it also reduces available user
registers, and does not scale to further privilege levels, or nested traps. It can also require both
registers are cleared before returning to user level to avoid a potential security hole and to provide
deterministic debugging behavior.

The RISC-V user ISA was designed to support many possible privileged system environments
and so we did not want to infect the user-level ISA with any OS-dependent features. The RISC-
V CSR swap instructions can quickly save/restore values to the mscratch register. Unlike the
MIPS design, the OS can rely on holding a value in the mscratch register while the user context
is running.

3.1.18 Machine Exception Program Counter (mepc)

mepc is an XLEN-bit read/write register formatted as shown in Figure 3.19. The low bit of mepc
(mepc[0]) is always zero. On implementations that do not support instruction-set extensions with
16-bit instruction alignment, the two low bits (mepc[1:0]) are always zero.

The mepc register can never hold a PC value that would cause an instruction-address-misaligned
exception.

When a trap is taken, mepc is written with the virtual address of the instruction that encountered
the exception.
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XLEN-1 0

mepc

XLEN

Figure 3.19: Machine exception program counter register.

3.1.19 Machine Cause Register (mcause)

The mcause register is an XLEN-bit read-write register formatted as shown in Figure 3.20. The
Interrupt bit is set if the trap was caused by an interrupt. The Exception Code field contains a
code identifying the last exception. Table 3.6 lists the possible machine-level exception codes. The
Exception Code is an WLRL field, so is only guaranteed to hold supported exception codes.

XLEN-1 XLEN-2 0

Interrupt Exception Code (WLRL)

1 XLEN-1

Figure 3.20: Machine Cause register mcause.

We do not distinguish privileged instruction exceptions from illegal opcode exceptions. This sim-
plifies the architecture and also hides details of which higher-privilege instructions are supported
by an implementation. The privilege level servicing the trap can implement a policy on whether
these need to be distinguished, and if so, whether a given opcode should be treated as illegal or
privileged.

Interrupts can be separated from other traps with a single branch on the sign of the mcause

register value. A shift left can remove the interrupt bit and scale the exception codes to index
into a trap vector table.

3.1.20 Machine Bad Address (mbadaddr) Register

mbadaddr is an XLEN-bit read-write register formatted as shown in Figure 3.21. When a hardware
breakpoint is triggered, or an instruction-fetch, load, or store address-misaligned or access excep-
tion occurs, mbadaddr is written with the faulting address. mbadaddr is not modified for other
exceptions.

XLEN-1 0

mbadaddr

XLEN

Figure 3.21: Machine bad address register.

For instruction-fetch access faults on RISC-V systems with variable-length instructions, mbadaddr
will point to the portion of the instruction that caused the fault while mepc will point to the
beginning of the instruction.
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Interrupt Exception Code Description

1 0 User software interrupt
1 1 Supervisor software interrupt
1 2 Hypervisor software interrupt
1 3 Machine software interrupt
1 4 User timer interrupt
1 5 Supervisor timer interrupt
1 6 Hypervisor timer interrupt
1 7 Machine timer interrupt
1 8 User external interrupt
1 9 Supervisor external interrupt
1 10 Hypervisor external interrupt
1 11 Machine external interrupt
1 ≥12 Reserved

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Environment call from H-mode
0 11 Environment call from M-mode
0 ≥12 Reserved

Table 3.6: Machine cause register (mcause) values after trap.

3.2 Machine-Mode Privileged Instructions

3.2.1 Trap-Return Instructions

Instructions to return from trap are encoded under the PRIV minor opcode.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
MRET/HRET/SRET/URET 0 PRIV 0 SYSTEM

To return after handling a trap, there are separate trap return instructions per privilege level:
MRET, HRET, SRET, and URET. MRET is always provided, while HRET and SRET must be
provided if the respective privilege mode is supported. URET is only provided if user-mode traps are
supported. An x RET instruction can be executed in privilege mode x or higher, where executing a
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lower-privilege x RET instruction will pop the relevant lower-privilege interrupt enable and privilege
mode stack. In addition to manipulating the privilege stack as described in Section 3.1.7, x RET
sets the pc to the value stored in the x epc register.

Previously, there was only a single ERET instruction (which was also earlier known as SRET).
To support the addition of user-level interrupts, we needed to add a separate URET instruction
to continue to allow classic virtualization of OS code using the ERET instruction. It then became
more orthogonal to support a different xRET instruction per privilege level (which also enables
virtualization of a hypervisor at supervisor level).

3.2.2 Wait for Interrupt

The Wait for Interrupt instruction (WFI) provides a hint to the implementation that the current
hart can be stalled until an interrupt might need servicing. Execution of the WFI instruction
can also be used to inform the hardware platform that suitable interrupts should preferentially be
routed to this hart. WFI is available in all of the supported S, H, and M privilege modes, and
optionally available to U-mode for implementations that support U-mode interrupts.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
WFI 0 PRIV 0 SYSTEM

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
exception will be taken on the following instruction, i.e., execution resumes in the trap handler and
mepc = pc + 4.

The following instruction takes the interrupt exception and trap, so that a simple return from
the trap handler will execute code after the WFI instruction.

The WFI instruction is just a hint, and a legal implementation is to implement WFI as a NOP.

If the implementation does not stall the hart on execution of the instruction, then the interrupt
will be taken on some instruction in the idle loop containing the WFI, and on a simple return
from the handler, the idle loop will resume execution.

We have removed the earlier requirement that implementations ignore the rs1 and rd fields, so
non-zero values in these fields should now raise illegal instruction exceptions.

The WFI instruction can also be executed when interrupts are disabled. The operation of WFI
must be unaffected by the global interrupt bits in mstatus (MIE/HIE/SIE/UIE) (i.e., the hart
must resume if a locally enabled interrupt becomes pending), but should honor the individual
interrupt enables (e.g, MTIE) (i.e., implementations should avoid resuming the hart if the interrupt
is pending but not individually enabled). WFI is also required to resume execution for locally
enabled interrupts pending at any privilege level, regardless of the global interrupt enable at each
privilege level.

If the event that causes the hart to resume execution does not cause an interrupt to be taken,
execution will resume at pc + 4, and software must determine what action to take, including
looping back to repeat the WFI if there was no actionable event.
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By allowing wakeup when interrupts are disabled, an alternate entry point to an interrupt handler
can be called that does not require saving the current context, as the current context can be saved
or discarded before the WFI is executed.

As implementations are free to implement WFI as a NOP, software must explicitly check
for any relevant pending but disabled interrupts in the code following an WFI, and should loop
back to the WFI if no suitable interrupt was detected. The mip, hip, sip, or uip registers can
be interrogated to determine the presence of any interrupt in machine, hypervisor, supervisor,
or user mode respectively.

The operation of WFI is unaffected by the delegation register settings.
WFI is defined so that an implementation can trap into a higher privilege mode, either im-

mediately on encountering the WFI or after some interval to initiate a machine-mode transition
to a lower power state, for example.

The same “wait-for-event” template might be used for possible future extensions that wait on
memory locations changing, or message arrival.

3.3 Reset

Upon reset, a hart’s privilege mode is set to M. The mstatus fields MIE and MPRV are reset to 0,
and the VM field is reset to Mbare. The pc is set to an implementation-defined reset vector. The
mcause register is set to a value indicating the cause of the reset. All other hart state is undefined.

The mcause values after reset have implementation-specific interpretation, but the value 0 should
be returned on implementations that do not distinguish different reset conditions. Implementations
that distinguish different reset conditions should only use 0 to indicate the most complete reset
(e.g., hard reset).

Some designs may have multiple causes of reset (e.g., power-on reset, external hard reset,
brownout detected, watchdog timer elapse, sleep-mode wakeup), which machine-mode software
and debuggers may wish to distinguish.

mcause reset values may alias mcause values following synchronous exceptions. There is no
ambiguity in this overlap, since on reset the pc is set to a different value than on other traps.

3.4 Non-Maskable Interrupts

Non-maskable interrupts (NMIs) are only used for hardware error conditions, and cause an imme-
diate jump to an implementation-defined NMI vector running in M-mode regardless of the state of
a hart’s interrupt enable bits. The mepc register is written with the address of the next instruction
to be executed at the time the NMI was taken, and mcause is set to a value indicating the source
of the NMI. The NMI can thus overwrite state in an active machine-mode interrupt handler.

The values written to mcause on an NMI are implementation-defined, but a value of 0 is reserved
to mean “unknown cause” and implementations that do not distinguish sources of NMIs via the
mcause register should return 0.

Unlike resets, NMIs do not reset processor state, enabling diagnosis, reporting, and possible con-
tainment of the hardware error.
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3.5 Physical Memory Attributes

The physical memory map for a complete system includes various address ranges, some correspond-
ing to memory regions, some to memory-mapped control registers, and some to empty holes in the
address space. Some memory regions might not support reads, writes, or execution; some might
not support subword or subblock accesses; some might not support atomic operations; and some
might not support cache coherence or might have different memory models. Similarly, memory-
mapped control registers vary in their supported access widths, support for atomic operations, and
whether read and write accesses have associated side effects. In RISC-V systems, these properties
and capabilities of each region of the machine’s physical address space are termed physical memory
attributes (PMAs). This section describes RISC-V PMA terminology and how RISC-V systems
implement and check PMAs.

PMAs are inherent properties of the underlying hardware and rarely change during system oper-
ation. Unlike physical memory protection values described in Section 3.6, PMAs do not vary by
execution context. The PMAs of some memory regions are fixed at chip design time—for example,
for an on-chip ROM. Others are fixed at board design time, depending, for example, on which
other chips are connected to off-chip buses. Off-chip buses might also support devices that could
be changed on every power cycle (cold pluggable) or dynamically while the system is running (hot
pluggable). Some devices might be configurable at run time to support different uses that imply
different PMAs—for example, an on-chip scratchpad RAM might be cached privately by one core
in one end-application, or accessed as a shared non-cached memory in another end-application.

Most systems will require that at least some PMAs are dynamically checked in hardware later in
the execution pipeline after the physical address is known, as some operations will not be supported
at all physical memory addresses, and some operations require knowing the current setting of a
configurable PMA attribute. While many other systems specify some PMAs in the virtual memory
page tables and use the TLB to inform the pipeline of these properties, this approach injects
platform-specific information into a virtualized layer and can cause system errors unless attributes
are correctly initialized in each page-table entry for each physical memory region. In addition, the
available page sizes might not be optimal for specifying attributes in the physical memory space,
leading to address-space fragmentation and inefficient use of expensive TLB entries.

For RISC-V, we separate out specification and checking of PMAs into a separate hardware structure,
the PMA checker. In many cases, the attributes are known at system design time for each physical
address region, and can be hardwired into the PMA checker. Where the attributes are run-time
configurable, platform-specific memory-mapped control registers can be provided to specify these
attributes at a granularity appropriate to each region on the platform (e.g., for an on-chip SRAM
that can be flexibly divided between cacheable and uncacheable uses). PMAs are checked for any
access to physical memory, including accesses that have undergone virtual to physical memory
translation. To aid in system debugging, we strongly recommend that, where possible, RISC-V
processors precisely trap physical memory accesses that fail PMA checks. Precise PMA traps
might not always be possible, for example, when probing a legacy bus architecture that uses access
failures as part of the discovery mechanism. In this case, error responses from slave devices will be
reported as imprecise bus-error interrupts.

PMAs must also be readable by software to correctly access certain devices or to correctly configure
other hardware components that access memory, such as DMA engines. As PMAs are tightly tied
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to a given physical platform’s organization, many details are inherently platform-specific, as is
the means by which software can learn the PMA values for a platform. The configuration string
(Chapter 8) can encode PMAs for on-chip devices and might also describe on-chip controllers for off-
chip buses that can be dynamically interrogated to discover attached device PMAs. Some devices,
particularly legacy buses, do not support discovery of PMAs and so will give error responses or
time out if an unsupported access is attempted. Typically, platform-specific machine-mode code
will extract PMAs and ultimately present this information to higher-level less-privileged software
using some standard representation.

Where platforms support dynamic reconfiguration of PMAs, an interface will be provided to set
the attributes by passing requests to a machine-mode driver that can correctly reconfigure the
platform. For example, switching cacheability attributes on some memory regions might involve
platform-specific operations, such as cache flushes, that are available only to machine-mode.

3.5.1 Main Memory versus I/O versus Empty Regions

The most important characterization of a given memory address range is whether it holds regular
main memory, or I/O devices, or is empty. Regular main memory is required to have a number
of properties, specified below, whereas I/O devices can have a much broader range of attributes.
Memory regions that do not fit into regular main memory, for example, device scratchpad RAMs,
are categorized as I/O regions. Empty regions are also classified as I/O regions but with attributes
specifying that no accesses are supported.

3.5.2 Supported Access Type PMAs

Access types specify which access widths, from 8-bit byte to long multi-word burst, are supported,
and also whether misaligned accesses are supported for each access width.

Although software running on a RISC-V hart cannot directly generate bursts to memory, software
might have to program DMA engines to access I/O devices and might therefore need to know
which access sizes are supported.

Main memory regions always support read, write, and execute of all access widths required by the
attached devices.

In some cases, the design of a processor or device accessing main memory might support other
widths, but must be able to function with the types supported by the main memory.

I/O regions can specify which combinations of read, write, or execute accesses to which data widths
are supported.

3.5.3 Atomicity PMAs

Atomicity PMAs describes which atomic instructions are supported in this address region. Main
memory regions must support the atomic operations required by the processors attached. I/O
regions may only support a subset or none of the processor-supported atomic operations.
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Support for atomic instructions is divided into two categories: LR/SC and AMOs. Within
AMOs, there are four levels of support: AMONone, AMOSwap, AMOLogical, and AMOArith-
metic. AMONone indicates that no AMO operations are supported. AMOSwap indicates that
only amoswap instructions are supported in this address range. AMOLogical indicates that swap
instructions plus all the logical AMOs (amoand, amoor, amoxor) are supported. AMOArithmetic
indicates that all RISC-V AMOs are supported. For each level of support, naturally aligned AMOs
of a given width are supported if the underlying memory region supports reads and writes of that
width.

AMO Class Supported Operations

AMONone None
AMOSwap amoswap

AMOLogical above + amoand, amoor, amoxor
AMOArithmetic above + amoadd, amomin, amomax, amominu, amomaxu

Table 3.7: Classes of AMOs supported by I/O regions. Main memory regions must always support
all AMOs required by the processor.

We recommend providing at least AMOLogical support for I/O regions where possible. Most
I/O regions will not support LR/SC accesses, as these are most conveniently built on top of a
cache-coherence scheme.

3.5.4 Memory-Ordering PMAs

Regions of the address space are classified as either main memory or I/O for the purposes of ordering
by the FENCE instruction and atomic-instruction ordering bits.

Accesses by one hart to main memory regions are observable not only by other harts but also
by other devices with the capability to initiate requests in the main memory system (e.g., DMA
engines). Main memory regions always have the standard RISC-V relaxed memory model.

Accesses by one hart to the I/O space are observable not only by other harts and bus mastering
devices, but also by targeted slave I/O devices. Within I/O, regions may further be classified as
implementing either relaxed or strong ordering. A relaxed I/O region has no ordering guarantees
on how memory accesses made by one hart are observable by different harts or I/O devices beyond
those enforced by FENCE and AMO instructions. A strongly ordered I/O region ensures that all
accesses made by a hart to that region are only observable in program order by all other harts or
I/O devices.

Each strongly ordered I/O region specifies a numbered ordering channel, which is a mechanism by
which ordering guarantees can be provided between different I/O regions. Channel 0 is used to
indicate point-to-point strong ordering only, where only accesses by the hart to the single associated
I/O region are strongly ordered.

Channel 1 is used to provide global strong ordering across all I/O regions. Any accesses by a hart to
any I/O region associated with channel 1 can only be observed to have occurred in program order
by all other harts and I/O devices, including relative to accesses made by that hart to relaxed I/O
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regions or strongly ordered I/O regions with different channel numbers. In other words, any access
to a region in channel 1 is equivalent to executing a fence io,io instruction before and after the
instruction.

Other larger channel numbers provide program ordering to accesses by that hart across any regions
with the same channel number.

Systems might support dynamic configuration of ordering properties on each memory region.

Strong ordering can be used to improve compatibility with legacy device driver code, or to enable
increased performance compared to insertion of explicit ordering instructions when the imple-
mentation is known to not reorder accesses.

Local strong ordering (channel 0) is the default form of strong ordering as it is often straight-
forward to provide if there is only a single in-order communication path between the hart and
the I/O device.

Generally, different strongly ordered I/O regions can share the same ordering channel without
additional ordering hardware if they share the same interconnect path and the path does not
reorder requests.

3.5.5 Coherence and Cacheability PMAs

Coherence is a property defined for a single physical address, and indicates that writes to that
address by one agent will eventually be made visible to other agents in the system. Coherence
is not to be confused with the memory consistency model of a system, which defines what values
a memory read can return given the previous history of reads and writes to the entire memory
system. In RISC-V platforms, the use of hardware-incoherent regions is discouraged due to software
complexity, performance, and energy impacts.

The cacheability of a memory region should not affect the software view of the region except
for differences reflected in other PMAs, such as main memory versus I/O classification, memory
ordering, supported accesses and atomic operations, and coherence. For this reason, we treat
cacheability as a platform-level setting managed by machine-mode software only.

Where a platform supports configurable cacheability settings for a memory region, a platform-
specific machine-mode routine will change the settings and flush caches if necessary, so the system
is only incoherent during the transition between cacheability settings. This transitory state should
not be visible to lower privilege levels.

We categorize RISC-V caches into three types: master-private, shared, and slave-private.
Master-private caches are attached to a single master agent, i.e., one that issues read/write
requests to the memory system. Shared caches are located inbetween masters and slaves and
may be hierarchically organized. Slave-private caches do not impact coherence, as they are local
to a single slave and do not affect other PMAs at a master, so are not considered further here.
We use private cache to mean a master-private cache in the following section, unless explicitly
stated otherwise.

Coherence is straightforward to provide for a shared memory region that is not cached by any
agent. The PMA for such a region would simply indicate it should not be cached in a private or
shared cache.

Coherence is also straightforward for read-only regions, which can be safely cached by multiple
agents without requiring a cache-coherence scheme. The PMA for this region would indicate that
it can be cached, but that writes are not supported.
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Some read-write regions might only be accessed by a single agent, in which case they can be
cached privately by that agent without requiring a coherence scheme. The PMA for such regions
would indicate they can be cached. The data can also be cached in a shared cache, as other
agents should not access the region.

If an agent can cache a read-write region that is accessible by other agents, whether caching
or non-caching, a cache-coherence scheme is required to avoid use of stale values. In regions
lacking hardware cache coherence (hardware-incoherent regions), cache coherence can be im-
plemented entirely in software, but software coherence schemes are notoriously difficult to im-
plement correctly and often have severe performance impacts due to the need for conservative
software-directed cache-flushing. Hardware cache-coherence schemes require more complex hard-
ware and can impact performance due to the cache-coherence probes, but are otherwise invisible
to software.

For each hardware cache-coherent region, the PMA would indicate that the region is coherent
and which hardware coherence controller to use if the system has multiple coherence controllers.
For some systems, the coherence controller might be an outer-level shared cache, which might
itself access further outer-level cache-coherence controllers hierarchically.

Most memory regions within a platform will be coherent to software, because they will be
fixed as either uncached, read-only, hardware cache-coherent, or only accessed by one agent.

3.5.6 Idempotency PMAs

Idempotency PMAs describe whether reads and writes to an address region are idempotent. Main
memory regions are assumed to be idempotent. For I/O regions, idempotency on reads and writes
can be specified separately (e.g., reads are idempotent but writes are not). If accesses are non-
idempotent, i.e., there is potentially a side effect on any read or write access, then speculative or
redundant accesses must be avoided.

For the purposes of defining the idempotency PMAs, changes in observed memory ordering created
by redundant accesses are not considered a side effect.

While hardware should always be designed to avoid speculative or redundant accesses to memory
regions marked as non-idempotent, it is also necessary to ensure software or compiler optimiza-
tions do not generate spurious accesses to non-idempotent memory regions.

3.6 Physical Memory Protection

To support secure processing and contain faults, it is desirable to limit the physical addresses
accessible by a lower-privilege context running on a hart. A physical memory protection (PMP)
unit can be provided, with per-hart machine-mode control registers to allow physical memory access
privileges (read, write, execute) to be specified for each physical memory region. The PMP values
are checked in parallel with the PMA checks described in Section 3.5.

The granularity and encoding of the PMP access control settings are platform-specific, and there
might be different granularities and encodings of permissions for different physical memory regions
on a single platform. Certain regions’ privileges can be hardwired—for example, some regions might
only ever be visible in machine mode but no lower-privilege layers.

Platforms vary widely in demands for physical memory protection, and so we defer detailed
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design of PMP structures to each platform. Some PMP designs might just employ a few CSRs
to protect a small number of physical memory segments, while others might employ memory-
resident protection tables with a protection-table cache indexed by a protection-table base register
to protect large physical memory spaces with fine granularity. Systems with a protection-table
base register will usually also provide a physical protection domain ID (PDID) register to denote
the current physical protection domain.

PMP checks are applied to all accesses when the hart is running in H, S, or U modes, and for loads
and stores when the MPRV bit is set in the mstatus register and the MPP field in the mstatus

register contains H, S, or U. PMP violations will always be trapped precisely at the processor.

3.7 Mbare addressing environment

The Mbare environment is entered at reset, or can be entered at any time thereafter by writing 0
to the VM field in the mstatus register.

In the Mbare environment all virtual addresses are converted with no translation into physical
addresses, with truncation of any excess high-order bits. Physical memory protection, as described
in Section 3.6, can be used to constrain accesses by lower-privilege modes.

3.8 Base-and-Bound environments

This section describes the Mbb virtualization environment, which provides a base-and-bound trans-
lation and protection scheme. There are two variants of base-and-bound, Mbb and Mbbid, depend-
ing on whether there is a single base-and-bound (Mbb) or separate base-and-bounds for instruction
fetches and data accesses (Mbbid). This simple translation and protection scheme has the advan-
tage of low complexity and deterministic high performance, as there are never any TLB misses
during operation.

3.8.1 Mbb: Single Base-and-Bound registers (mbase, mbound)

XLEN-1 0

mbase

mbound

XLEN

Figure 3.22: Single Base-and-Bound Registers.

The simpler Mbb system has a single base mbase and single bound mbound register. Mbb is enabled
by writing the value 1 to the VM field in the mstatus register.

The base-and-bound registers define a contiguous virtual-address segment beginning at virtual
address 0 with a length given in bytes by the value in mbound. This virtual address segment is
mapped to a contiguous physical address segment starting at the physical address given in the
mbase register.
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When Mbb is in operation, all lower-privilege mode (U, S, H) instruction-fetch addresses and data
addresses are translated by adding the value of mbase to the virtual address to obtain the physical
address. Simultaneously, the virtual address is compared against the value in the mbound register.
An address fault exception is generated if the virtual address is equal to or greater than the virtual
address limit held in the mbound register.

Machine-mode instruction fetch and data accesses are not translated or checked in Mbb (except for
loads and stores when the MPRV bit is set in mstatus), so machine-mode effective addresses are
treated as physical addresses.

3.8.2 Mbbid: Separate Instruction and Data Base-and-Bound registers

XLEN-1 0

mibase

mibound

mdbase

mdbound

XLEN

Figure 3.23: Separate instruction and data base-and-bound registers.

The Mbbid scheme separates the virtual address segments for instruction fetches and data accesses
to allow a single physical instruction segment to be shared by two or more user-level virtual address
spaces while a separate data segment is allocated to each. Mbbid is enabled by writing 2 to the
VM field of mstatus register.

The split instruction and data base-and-bounds scheme was famously used on Cray supercom-
puters, where it avoids most runtime overheads related to translation and protection provided
the segments fit in physical memory.

The mibase and mibound registers define the physical start address and length of the instruction
segment respectively, while mdbase and mdbound specify the physical start address and length of
the data segment respectively.

The data virtual address segment begins at address 0, while the instruction virtual address segment
begins half way through the virtual address space, at an address given by a leading 1 following by
XLEN-1 trailing zeros (e.g., 0x8000 0000 for 32-bit address space systems). The virtual addresses
of lower privilege-mode instruction fetches are first checked to ensure their high bit is set; if not,
an exception is generated. The high bit is subsequently treated as zero when adding the base to
the virtual address and when checking the bound.

The data and instruction virtual address segments should not overlap, and we felt it more im-
portant to preserve the potential of zero page data accesses (using a 12-bit offset from register
x0) than to support instruction entry points using JALR with x0. In particular, a single JAL
can directly access all of a 2 MiB code segment.

To simplify linking, the instruction virtual address segment start address should be constant
independent of the length of the complete binary. Placing at the midpoint of virtual memory
minimizes the circuitry needed to separate the two segments.
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Systems that provide Mbbid must also provide Mbb. Writes to the CSR addresses corresponding
to mbase should write the same value to mibase & mdbase, and writes to mbound should write the
same value to mibound & mdbound to provide compatible behavior. Reads of mbase should return
the value in mdbase and reads of mbound should return the value in mdbound. When VM is set to
Mbb, instruction fetches no longer check the high bit of the virtual address, and no longer reset
the high bit to zero before adding base and checking bound.

While the split scheme allows a single physical instruction segment to be shared across multiple
user process instances, it also effectively prevents the instruction segment from being written by
the user program (data stores are translated separately) and prevents execution of instructions
from the data segment (instruction fetches are translated separately). These restrictions can
prevent some forms of security attack.

On the other hand, many modern programming systems require, or benefit from, some form
of runtime-generated code, and so these should use the simpler Mbb mode with a single segment,
which is partly why supporting this mode is required if providing Mbbid.



Chapter 4

Supervisor-Level ISA

This chapter describes the RISC-V supervisor-level architecture, which contains a common core
that is used with various supervisor-level address translation and protection schemes. Supervisor-
mode always operates inside a virtual memory scheme defined by the VM field in the machine-mode
mstatus register. Supervisor-level code is written to a given VM scheme, and cannot change the
VM scheme in use.

Supervisor-level code relies on a supervisor execution environment to initialize the environment and
enter the supervisor code at an entry point defined by the system binary interface (SBI). The SBI
also defines function entry points that provide supervisor environment services for supervisor-level
code.

Supervisor mode is deliberately restricted in terms of interactions with underlying physical hard-
ware, such as physical memory and device interrupts, to support clean virtualization. A more
conventional virtualization-unfriendly operating system can be ported while retaining a protected
M-mode environment by using M-mode to unprotect selected physical memory regions for access
by the supervisor, and by delegating selected device interrupts to S-mode.

4.1 Supervisor CSRs

A number of CSRs are provided for the supervisor.

The supervisor should only view CSR state that should be visible to a supervisor-level operating
system. In particular, there is no information about the existence (or non-existence) of higher
privilege levels (hypervisor or machine) visible in the CSRs accessible by the supervisor.

Many supervisor CSRs are a subset of the equivalent machine-mode CSR, and the machine-
mode chapter should be read first to help understand the supervisor-level CSR descriptions.

4.1.1 Supervisor Status Register (sstatus)

The sstatus register is an XLEN-bit read/write register formatted as shown in Figure 4.1. The
sstatus register keeps track of the processor’s current operating state.

47
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XLEN-1 XLEN-2 19 18 17 16 15 14 13 12 9 8 7 6 5 4 3 2 1 0

SD 0 PUM 0 XS[1:0] FS[1:0] 0 SPP 0 SPIE UPIE 0 SIE UIE

1 XLEN-20 1 1 2 2 4 1 2 1 1 2 1 1

Figure 4.1: Supervisor-mode status Register.

The SPP bit indicates the privilege level at which a hart was executing before entering supervisor
mode. When a trap is taken, SPP is set to 0 if the trap originated from user mode, or 1 otherwise.
When an SRET instruction (see Section 3.2.1) is executed to return from the trap handler, the
privilege level is set to user mode if the SPP bit is 0, or supervisor mode if the SPP bit is 1; SPP
is then set to 0.

The SIE bit enables or disables all interrupts in supervisor mode. When SIE is clear, interrupts are
not taken while in supervisor mode. When the hart is running in user-mode, the value in SIE is
ignored, and supervisor-level interrupts are enabled. The supervisor can disable indivdual interrupt
sources using the sie register.

The SPIE bit indicates whether interrupts were enabled before entering supervisor mode. When a
trap is taken into supervisor mode, SPIE is set to either SIE or UIE depending on whether the trap
was taken in supervisor or user mode respectively, and SIE is set to 0. When an SRET instruction
is executed, if SPP=S, then SIE is set to SPIE; or if SPP=U, then UIE is set to SPIE. In either
case, SPIE is then set to 1.

The UIE bit enables or disables user-mode interrupts. User-level interrupts are enabled only if UIE
is set and the hart is running in user-mode. The UPIE bit indicates whether user-level interrupts
were enabled prior to taking a user-level trap. When a URET instruction is executed, UIE is set
to UPIE, and UPIE is set to 1. User-level interrupts are optional. If omitted, the UIE and UPIE
bits are hardwired to zero.

The sstatus register is a subset of the mstatus register. In a straightforward implementation,
reading or writing any field in sstatus is equivalent to reading or writing the homonymous field
in mstatus.

4.1.2 Memory Privilege in sstatus Register

The PUM (Protect User Memory) bit modifies the privilege with which S-mode loads, stores, and
instruction fetches access virtual memory. When PUM=0, translation and protection behave as
normal. When PUM=1, S-mode memory accesses to pages that are accessible by U-mode (U=1 in
Figure 4.13) will fault. PUM has no effect when executing in U-mode.

The PUM mechanism prevents supervisor software from inadvertently accessing user memory.
Operating systems can execute the majority of code with PUM set; the few code segments that
should access user memory can temporarily clear PUM.



Copyright (c) 2010–2016, The Regents of the University of California. All rights reserved. 49

4.1.3 Supervisor Trap Vector Base Address Register (stvec)

The stvec register is an XLEN-bit read/write register that holds the base address of the S-mode
trap vector. When an exception occurs, the pc is set to stvec. The stvec register is always aligned
to a 4-byte boundary.

XLEN-1 2 1 0

Trap Vector Base Address 0

XLEN-2 2

Figure 4.2: Supervisor trap vector base address register (stvec).

4.1.4 Supervisor Interrupt Registers (sip and sie)

The sip register is an XLEN-bit read/write register containing information on pending interrupts,
while sie is the corresponding XLEN-bit read/write register containing interrupt enable bits.

XLEN-1 10 9 8 7 6 5 4 3 2 1 0

0 SEIP UEIP 0 STIP UTIP 0 SSIP USIP

XLEN-10 1 1 2 1 1 2 1 1

Figure 4.3: Supervisor interrupt-pending register (sip).

XLEN-1 10 9 8 7 6 5 4 3 2 1 0

0 SEIE UEIE 0 STIE UTIE 0 SSIE USIE

XLEN-10 1 1 2 1 1 2 1 1

Figure 4.4: Supervisor interrupt-enable register (sie).

Three types of interrupts are defined: software interrupts, timer interrupts, and external interrupts.
A supervisor-level software interrupt is triggered on the current hart by writing 1 to its supervisor
software interrupt-pending (SSIP) bit in the sip register. A pending supervisor-level software
interrupt can be cleared by writing 0 to the SSIP bit in sip. Supervisor-level software interrupts
are disabled when the SSIE bit in the sie register is clear.

Interprocessor interrupts are sent to other harts by means of SBI calls, which will ultimately cause
the SSIP bit to be set in the recipient hart’s sip register.

A user-level software interrupt is triggered on the current hart by writing 1 to its user software
interrupt-pending (USIP) bit in the sip register. A pending user-level software interrupt can be
cleared by writing 0 to the USIP bit in sip. User-level software interrupts are disabled when the
USIE bit in the sie register is clear. If user-level interrupts are not supported, USIP and USIE are
hardwired to zero.

All bits besides SSIP and USIP in the sip register are read-only.

A supervisor-level timer interrupt is pending if the STIP bit in the sip register is set. Supervisor-
level timer interrupts are disabled when the STIE bit in the sie register is clear. An SBI call to
the SEE may be used to clear the pending timer interrupt.
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A user-level timer interrupt is pending if the UTIP bit in the sip register is set. User-level timer
interrupts are disabled when the UTIE bit in the sie register is clear. If user-level interrupts are
supported, the ABI should provide a facility for scheduling timer interrupts in terms of real-time
counter values. If user-level interrupts are not supported, UTIP and UTIE are hardwired to zero.

A supervisor-level external interrupt is pending if the SEIP bit in the sip register is set. Supervisor-
level external interrupts are disabled when the SEIE bit in the sie register is clear. The SBI should
provide facilities to mask, unmask, and query the cause of external interrupts.

A user-level external interrupt is pending if the UEIP bit in the sip register is set. User-level ex-
ternal interrupts are disabled when the UEIE bit in the sie register is clear. If user-level interrupts
are not supported, UEIP and UEIE are hardwired to zero.

The sip and sie registers are subsets of the mip and mie registers. Reading any field, or writing
any writable field, of sip/sie effects a read or write of the homonymous field of mip/mie.

4.1.5 Supervisor Timers and Performance Counters

Supervisor software uses the same hardware performance monitoring facility as user-mode software,
including the time, cycle, and instret CSRs. The SBI should provide a mechanism to modify
the counter values.

The SBI must provide a facility for scheduling timer interrupts in terms of the real-time counter,
time.

4.1.6 Supervisor Scratch Register (sscratch)

The sscratch register is an XLEN-bit read/write register, dedicated for use by the supervisor.
Typically, sscratch is used to hold a pointer to the hart-local supervisor context while the hart is
executing user code. At the beginning of a trap handler, sscratch is swapped with a user register
to provide an initial working register.

XLEN-1 0

sscratch

XLEN

Figure 4.5: Supervisor Scratch Register.

4.1.7 Supervisor Exception Program Counter (sepc)

sepc is an XLEN-bit read/write register formatted as shown in Figure 4.6. The low bit of sepc
(sepc[0]) is always zero. On implementations that do not support instruction-set extensions with
16-bit instruction alignment, the two low bits (sepc[1:0]) are always zero.

When a trap is taken, sepc is written with the virtual address of the instruction that encountered
the exception.
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XLEN-1 0

sepc

XLEN

Figure 4.6: Supervisor exception program counter register.

4.1.8 Supervisor Cause Register (scause)

The scause register is an XLEN-bit read-write register formatted as shown in Figure 4.7. The
Interrupt bit is set if the exception was caused by an interrupt. The Exception Code field contains
a code identifying the last exception. Table 4.1 lists the possible exception codes for the current
supervisor ISAs, in descending order of priority. The Exception Code is an WLRL field, so is only
guaranteed to hold supported exception codes.

XLEN-1 XLEN-2 0

Interrupt Exception Code (WLRL)

1 XLEN-1

Figure 4.7: Supervisor Cause register scause.

Interrupt Exception Code Description

1 0 User software interrupt
1 1 Supervisor software interrupt
1 2–3 Reserved
1 4 User timer interrupt
1 5 Supervisor timer interrupt
1 6–7 Reserved
1 8 User external interrupt
1 9 Supervisor external interrupt
1 ≥10 Reserved

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Reserved
0 5 Load access fault
0 6 AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call
0 ≥9 Reserved

Table 4.1: Supervisor cause register (scause) values after trap.

4.1.9 Supervisor Bad Address (sbadaddr) Register

sbadaddr is an XLEN-bit read/write register formatted as shown in Figure 4.8. When a hard-
ware breakpoint is triggered, or an instruction-fetch, load, or store access exception occurs, or
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an instruction-fetch or AMO address-misaligned exception occurs, sbadaddr is written with the
faulting address. sbadaddr is not modified for other exceptions.

XLEN-1 0

sbadaddr

XLEN

Figure 4.8: Supervisor bad address register.

For instruction fetch access faults on RISC-V systems with variable-length instructions, sbadaddr
will point to the portion of the instruction that caused the fault while sepc will point to the
beginning of the instruction.

4.1.10 Supervisor Page-Table Base Register (sptbr)

The sptbr register is an XLEN-bit read/write register formatted as shown in Figure 4.9 for RV32
and Figure 4.10. The sptbr register is only present on systems supporting paged virtual-memory
systems. This register holds the physical page number (PPN) of the root page table, i.e., its super-
visor physical address divided by 4 KiB, and an address space identifier (ASID), which facilitates
address-translation fences on a per-address-space basis.

The number of supervisor physical address bits is implementation-defined; any unimplemented
address bits are hardwired to zero in the sptbr register. The number of ASID bits is also
implementation-defined and may be zero. The number of implemented ASID bits may be de-
termined by writing one to every bit position in the ASID field, then reading back the value in
sptbr to see which bit positions in the ASID field hold a one.

We store the ASID and the page table base address in the same CSR to allow the pair to be
changed atomically on a context switch. Swapping them non-atomically could pollute the old
virtual address space with new translations, or vice-versa. This approach also slightly reduces
the cost of a context switch.

31 22 21 0

ASID (WARL) PPN (WARL)

10 22

Figure 4.9: RV32 Supervisor Page-Table Base Register sptbr.

Storing a PPN in sptbr, rather than a physical address, supports physical address spaces larger
than 2XLEN.

63 38 37 0

ASID (WARL) PPN (WARL)

26 38

Figure 4.10: RV64 Supervisor Page-Table Base Register sptbr.

For many applications, the choice of page size has a substantial performance impact. A large
page size increases TLB reach and loosens the associativity constraints on virtually-indexed,
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physically-tagged caches. At the same time, large pages exacerbate internal fragmentation, wast-
ing physical memory and possibly cache capacity.

After much deliberation, we have settled on a conventional page size of 4 KiB for both RV32
and RV64. We expect this decision to ease the porting of low-level runtime software and device
drivers. The TLB reach problem is ameliorated by transparent superpage support in modern
operating systems [2]. Additionally, multi-level TLB hierarchies are quite inexpensive relative to
the multi-level cache hierarchies whose address space they map.

4.2 Supervisor Instructions

In addition to the SRET instruction defined in Section 3.2.1, one new supervisor-level instruction
is provided.

4.2.1 Supervisor Memory-Management Fence Instruction

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
SFENCE.VM vaddr PRIV 0 SYSTEM

The supervisor memory-management fence instruction SFENCE.VM is used to synchronize up-
dates to in-memory memory-management data structures with current execution. Instruction exe-
cution causes implicit reads and writes to these data structures; however, these implicit references
are ordinarily not ordered with respect to loads and stores in the instruction stream. Execut-
ing an SFENCE.VM instruction guarantees that any stores in the instruction stream prior to the
SFENCE.VM are ordered before all implicit references subsequent to the SFENCE.VM. Further-
more, executing an SFENCE.VM guarantees that any implicit writes caused by instructions prior
to the SFENCE.VM are orderd before all loads and stores subsequent to the SFENCE.VM.

The SFENCE.VM is used to flush any local hardware caches related to address translation. It
is specified as a fence rather than a TLB flush to provide cleaner semantics with respect to
which instructions are affected by the flush operation and to support a wider variety of dynamic
caching structures and memory-management schemes. SFENCE.VM is also used by higher
privilege levels to synchronize page table writes and the address translation hardware.

Note the instruction has no effect on the translations of other RISC-V threads, which must be
notified separately. One approach is to use 1) a local data fence to ensure local writes are visible
globally, then 2) an interprocessor interrupt to the other thread, then 3) a local SFENCE.VM
in the interrupt handler of the remote thread, and finally 4) signal back to originating thread
that operation is complete. This is, of course, the RISC-V analog to a TLB shootdown. Alter-
natively, implementations might provide direct hardware support for remote TLB invalidation.
TLB shootdowns are handled by an SBI call to hide implementation details.

The behavior of SFENCE.VM depends on the current value of the ASID field in the sptbr register.
If ASID is nonzero, SFENCE.VM takes effect only for address translations in the current address
space. If ASID is zero, SFENCE.VM affects address translations for all address spaces. In this
case, it also affects global mappings, which are described in Section 4.5.1.
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The register operand rs1 contains an optional virtual address argument. If rs1=x0, the fence affects
all virtual address translations and stores made to any level of the page tables.

For the common case that the translation data structures have only been modified for a single ad-
dress mapping (i.e., one page) within a single leaf page table, rs1 can specify a virtual address within
that mapping to effect a translation fence for that mapping only. When rs16=x0, the SFENCE.VM
orders only stores to the leaf page table for the virtual address in rs1, and not any stores to other
levels of the page table.

Simpler implementations can ignore the ASID value in sptbr and the virtual address in rs1 and
always perform a global fence.

4.3 Supervisor Operation in Mbare Environment

When the Mbare environment is selected in the VM field of mstatus (Section 3.1.8), supervisor-
mode virtual addresses are truncated and mapped directly to supervisor-mode physical addresses.
Supervisor physical addresses are then checked using any physical memory protection structures
(Section 3.6), before being directly converted to machine-level physical addresses.

4.4 Supervisor Operation in Base and Bounds Environments

When Mbb or Mbbid are selected in the VM field of mstatus (Section 3.1.8), supervisor-mode
virtual addresses are translated and checked according to the appropriate machine-level base and
bound registers. The resulting supervisor-level physical addresses are then checked using any phys-
ical memory protection structures (Section 3.6), before being directly converted to machine-level
physical addresses.

4.5 Sv32: Page-Based 32-bit Virtual-Memory Systems

When Sv32 is written to the VM field in the mstatus register, the supervisor operates in a 32-
bit paged virtual-memory system. Sv32 is supported on RV32 systems and is designed to include
mechanisms sufficient for supporting modern Unix-based operating systems.

The initial RISC-V paged virtual-memory architectures have been designed as straightforward
implementations to support existing operating systems. We have architected page table layouts
to support a hardware page-table walker. Software TLB refills are a performance bottleneck on
high-performance systems, and are especially troublesome with decoupled specialized coprocessors.
An implementation can choose to implement software TLB refills using a machine-mode trap
handler as an extension to M-mode.

4.5.1 Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into 4 KiB pages. An Sv32
virtual address is partitioned into a virtual page number (VPN) and page offset, as shown in
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Figure 4.11. When Sv32 virtual memory mode is selected in the VM field of the mstatus register,
supervisor virtual addresses are translated into supervisor physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-
bit page offset is untranslated. The resulting supervisor-level physical addresses are then checked
using any physical memory protection structures (Sections 3.6), before being directly converted to
machine-level physical addresses.

31 22 21 12 11 0

VPN[1] VPN[0] page offset

10 10 12

Figure 4.11: Sv32 virtual address.

33 22 21 12 11 0

PPN[1] PPN[0] page offset

12 10 12

Figure 4.12: Sv32 physical address.

31 20 19 10 9 8 7 6 5 4 3 2 1 0

PPN[1] PPN[0] Reserved for software D A G U X W R V

12 10 2 1 1 1 1 1 1 1 1

Figure 4.13: Sv32 page table entry.

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the sptbr register.

The PTE format for Sv32 is shown in Figures 4.13. The V bit indicates whether the PTE is valid;
if it is 0, bits 31–1 of the PTE are don’t-cares and may be used freely by software. The permission
bits, R, W, and X, indicate whether the page is readable, writable, and executable, respectively.
When all three are zero, the PTE is a pointer to the next level of the page table; otherwise, it is
a leaf PTE. Writable pages must also be marked readable; the contrary combinations are reserved
for future use. Table 4.2 summarizes the encoding of the permission bits.

X W R Meaning

0 0 0 Pointer to next level of page table.
0 0 1 Read-only page.
0 1 0 Reserved for future use.
0 1 1 Read-write page.
1 0 0 Execute-only page.
1 0 1 Read-execute page.
1 1 0 Reserved for future use.
1 1 1 Read-write-execute page.

Table 4.2: Encoding of PTE R/W/X fields.

The U bit indicates whether the page is accessible to user mode. U-mode software may only access
the page when U=1. If the PUM bit in the sstatus register is clear, supervisor mode software
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may also access pages with U=1. However, supervisor code normally operates with the PUM bit
set, in which case, supervisor code will fault on accesses to user-mode pages.

An alternative PTE format would support different permissions for supervisor and user. We
omitted this feature because it would be largely redundant with the PUM mechanism (see Sec-
tion 4.1.2) and would require more encoding space in the PTE.

The G bit designates a global mapping. Global mappings are those that exist in all address spaces.
For non-leaf PTEs, the global setting implies that all mappings in the subsequent levels of the page
table are global. Note that failing to mark a global mapping as global merely reduces performance,
whereas marking a non-global mapping as global is an error.

Global mappings were devised to reduce the cost of context switches. They need not be flushed
from an implementation’s address translation caches when an SFENCE.VM instruction is exe-
cuted with a nonzero ASID value in sptbr.

Each leaf PTE maintains an accessed (A) and dirty (D) bit. When a virtual page is read, written,
or fetched from, the implementation sets the A bit in the corresponding PTE. When a virtual page
is written, the implementation additionally sets the D bit in the corresponding PTE. The PTE
updates are exact and are observed in program order by the local hart. The ordering on loads and
stores provided by FENCE instructions and the acquire/release bits on atomic instructions also
orders the PTE updates associated with those loads and stores as observed by remote harts.

We have changed the behavior of the PTE updates to be exact and in program order on a hart.
This significantly simplifies the specification, and can be implemented with high performance.

The A and D bits are never cleared by the implementation. If the supervisor software does
not rely on accessed and/or dirty bits, e.g. if it does not swap memory pages to secondary storage
or if the pages are being used to map I/O space, it should always set them to 1 in the PTE. The
implementation can then avoid issuing memory accesses to set the bits.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv32 supports 4 MiB megapages.
A megapage must be virtually and physically aligned to a 4 MiB boundary.

4.5.2 Virtual Address Translation Process

A virtual address va is translated into a physical address pa as follows:

1. Let a be sptbr.ppn×PAGESIZE, and let i = LEVELS− 1. (For Sv32, PAGESIZE=212 and
LEVELS=2.)

2. Let pte be the value of the PTE at address a+va.vpn[i]×PTESIZE. (For Sv32, PTESIZE=4.)

3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, stop and raise an access exception.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this PTE is
a pointer to the next level of the page table. Let i = i− 1. If i < 0, stop and raise an access
exception. Otherwise, let a = pte.ppn× PAGESIZE and go to step 2.
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5. A leaf PTE has been found. Determine if the requested memory access is allowed by the pte.r,
pte.w, and pte.x bits. If not, stop and raise an access exception. Otherwise, the translation is
successful. Set pte.a to 1, and, if the memory access is a store, set pte.d to 1. The translated
physical address is given as follows:

• pa.pgoff = va.pgoff.

• If i > 0, then this is a superpage translation and pa.ppn[i− 1 : 0] = va.vpn[i− 1 : 0].

• pa.ppn[LEVELS− 1 : i] = pte.ppn[LEVELS− 1 : i].

4.6 Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 39-bit virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and
this section details only the differences between the schemes.

4.6.1 Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into 4 KiB pages. An Sv39
address is partitioned as shown in Figure 4.14. Load and store effective addresses, which are 64
bits, must have bits 63–39 all equal to bit 38, or else an access fault will occur. The 27-bit VPN is
translated into a 38-bit PPN via a three-level page table, while the 12-bit page offset is untranslated.

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page offset

9 9 9 12

Figure 4.14: Sv39 virtual address.

49 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] page offset

20 9 9 12

Figure 4.15: Sv39 physical address.

63 48 47 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

Reserved PPN[2] PPN[1] PPN[0] Reserved for SW D A G U X W R V

16 20 9 9 2 1 1 1 1 1 1 1 1

Figure 4.16: Sv39 page table entry.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical address of the root
page table is stored in the sptbr register.

The PTE format for Sv39 is shown in Figure 4.16. Bits 9–0 have the same meaning as for Sv32.
Bits 63–48 are reserved for future use and must be zeroed by software for forward compatibility.
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We reserved several PTE bits for a possible extension that improves support for sparse address
spaces by allowing page-table levels to be skipped, reducing memory usage and TLB refill latency.
These reserved bits may also be used to facilitate research experimentation. The cost is reducing
the physical address space, but 1 PiB is presently ample. If at some point it no longer suffices,
the reserved bits that remain unallocated could be used to expand the physical address space.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv39 supports 2 MiB megapages
and 1 GiB gigapages, each of which must be virtually and physically aligned to a boundary equal
to its size.

The algorithm for virtual-to-physical address translation is the same as in Section 4.5.2, except
LEVELS equals 3 and PTESIZE equals 8.

4.7 Sv48: Page-Based 48-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 48-bit virtual address spaces. Sv48 is intended for systems for which a 39-bit virtual
address space is insufficient. It closely follows the design of Sv39, simply adding an additional level
of page table, and so this chapter only details the differences between the two schemes.

Implementations that support Sv48 should also support Sv39.

We specified two virtual memory systems for RV64 to relieve the tension between providing a
large address space and minimizing address-translation cost. For many systems, 512 GiB of
virtual-address space is ample, and so Sv39 suffices. Sv48 increases the virtual address space
to 256 TiB but increases the physical memory capacity dedicated to page tables, the latency of
page-table traversals, and the size of hardware structures that store virtual addresses.

Systems that support Sv48 can also support Sv39 at essentially no cost, and so should do so
to support supervisor software that assumes Sv39.

4.7.1 Addressing and Memory Protection

Sv48 implementations support a 48-bit virtual address space, divided into 4 KiB pages. An Sv48
address is partitioned as shown in Figure 4.17. Load and store effective addresses, which are 64
bits, must have bits 63–48 all equal to bit 47, or else an access fault will occur. The 36-bit VPN is
translated into a 38-bit PPN via a four-level page table, while the 12-bit page offset is untranslated.

47 39 38 30 29 21 20 12 11 0

VPN[3] VPN[2] VPN[1] VPN[0] page offset

9 9 9 9 12

Figure 4.17: Sv48 virtual address.

The PTE format for Sv48 is shown in Figure 4.19. Bits 9–0 have the same meaning as for Sv32. Any
level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv48 supports 2 MiB megapages,
1 GiB gigapages, and 512 GiB terapages, each of which must be virtually and physically aligned to
a boundary equal to its size.
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49 39 38 30 29 21 20 12 11 0

PPN[3] PPN[2] PPN[1] PPN[0] page offset

11 9 9 9 12

Figure 4.18: Sv48 physical address.

63 48 47 37 36 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

Reserved PPN[3] PPN[2] PPN[1] PPN[0] Res. SW D A G U X W R V

16 11 9 9 9 2 1 1 1 1 1 1 1 1

Figure 4.19: Sv48 page table entry.

The algorithm for virtual-to-physical address translation is the same as in Section 4.5.2, except
LEVELS equals 4 and PTESIZE equals 8.
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Chapter 5

Hypervisor-Level ISA

This chapter is a placeholder for a future RISC-V hypervisor-level common core specification.

The privileged architecture is designed to simplify the use of classic virtualization techniques,
where a guest OS is run at user-level, as the few privileged instructions can be easily detected
and trapped.
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Chapter 6

RISC-V Privileged Instruction Set
Listings

This chapter presents instruction set listings for all instructions defined in the RISC-V Privileged
Architecture.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type

Trap-Return Instructions
000000000010 00000 000 00000 1110011 URET
000100000010 00000 000 00000 1110011 SRET
001000000010 00000 000 00000 1110011 HRET
001100000010 00000 000 00000 1110011 MRET

Interrupt-Management Instructions
000100000101 00000 000 00000 1110011 WFI

Memory-Management Instructions
000100000100 rs1 000 00000 1110011 SFENCE.VM

Table 6.1: RISC-V Privileged Instructions



Chapter 7

Platform-Level Interrupt Controller
(PLIC)

This chapter describes the general architecture for the RISC-V platform-level interrupt controller
(PLIC), which prioritizes and distributes global interrupts in a RISC-V system.

7.1 PLIC Overview

Figure 7.1 provides a quick overview of PLIC operation. The PLIC connects global interrupt
sources, which are usually I/O devices, to interrupt targets, which are usually hart contexts. The
PLIC contains multiple interrupt gateways, one per interrupt source, together with a PLIC core
that performs interrupt prioritization and routing. Global interrupts are sent from their source
to an interrupt gateway that processes the interrupt signal from each source and sends a single
interrupt request to the PLIC core, which latches these in the core interrupt pending bits (IP).
Each interrupt source is assigned a separate priority. The PLIC core contains a matrix of interrupt
enable (IE) bits to select the interrupts that are enabled for each target. The PLIC core forwards
an interrupt notification to one or more targets if the targets have any pending interrupts enabled,
and the priority of the pending interrupts exceeds a per-target threshold. When the target takes
the external interrupt, it sends an interrupt claim request to retrieve the identifier of the highest-
priority global interrupt source pending for that target from the PLIC core, which then clears the
corresponding interrupt source pending bit. After the target has serviced the interrupt, it sends
the associated interrupt gateway an interrupt completion message and the interrupt gateway can
now forward another interrupt request for the same source to the PLIC. The rest of this chapter
describes each of these components in detail, though many details are necessarily platform specific.

7.2 Interrupt Sources

RISC-V harts can have both local and global interrupt sources. Only global interrupt sources are
handled by the PLIC.
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Figure 7.1: Platform-Level Interrupt Controller (PLIC) conceptual block diagram. The figure
shows the first two of potentially many interrupt sources, and the first two of potentially many
interrupt targets. The figure is just intended to show the logic of the PLIC’s operation, not to
represent a realistic implementation strategy.

7.2.1 Local Interrupt Sources

Each hart has a number of local interrupt sources that do not pass through the PLIC, including
the standard software interrupts and timer interrupts for each privilege level. Local interrupts can
be serviced quickly since there will be minimal latency between the source and the servicing hart,
no arbitration is required to determine which hart will service the request, and the servicing hart
can quickly determine the interrupt source using the mcause register.

All local interrupts follow a level-based model, where an interrupt is pending if the corresponding
bit in mip is set. The interrupt handler must clear the hardware condition that is causing the mip

bit to be set to avoid retaking the interrupt after re-enabling interrupts on exit from the interrupt
handler.

Additional non-standard local interrupt sources can be made visible to machine-mode by adding
them to the high bits of the mip/mie registers, with corresponding additional cause values returned



Copyright (c) 2010–2016, The Regents of the University of California. All rights reserved. 67

in the mcause register. These additional non-standard local interrupts may also be made visible
to lower privilege levels, using the corresponding bits in the mideleg register. The priority of non-
standard local interrupt sources relative to external, timer, and software interrupts is platform-
specific.

7.2.2 Global Interrupt Sources

Global interrupt sources are those that are prioritized and distributed by the PLIC. Depending on
the platform-specific PLIC implementation, any global interrupt source could be routed to any hart
context.

Global interrupt sources can take many forms, including level-triggered, edge-triggered, and
message-signalled. Some sources might queue up a number of interrupt requests. All global inter-
rupt sources are converted to a common interrupt request format for the PLIC.

7.3 Interrupt Targets and Hart Contexts

Interrupt targets are usually hart contexts, where a hart context is a given privilege mode on a given
hart (though there are other possible interrupt targets, such as DMA engines). Not all hart contexts
need be interrupt targets, in particular, if a processor core does not support delegating external
interrupts to lower-privilege modes, then the lower-privilege hart contexts will not be interrupt
targets. Interrupt notifications generated by the PLIC appear in the meip/heip/seip/ueip bits of
the mip/hip/sip/uip registers for M/H/S/U modes respectively. The notifications only appear in
lower-privilege xip registers if external interrupts have been delegated to the lower-privilege modes.

Each processor core must define a policy on how simultaneous active interrupts are taken by
multiple hart contexts on the core. For the simple case of a single stack of hart contexts, one
for each supported privileged mode, interrupts for higher-privilege contexts can preempt execution
of interrupt handlers for lower-privilege contexts. A multithreaded processor core could run multiple
independent interrupt handlers on different hart contexts at the same time. A processor core could
also provide hart contexts that are only used for interrupt handling to reduce interrupt service
latency, and these might preempt interrupt handlers for other harts on the same core.

The PLIC treats each interrupt target independently and does not take into account any interrupt
prioritization scheme used by a component that contains multiple interrupt targets. As a result,
the PLIC provides no concept of interrupt preemption or nesting so this must be handled by the
cores hosting multiple interrupt target contexts.

7.4 Interrupt Gateways

The interrupt gateways are responsible for converting global interrupt signals into a common inter-
rupt request format, and for controlling the flow of interrupt requests to the PLIC core. At most
one interrupt request per interrupt source can be pending in the PLIC core at any time, indicated
by setting the source’s IP bit. The gateway only forwards a new interrupt request to the PLIC
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core after receiving notification that the interrupt handler servicing the previous interrupt request
from the same source has completed.

If the global interrupt source uses level-sensitive interrupts, the gateway will convert the first
assertion of the interrupt level into an interrupt request, but thereafter the gateway will not forward
an additional interrupt request until it receives an interrupt completion message. On receiving an
interrupt completion message, if the interrupt is level-triggered and the interrupt is still asserted, a
new interrupt request will be forwarded to the PLIC core. The gateway does not have the facility
to retract an interrupt request once forwarded to the PLIC core. If a level-sensitive interrupt source
deasserts the interrupt after the PLIC core accepts the request and before the interrupt is serviced,
the interrupt request remains present in the IP bit of the PLIC core and will be serviced by a
handler, which will then have to determine that the interrupt device no longer requires service.

If the global interrupt source was edge-triggered, the gateway will convert the first matching signal
edge into an interrupt request. Depending on the design of the device and the interrupt handler,
inbetween sending an interrupt request and receiving notice of its handler’s completion, the gateway
might either ignore additional matching edges or increment a counter of pending interrupts. In
either case, the next interrupt request will not be forwarded to the PLIC core until the previous
completion message has been received. If the gateway has a pending interrupt counter, the counter
will be decremented when the interrupt request is accepted by the PLIC core.

Unlike dedicated-wire interrupt signals, message-signalled interrupts (MSIs) are sent over the sys-
tem interconnect via a message packet that describes which interrupt is being asserted. The message
is decoded to select an interrupt gateway, and the relevant gateway then handles the MSI similar
to an edge-triggered interrupt.

7.5 Interrupt Identifiers (IDs)

Global interrupt sources are assigned small unsigned integer identifiers, beginning at the value 1.
An interrupt ID of 0 is reserved to mean “no interrupt”.

Interrupt identifiers are also used to break ties when two or more interrupt sources have the same
assigned priority. Smaller values of interrupt ID take precedence over larger values of interrupt ID.

7.6 Interrupt Priorities

Interrupt priorities are small unsigned integers, with a platform-specific maximum number of sup-
ported levels. The priority value 0 is reserved to mean “never interrupt”, and interrupt priority
increases with increasing integer values.

Each global interrupt source has an associated interrupt priority held in a platform-specific memory-
mapped register. Different interrupt sources need not support the same set of priority values. A
valid implementation can hardwire all input priority levels. Interrupt source priority registers
should be WARL fields to allow software to determine the number and position of read-write
bits in each priority specification, if any. To simplify discovery of supported priority values, each
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priority register must support any combination of values in the bits that are variable within the
register, i.e., if there are two variable bits in the register, all four combinations of values in those
bits must operate as valid priority levels.

In the degenerate case, all priorities can be hardwired to the value 1, in which case input priorities
are effectively determined by interrupt ID.

The supported priority values can be determined as follows: 1) write all zeros to the priority
register then 2) read back the value. Any set bits are hardwired to 1. Next, 3) write all ones
to the register, and 4) read back the value. Any clear bits are hardwired to 0. Any set bits that
were not found to be hardwired in step 2 are variable. The supported priority levels are the set
of values obtained by substituting all combinations of ones and zeros in the variable bits within
the priority field.

7.7 Interrupt Enables

Each target has a vector of interrupt enable (IE) bits, one per interrupt source. The target will
not receive interrupts from sources that are disabled. The IE bits for a single target should be
packed together as a bit vector in platform-specific memory-mapped control registers to support
rapid context switching of the IE bits for a target. IE bits are WARL fields that can be hardwired
to either 0 or 1.

A large number of potential IE bits might be hardwired to zero in cases where some interrupt
sources can only be routed to a subset of targets.

A larger number of bits might be wired to 1 for an embedded device with fixed interrupt rout-
ing. Interrupt priorities, thresholds, and hart-internal interrupt masking provide considerable
flexibility in ignoring external interrupts even if a global interrupt source is always enabled.

7.8 Interrupt Priority Thresholds

Each interrupt target has an associated priority threshold, held in a platform-specific memory-
mapped register. Only active interrupts that have a priority strictly greater than the threshold
will cause a interrupt notification to be sent to the target. Different interrupt targets need not
support the same set of priority threshold values. Interrupt target threshold registers should be
WARL fields to allow software to determine the supported thresholds. A threshold register should
always be able to hold the value zero, in which case, no interrupts are masked. If implemented,
the threshold register will usually also be able to hold the maximum priority level, in which case
all interrupts are masked.

A simple valid implementation is to hardwire the threshold to zero, in which case it has no effect,
and the individual enable bits will have to be saved and restored to attain the same effect. While
the function of the threshold can be achieved by changing the interrupt-enable bits, manipulating
a single threshold value avoids the target having to consider the individual priority levels of each
interrupt source, and saving and restoring all the interrupt enables. Changing the threshold
quickly might be especially important for systems that move frequently between power states.
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7.9 Interrupt Notifications

Each interrupt target has an external interrupt pending (EIP) bit in the PLIC core that indicates
that the corresponding target has a pending interrupt waiting for service. The value in EIP can
change as a result of changes to state in the PLIC core, brought on by interrupt sources, interrupt
targets, or other agents manipulating register values in the PLIC. The value in EIP is communicated
to the destination target as an interrupt notification. If the target is a RISC-V hart context, the
interrupt notifications arrive on the meip/heip/seip/ueip bits depending on the privilege level of
the hart context.

In simple systems, the interrupt notifications will be simple wires connected to the processor
implementing a hart. In more complex platforms, the notifications might be routed as messages
across a system interconnect.

The PLIC hardware only supports multicasting of interrupts, such that all enabled targets will
receive interrupt notifications for a given active interrupt.

Multicasting provides rapid response since the fastest responder claims the interrupt, but can be
wasteful in high-interrupt-rate scenarios if multiple harts take a trap for an interrupt that only
one can successfully claim. Software can modulate the PLIC IE bits as part of each interrupt
handler to provide alternate policies, such as interrupt affinity or round-robin unicasting.

Depending on the platform architecture and the method used to transport interrupt notifications,
these might take some time to be received at the targets. The PLIC is guaranteed to eventually
deliver all state changes in EIP to all targets, provided there is no intervening activity in the PLIC
core.

The value in an interrupt notification is only guaranteed to hold an EIP value that was valid at
some point in the past. In particular, a second target can respond and claim an interrupt while
a notification to the first target is still in flight, such that when the first target tries to claim the
interrupt it finds it has no active interrupts in the PLIC core.

7.10 Interrupt Claims

Sometime after a target receives an interrupt notification, it might decide to service the interrupt.
The target sends an interrupt claim message to the PLIC core, which will usually be implemented
as a non-idempotent memory-mapped I/O control register read. On receiving a claim message, the
PLIC core will atomically determine the ID of the highest-priority pending interrupt for the target
and then clear down the corresponding source’s IP bit. The PLIC core will then return the ID to
the target. The PLIC core will return an ID of zero, if there were no pending interrupts for the
target when the claim was serviced.

After the highest-priority pending interrupt is claimed by a target and the corresponding IP bit
is cleared, other lower-priority pending interrupts might then become visible to the target, and
so the PLIC EIP bit might not be cleared after a claim. The interrupt handler can check the
local meip/heip/seip/ueip bits before exiting the handler, to allow more efficient service of other
interrupts without first restoring the interrupted context and taking another interrupt trap.
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It is always legal for a hart to perform a claim even if the EIP is not set. In particular, a hart could
set the threshold value to maximum to disable interrupt notifications and instead poll for active
interrupts using periodic claim requests, though a simpler approach to implement polling would be
to clear the external interrupt enable in the corresponding xie register for privilege mode x.

7.11 Interrupt Completion

After a handler has completed service of an interrupt, the associated gateway must be sent an
interrupt completion message, usually as a write to a non-idempotent memory-mapped I/O control
register. The gateway will only forward additional interrupts to the PLIC core after receiving the
completion message.

7.12 Interrupt Flow

Figure 7.2 shows the messages flowing between agents when handling interrupts via the PLIC.

Interrupt 
Source Gateway

PLIC 
Core Target

Interrupt 
Request

Interrupt 
Notification

Interrupt 
Claim

Claim 
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Interrupt 
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Interrupt 
Completion

Next 
Request
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Figure 7.2: Flow of interrupt processing via the PLIC.

The gateway will only forward a single interrupt request at a time to the PLIC, and not forward
subsequent interrupts requests until an interrupt completion is received. The PLIC will set the IP
bit once it accepts an interrupt request from the gateway, and sometime later forward an interrupt
notification to the target. The target might take a while to respond to a new interrupt arriving,
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but will then send an interrupt claim request to the PLIC core to obtain the interrupt ID. The
PLIC core will atomically return the ID and clear the corresponding IP bit, after which no other
target can claim the same interrupt request. Once the handler has processed the interrupt, it sends
an interrupt completion message to the gateway to allow a new interrupt request.

7.13 PLIC Core Specification

The operation of the PLIC core can be specified as a non-deterministic finite-state machine with
input and output messsage queues, with the following atomic actions:

• Write Register: A message containing a register write request is dequeued. One of the
internal registers is written, where an internal register can be a priority, an interrupt-enable
(IE), or a threshold.

• Accept Request: If the IP bit corresponding to the interrupt source is clear, a message
containing an interrupt request from a gateway is dequeued and the IP bit is set.

• Process Claim: An interrupt claim message is dequeued. A claim-response message is
enqueued to the requester with the ID of the highest-priority active interrupt for that target,
and the IP bit corresponding to this interrupt source is cleared.

The value in the EIP bit is determined as a combinational function of the PLIC Core state. Interrupt
notifications are sent via an autonomous process that ensures the EIP value is eventually reflected
at the target.

Note that the operation of the interrupt gateways is decoupled from the PLIC core. A gateway
can handle parsing of interrupt signals and processing interrupt completion messages concurrently
with other operations in the PLIC core.

Figure 7.1 is a high-level conceptual view of the PLIC design. The PLIC core can be implemented
in many ways provided its behavior can always be understood as following from some sequential
ordering of these atomic actions. In particular, the PLIC might process multiple actions in a
single clock cycle, or might process each action over many clock cycles.

7.14 Controlling Access to the PLIC

In the expected use case, only machine mode accesses the source priority, source pending, and
target interrupt enables to configure the interrupt subsystem. Lower-privilege modes access these
features via ABI, SBI, or HBI calls. The interrupt enables act as a protection mechanism where a
target can only signal completion to an interrupt gateway that is currently enabled for that target.

Interrupt handlers that run with lower than machine-mode privilege need only be able to perform
a claim read and a completion write, and to set their target threshold value. The memory map for
these registers should allow machine mode to protect different targets from each other’s accesses,
using either physical memory protection or virtual memory page protections.



Chapter 8

Machine Configuration Description

RISC-V platforms may contain myriad devices, processor cores, and configuration parameters. To
support higher-level software, including bootloaders and operating systems, it is recommended that
hardware platforms embed a description of their components in read-only memory that is directly
accessible after processor reset for use by low-level system software, external debuggers, or manu-
facturing test procedures. We call this low-level embedded information a configuration description.
We define here a standard mechanism to encode and locate the configuration information, and to
determine the format of the configuration information.

8.1 Configuration String Search Procedure

The platform must describe how to locate a pointer to find this string, for example, by specifying
a fixed physical address at which the pointer resides. To support a wide variety of platforms,
configuration formats, and chips with manufacturing-time programming of configuration options,
a flexible search procedure is defined to locate the configuration information seeded by the initial
pointer specified by the platform.

The configuration string pointer provided by the platform points to an initial memory address at
which the search for configuration string begins.

The configuration string cannot begin with a padding byte, where a padding byte is defined to
contain either 0x0 or 0xff, but can be preceded by up to 63 padding bytes that are ignored. If 64
padding bytes are encountered, then the search terminates without finding a config string.

The padding bytes represent common values returned by unpopulated memory or bus regions
or unprogrammed non-volatile memory. Configuration strings can therefore include pointers to
regions that are optionally populated or programmed, and these regions will be ignored if there
is nothing present. The padding bytes also support alignment of binary data structures.

Otherwise the first non-padding byte is the beginning of the configuration information. For ex-
ample, configuration information in Device Tree String format would begin with a “/dts-v1/”.
Configuration information in Flattened Device Tree format would begin with the magic number
0xd00dfeed. Configuration information in the config string format would begin with “/cs-v1/”.
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Config string is a new format that is backwards-compatible with device tree string (as far as DTS
specs exist) but can include additional configuration information in other memory regions.



Chapter 9

Supervisor Binary Interface (SBI)

This chapter is a placeholder to describe the form of the SBIs we’re envisioning for the RISC-V
supervisor.

The SBI captures the instructions that can be executed together with a set of SBI calls out to the
supervisor execution environment (SEE) on a given platform.

Several features that might normally handled by the supervisor operating system (OS) directly are
handled via SBI calls to the SEE in RISC-V, including:

• Reset is handled by the SEE and once the machine is set up, the OS kernel is mapped into
virtual memory, and its entry point is called.

• Machine-check errors and other non-maskable interrupts are handled by the SEE before vec-
toring into the OS if recovery is possible.

• Some device drivers may be handled by the SEE, and managed via virtual device calls over
the SBI.

• The presence and version of supported instruction-set extensions is obtained via an SBI
call to return the configuration string rather than a machine register. This allows for an
arbitrarily large definition of instruction set extensions, and simplifies virtualization where
the returned machine configuration might be modified to emulate different architectures on
a given hardware platform.

The SBI employs the same calling convention as the ABI specified in Volume I of this manual. SBI
entry points are located in the uppermost 2 KiB of the virtual address space, so that they may be
invoked with a single jalr instruction with x0 as the base register.

Table 9.1 gives a preliminary list of SBI calls.
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const char* sbi_get_config(void); Get pointer to configuration string.

size_t sbi_hart_id(void);
Get ID of current hart, in range
[0, number harts - 1 ].

int sbi_send_ipi(size_t hart_id); Send an interprocessor interrupt; returns 0 on
success or -1 if hart ID is invalid.

bool sbi_clear_ipi(void); Clear local interprocessor interrupt. Returns 1
if an IPI was pending, else 0.

void sbi_shutdown(void); Terminate this supervisor-mode process.

int sbi_console_putchar(uint8_t ch); Write byte to debug console (blocking); returns
0 on success, else -1.

int sbi_console_getchar(void); Read byte from debug console; returns the byte
on success, or -1 for failure.

Instruct other harts to execute SFENCE.VM.
harts points to a bitmask of remote hart IDs;
NULL indicates all harts. asid holds the
address-space ID; 0 indicates all address spaces.

void sbi_remote_sfence_vm(

const uintptr_t* harts, size_t asid);

void sbi_remote_sfence_vm_range( Like sbi remote sfence vm, but only orders
updates to leaf page tables mapping the range
[start, start+size-1].

const uintptr_t* harts, size_t asid,

uintptr_t start, uintptr_t size);

void sbi_remote_fence_i( Instruct remote harts to execute FENCE.I.
harts is as with sbi remote sfence vm.const uintptr_t* harts);

int sbi_mask_interrupt(int which); Disable a PLIC interrupt line. Returns 0 if pre-
viously disabled, 1 if previously enabled, or -1 if
which is invalid.

int sbi_unmask_interrupt(int which); Enable a PLIC interrupt line. Return value is
as with sbi mask interrupt.

Table 9.1: SBI calls.
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