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Abstract
Motivated by rapid software and hardware innovation in
warehouse-scale computing (WSC), we visit the problem
of warehouse-scale network design evaluation. A WSC is
composed of about 30 arrays or clusters, each of which con-
tains about 3000 servers, leading to a total of about 100,000
servers per WSC. We found many prior experiments have
been conducted on relatively small physical testbeds, and
they often assume the workload is static and that com-
putations are only loosely coupled with the adaptive net-
working stack. We present a novel and cost-efficient FPGA-
based evaluation methodology, called Datacenter-In-A-Box
at LOw cost (DIABLO), which treats arrays as whole com-
puters with tightly integrated hardware and software. We
have built a 3,000-node prototype running the full WSC soft-
ware stack. Using our prototype, we have successfully re-
produced a few WSC phenomena, such as TCP Incast and
memcached request latency long tail, and found that results
do indeed change with both scale and with version of the full
software stack.

Categories and Subject Descriptors C.5.3 [Computer Sys-
tem Implementation]: Microprocessors; I.6.8 [Simulation
and Modeling]: Discrete Event

Keywords Warehouse-scale computing; FPGA; Perfor-
mance Evaluation

1. Introduction
Modern datacenters are no longer just a collection of servers
running traditional commercial workloads. The tremendous
success of Internet services has led to the rise of Warehouse-
Scale Computers (WSCs) [25] with 50,000 to 100,000
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servers [41] treated as a massive computer system. The con-
tinuing push for greater cost efficiency and scalability has
driven leading Internet companies, such as Facebook and
Google, to innovate in new software infrastructure and even
custom hardware [15, 18].

As noted in many recent papers [35, 58], the network is
perhaps the most critical component in a WSC. The growing
scale of WSCs leads to increasing and more variable net-
work delays, while demand for more ports increases cost in
an already expensive switching fabric. Consequently, many
researchers have proposed novel datacenter network archi-
tectures, mostly focusing on new switch designs [36, 37, 40,
50, 57, 58], and several new networking products emphasize
simple switch designs with low latency [9, 10].

When comparing these network proposals, we observe a
wide variety of design choices made for almost every as-
pect of the design space, including switch design, network
topology, protocol, and applications. We believe these ba-
sic disagreements about fundamental design decisions are
due to the different assumptions taken by various exist-
ing WSC infrastructures and applications, and the lack of
a sound methodology to evaluate new options. Most pro-
posed designs have only been tested with a small testbed
running unrealistic microbenchmarks, as it is very difficult
to evaluate network infrastructure innovations at scale with-
out first building a WSC. We surveyed WSC-related papers
in the SIGCOMM conference from 2008 to 2013 and found
that the median size of physical testbeds contained only 16
servers and 6 switches (see Figure 2).

In this paper, we present the design of DIABLO
(Datacenter-In-A-Box at LOw cost), an FPGA-based WSC
simulator that enables the at-scale and in-depth modeling of
WSC arrays as complete computer systems with tightly in-
tegrated hardware and software. DIABLO can run unmodi-
fied WSC applications and operating systems at the scale of
O(1,000) to O(10,000) nodes while providing detailed mod-
els of every instruction executed on every node, the opera-
tion of the network interfaces on each node, and the move-
ment of every byte in every packet through multiple levels
of datacenter switches.



The specific target of DIABLO is the building block of
the WSC, called an array [38] or cluster [25]. A WSC is
composed of about 20–40 such arrays, each of which con-
tains about 2000–3000 servers, summing to a total of about
50,000–100,000 servers per WSC. The array is often the
target of an application, with multiple arrays used for both
dependability and to distribute workload. DIABLO is fast
enough to model O(10) seconds of runtime of a whole WSC
array in a few hours instead of the weeks that would be
required for an equivalent software simulator. To increase
FPGA efficiency and flexibility, DIABLO is not based on
FPGA prototyping, where hardware designs are directly
mapped to FPGAs, but instead uses FPGAs to accelerate pa-
rameterized abstract performance models of the system [55].

The number of compute nodes in the DIABLO prototype
is two orders-of-magnitude greater than recent testbeds used
by academic researchers, but the FPGA-based simulation ap-
proach makes it plausible for many research groups to ac-
quire their own private platform. The projected full-system
hardware cost of an O(10,000)-node DIABLO system using
modern state-of-the-art FPGAs is around $150K. An equiva-
lent real WSC array would cost around $36M in CAPEX and
$800K in OPEX/month. Furthermore, unlike real hardware,
DIABLO is fully parameterizable and fully instrumented,
and supports repeatable deterministic experiments.

In our evaluation, we show how results obtained from
large-scale DIABLO runs can be dramatically different from
those obtained from smaller testbeds. In particular, DIABLO
allows us to record the same behavior administrators observe
when deploying equivalently scaled WSC software, such as
TCP Incast throughput collapse [60] and the long tails of
memcached request latency.

2. Background and Related Work
In this section, we first review the structure of WSCs, then
discuss existing evaluation approaches and previous studies,
and conclude with a summary of WSC simulation needs.

2.1 WSC Network Architecture
WSCs use a hierarchy of local-area networks (LAN) and off-
the-shelf switches. Figure 1 shows a typical WSC network
arranged in a Clos topology with three networking layers.
At the bottom layer, each rack typically holds 20–40 servers,
each singly connected to a commodity Top-of-Rack (ToR)
switch with a 1 Gbps link. These ToR switches usually of-
fer two to eight uplinks, which leave the rack to connect up
to several array switches to provide redundancy and band-
width. At the top of the hierarchy, datacenter switches carry
traffic between array switches usually using 10 Gbps links.
All links use Ethernet physical-layer protocol, with either
copper or fiber cabling depending on connection distance.

One of the most challenging design problems is that the
bandwidth “over-subscription” ratio (i.e. bandwidth entering
from below versus bandwidth available to level above) wors-

ens rapidly as we move up the hierarchy. This imbalance is
due to the cost of switch bandwidth, which grows quadrat-
ically in the number of switch ports. The resulting limited
WSC bisection bandwidth significantly affects the design of
software and the placement of services and data, hence the
current active interest in improving network switch designs.

Recent novel network architectures employ a simple,
low-latency, supercomputer-like interconnect. For example,
the Sun Infiniband datacenter switch [10] has a 300 ns port-
port latency as opposed to the 7–8µs of common Gigabit
Ethernet switches. Even at the WSC level, where huge tradi-
tional Cisco and Juniper switches or routers have dominated
to handle inter-WSC traffic, simple switches with minimal
software are now preferred. For example, the Google G-
scale OpenFlow switch [47] runs almost no software except
the OpenFlow agent using just BGP and ISIS protocols.

2.2 Evaluation Approaches
We next compare the different methodologies that have been
used to evaluate designs for WSC networks.
Production prototyping: In industry, perhaps the ideal way
to test new hardware is to build the real system at a smaller
scale and run it alongside a production system [34]. In this
way, new hardware evaluation will benefit from running pro-
duction software and a more realistic workload. However,
this approach suffers from scalability issues. First, it is ex-
pensive to build a large number of prototypes. Second, it is
risky to deploy experimental hardware at a large-scale in a
production environment. Third, the majority of the testing
workload will be generated by older and slower computers.
Testing clusters: Another popular approach is to deploy
the test equipment in medium-scale shared testing clusters.
For instance, the Yahoo M45 [7] cluster has 4,000 proces-
sors and 1.5 petabytes of data storage, and is designed to
run data-intensive distributed computing platforms such as
Hadoop [13]. Larger Internet companies can afford much
larger testing clusters, e.g. 20,000 nodes at Google [8]. Al-
though these test clusters have enough computing nodes to
help diagnose interesting scalability problems, their con-
struction and maintenance costs are enormous. Bringing up
an equivalent production software stack is also another prac-
tical issue [8]. Because of cost, researchers in academia use
much smaller in-house clusters at the scale of 40–80 nodes
(1–2 racks) [36, 51, 61] of off-the-shelf hardware. Commer-
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Figure 1. A typical WSC network architecture.



cial hardware usually has few controllable parameters, so
experiments can only explore a limited design space, and
has limited observability to help understand behavior, which
complicates analysis given that experimental runs with real
hardware are not generally reproducible.
Cloud computing: Cloud computing platforms such as
Amazon EC2 offer a pay-per-use service based on virtual
machine (VM) technology to enable users to share their
WSC infrastructure at an O(1,000) scale. Researchers can
pay $0.10/hour/node to rapidly deploy a functional-only
testbed for network management and control plane stud-
ies [30, 63]. The cloud is a straightforward approach for
software developers to acquire a large-scale infrastructure.
Such services, however, provide almost no visibility or con-
trol over the network and have no mechanism for accurately
experimenting with new networking architectures.
Full-system software simulations: To avoid the high capi-
tal cost of hardware prototyping, researchers have long used
software simulators to explore new architectural ideas at all
levels, from microarchitectures and instruction sets [46] to
full systems [27]. Alas, the recent abrupt transitions to mas-
sively distributed architectures and high-radix switches have
both increased the complexity and scale of simulation. The
complex interaction of networking software with network-
ing hardware renders popular techniques, such as sampling
and simple analytical models, unreliable at reproducing ac-
tual steady-state behavior even in the simplest TCP/IP net-
working environments [39].
Analytical simulation models: Researchers have used
stochastic queuing models in simulations [43, 48] to gain in-
sight into existing systems. Instead of simulating the detailed
microarchitecture, such analytical models raise the level of
abstraction, provided measurements of distributions of ar-
rival and service times for various tasks in the system are
available. Although analytical models are much faster than
full-scale simulation, it is challenging to build faithful mod-
els for new HW/SW that captures interesting interactions at
the 100,000-server scale when there is no system to measure.

2.3 Recent WSC Network Evaluation Studies
We next survey previous WSC-network evaluation studies.
Figure 2 plots the scale of the physical testbeds used by
datacenter networking papers published in SIGCOMM from
2008 to 2013. To be generous in our survey, we count VMs
as physical nodes, although VMs time-share hardware re-
sources and might not reflect accurate timing in the real
physical network. In addition, when EC2 is used, there is
no visibility into network performance. We optimistically
estimate the maximum number of switches assuming each
physical machine only hosts one VM.

Clearly, the biggest issue is evaluation scale. Although
a mid-size WSC contains tens of thousands of servers and
thousands of switches, recent evaluations have been limited
to relatively small testbeds with less than 100 servers and
10–20 switches. Small-scale systems are understandable, but

results obtained may not be predictive of systems deployed
at large scale. As we show later in this paper, sometimes
design decisions drawn from O(100) testbeds are completely
reversed when scaling to O(1,000) nodes.

For workloads, most evaluations run synthetic programs,
microbenchmarks, or even pattern generators, but real WSC
workloads include web search, email, and Map-Reduce jobs.
In large companies, like Google and Microsoft, researchers
typically use trace-driven simulation, due to the abundance
of production traces. Nevertheless, production traces are col-
lected on existing systems with drastically different network
architectures. They cannot capture the effects of timing-
dependent execution on a new proposed architecture. In the
past, when looking at networking designs, researchers tend
to focus on networking hardware and ignore server compu-
tation and client OS interaction for large-scale experiments.
We find that not only does OS software affect the system
results at scale, but it can be the dominant factor.

Types Microbenchmark Trace Application
Number of Papers 16 3 2

Table 1. Workload in recent SIGCOMM papers

Finally, many evaluations make use of existing com-
mercial off-the-shelf switches, with proprietary architectures
that have poor documentation of their existing structure and
little opportunity to change parameters such as link speed
and switch buffer configurations, which may have signifi-
cant impact on fundamental design decisions.

2.4 WSC Network Evaluation Needs
As pointed out in [25], the technical challenges of design-
ing WSCs are no less worthy of the expertise of computer
systems and networking architects than any other class of
machines. Their size alone makes them difficult to experi-
ment with or simulate efficiently, therefore, system designers
must develop new techniques to guide design decisions. We
believe to evaluate new WSC network architectures using
high-performance supercomputing-style interconnects with
a rapidly evolving set of application workloads and OS soft-
ware requires simulations with the following four properties:

Figure 2. Size of physical testbeds used in recent SIG-
COMM papers.



1. Scale: WSCs contain O(100,000) servers or more. Al-
though few single apps use all servers in a WSC,
O(10,000) nodes are desired to study networking phe-
nomena at aggregate and array-level switches.

2. Performance: Current large datacenter switches have
48/96 ports, and are massively parallel. Each port has
1–4 K flow tables and several input/output packet buffers.
In the worst case, there are ⇠200 concurrent events every
clock cycle. In addition, high-bandwidth switch proces-
sors often employ multicore architectures [1].

3. Accuracy: A WSC network operates at nanosecond time
scales. For example, transmitting a 64-byte packet on
a 10 Gbps link takes only ⇠50 ns, which is comparable
to DRAM access latency. This precision implies many
fine-grained synchronizations during simulation if timing
models are to be accurate.

4. Flexibility: The simulator should support experimenta-
tion with radical new switch designs and network soft-
ware stacks. It is unlikely slight tweaks to existing de-
signs will lead to large improvements.

3. DIABLO Implementation
Although software simulation is a flexible and low-cost tech-
nique for systems evaluation, it cannot scale to the size and
performance levels required for WSC-scale network exper-
iments while maintaining accuracy. In this section, we de-
scribe the design of DIABLO, which exploits FPGAs to
provide programmable hardware acceleration of simulation
models, achieving two orders of magnitude performance im-
provement over software simulators. In addition, DIABLO
can be scaled using multiple tightly coupled FPGAs to pro-
vide scalable high-performance simulations that retain ac-
curacy and flexibility. Overall, we designed DIABLO to an-
swer questions about how new systems behave after changes
to the hardware, the software, and/or the scale. We use target
to refer to the proposed system under evaluation, and host to
refer to the system running the simulation.

3.1 FAME-Based WSC Array Simulation
The most obvious approach to experimenting with WSC ar-
rays on FPGAs is to build a WSC array emulator by map-
ping processor and switch RTL designs directly to the FP-
GAs. But this naive mapping is inefficient and inflexible,
and makes it impractical to model key WSC array archi-
tecture features at scale. DIABLO instead uses FPGAs to
accelerate simulation models of the various components, an
approach known as FPGA Architecture Model Execution
(FAME) [55]. Groups in both academia and industry have
built various types of FAME simulators, which can be clas-
sified in five levels that are analogous to different RAID lev-
els [55]. Higher FAME levels lower simulator cost and im-
prove performance over lower levels, while moving further
away from the concrete RTL design of the target. DIABLO

is a FAME-7 simulator using the following three key tech-
niques to improve efficiency [55].

1. Abstracted Models: To reduce host hardware resource
requirements, we employ high-level abstract models of
each simulated component, capturing important features
but simplifying or removing features that are rarely used.
We also separate functional models from timing models
to simplify parameterization of target timing. For exam-
ple, the functional model for a router interprets headers to
send packets to the correct output port, while the router’s
timing model calculates how many target clock cycles
this takes. Thus, we can change the timing without al-
tering the router’s functional model.

2. Decoupled Design: We use a variable number of FPGA
host clock cycles and FPGA-resource-friendly structures
to simulate a single target clock cycle. For example, a
simple ring network on the host FPGA can model an ex-
pensive multiport crossbar in the target datacenter switch.

3. Host Multithreading: We run multiple target model
threads simulating different target instances in a single
host hardware model pipeline. Multithreading improves
FPGA resource utilization and hides host platform laten-
cies, such as those from host DRAM access and timing-
model synchronization across different FPGAs.

3.2 DIABLO Modular Architecture
DIABLO employs a modular design with only two distinct
FPGA configurations. Figure 3 shows the high-level simu-
lator architecture for the typical target WSC array config-
uration presented in Figure 1. We map all server models
along with the ToR switch models into Rack FPGAs, and
array and datacenter switch models to separate Switch FP-
GAs. To further simplify switch model design, we keep any
switch model within a single FPGA. Mirroring the physical
topology of the target system, we connect Rack FPGAs to
Switch FPGAs through several time-shared 2.5 Gbps serial
transceivers. Each FPGA has its own simulation scheduler
that synchronizes with adjacent FPGAs over the serial links
at a fine granularity to satisfy the nanosecond-scale simula-
tion accuracy requirements mentioned in Section 2.

To make the design simpler and more modular, we only
use multi-gigabit serial transceivers for inter-FPGA con-
nections. The serial transceivers provide enough bandwidth
between FPGAs considering our overall simulation slow-
down of between 250–1000⇥ of real time. For example,
the bandwidth of a 2.5 Gbps host transceiver translates to
625–2500 Gbps in the target, which far exceeds the band-
width between a few racks and several array switches today.
Moreover, recent FPGAs have significantly enhanced serial
transceiver performance, supporting up to 28 Gbps band-
width [14] in the 28 nm generation.

We reduce host communication latency by using our own
protocol over the serial links. Including all packet payload
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Figure 3. DIABLO FPGA simulator architecture. Only two FPGA configurations are used: Rack FPGA and Switch FPGA.

and overhead, the overall round-trip latency between FAME
models on different FPGAs is only around 1.6µs. In addi-
tion, the host-multithreaded FAME-7 design further helps to
hide host communication latency, removing model synchro-
nization latency as a simulator performance bottleneck.

3.3 DIABLO FPGA Models
DIABLO contains three FPGA models corresponding to
three basic components in WSC array network infrastruc-
ture: compute servers, network interface cards, and network
switches. To enable design-space exploration without time-
consuming FPGA re-synthesis, all the models have runtime-
configurable parameters. All the modules were custom-built
in SystemVerilog with minimal use of 3rd-party IP blocks.

Server Model
The server model is built on top of RAMP Gold [54], which
is an open-source cycle-level full-system FAME-7 architec-
ture simulator supporting the full 32-bit SPARC v8 ISA.
RAMP Gold also models MMUs, timers, and interrupt con-
trollers, and boots Linux 2.6.39.3 and 3.5.7 kernels as well
as a many-core research OS [45]. The server model is bi-
nary compatible with existing SPARC32 machines, and runs
unmodified binaries from Debian Linux distributions.

We map one target server running an independent Linux
instance to one hardware thread in the host server model
pipeline, with each host pipeline in DIABLO simulating
a WSC rack holding up to 32 servers. Each simulated
server uses a simplified runtime-configurable fixed-CPI tim-
ing model, where all instructions take a fixed number of cy-
cles. The goal of the simple server model is not to model
WSC server microarchitecture with 100% accuracy but run
a full software stack with an approximate performance esti-
mate or bound. More detailed timing models could be im-
plemented, but would require additional host hardware re-
sources and would thus reduce simulation scale.

Even though the RAMP Gold pipeline improves server
model performance by two orders-of-magnitude over state-

of-the-art software simulators, the server models are still the
simulation bottleneck for the whole DIABLO system.

Switch Model
To demonstrate the flexibility of our approach, we build
FAME-7 models for two broad categories of WSC array
switch: those using connectionless packet switching, also
known as datagram switching, and those using connection-
oriented virtual-circuit switching.

Although packet switches dominate current WSC net-
works, some researchers are proposing new circuit-
switching designs for WSCs to provide more predictable
latencies and to take advantage of new high-speed switch-
ing technologies. The proposed designs are only available
as early research prototypes but details are open, and some
have been directly implemented on FPGAs [59], simplify-
ing construction of highly accurate models. An earlier pub-
lication [56] showed that the fully detailed model for a 128-
port 10-Gbps high-radix array/datacenter circuit-switching
switch can fit on a single FPGA.

In contrast, the packet switches used in existing produc-
tion WSCs pose a considerable modeling challenge due to
their design complexity and their hidden proprietary mi-
croarchitecture. To make modeling tractable, we simplify
our abstract models by removing features that are seldom
used in a WSC. Here are the simplifications we employed
and the rationale behind our choice:

Ignore Ethernet QoS-related features: Although QoS
features (e.g. support of IEEE 802.1p class of service
(CoS)) are available on almost every switch today,
many WSCs only utilize switches for basic connectivity
without turning on QoS features.

Use simplified source routing: Many switches [11, 12] al-
ready support TCAM-based flow tables that have at least
32 K entries. Given the total number of machines in a
WSC, the slow-path flow-table update is rarely executed,
making the flow-table lookup time constant in practice.
Besides, WSC topologies do not change frequently, and



routes can be pre-configured statically. We use source
routing to simplify modeling of packet routing, and we
note that source routing is actually a component of many
WSC-switch research proposals. To emulate more com-
plicated flow-table operations, we could implement d-left
hash tables [49] using host DRAM. This technique has
already been applied by recent datacenter switches im-
plementing large flow tables [11].

Abstract packet processors: Commercial datacenter
switches include many pipelined packet processors that
handle different tasks such as MAC address learning,
VLAN membership, and so on. The processing time
of each stage is relatively constant regardless of packet
size, and the time can be as short as a few hundred
nanoseconds [31] to a few microseconds [11].

Although commercial switch implementation details are
generally not publicly available, the fundamentals of these
switch architectures are well known. Examples include the
architecture of a virtual-output-queue switch and common
scheduling algorithms. We build our abstracted model fo-
cusing on these central well-known architectural features,
and allow other parts that are unclear or of special inter-
est to researchers (for example, packet buffer layout) to be
configurable during simulation. Specifically, in our switch
models, we focus on the data path features, such as switch
buffer management and configuration, which have become
an active area for packet-switch researchers [26]. We base
our packet buffer models after that of the Cisco Nexus 5000
switch, with configurable parameters selected according to
a Broadcom switch design [42]. We also model high link
bandwidth and cut-through switching fabrics with low port-
to-port latencies. These are all essential features for explor-
ing future high-performance WSC switches, which are not
very easy to deploy at scale for testing in the real world be-
cause of high cost.

There has been an increasing research interest in the
area of Software Defined Networks (SDNs) using Openflow-
capable switches in the WSC. The datapaths of these SDN
switches are actually identical to those of conventional
switches, and our simplified source-routed switch models
can be easily extended to support the flow-table architecture
used by an SDN switch.

In DIABLO, we use a unified abstract virtual output-
queue switch model with a simple round-robin scheduler
for all levels of switch. Switch models in different layers of
the network hierarchy differ only in their link latency, band-
width, and buffer configuration parameters. An earlier pub-
lication provides more details of our switch model [56]. Our
FAME-7-based switch model is four times faster than a soft-
ware single-threaded network simulator used at Google [8]
that does not simulate packet payloads or support full
software-stack scaling to 10,000 nodes as does DIABLO.

NIC Models
The DIABLO NIC models an abstracted Ethernet device,
whose internal architecture resembles that of the Intel 8254x
Gigabit Ethernet controller on the popular Intel PRO/1000
MT server adapter. It is also popular among many VM im-
plementations such as Virtual Box [20], VMWare Virtual
Server [21], QEMU [19], and Microsoft Hyper-V [16]. Fig-
ure 4 shows the target architecture of our abstracted NIC
model. The core feature of the NIC is a scatter/gather DMA
with ring-based packet buffers stored in the main system
DRAM. The scatter/gather DMA is used to support the
zero-copy feature in Linux, and is essential for any high-
performance networking interface. In our current prototype,
we support only one hardware ring buffer for each of the re-
ceive (RX) and transmit (TX) queues. For model simplicity,
we did not model any hardware checksum offloading. In-
stead, we turn off the packet checksum feature in the Linux
kernel to emulate having a hardware checksum offloading
engine in the NIC without taking additional CPU time. Our
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NIC device driver supports all features of a generic Linux
Ethernet device driver. We can run unmodified TCP/IP user
applications using the standard socket programming inter-
face. To model high performance NICs, our driver supports
advanced features such as Zero-copy, RX/TX interrupt miti-
gation and the NAPI polling interface [52].

The NIC model is a straightforward FAME-7 implemen-
tation of the target hardware. The basic functionality of a
NIC is to manipulate packet data stored in the DRAM, but
DRAM performance is much less an issue for FAME models
so the NIC model is not on the simulator critical path.

3.4 DIABLO Cluster Prototype
The DIABLO prototype was built using a rack of BEE3
boards [32]. Each board has four Xilinx Virtex-5 LX155T
FPGAs, each with 16 GB of DDR2 memory across two
independent DRAM channels, resulting in 64 GB total per
board. Each FPGA provides eight 2.5 Gbps SERDES lanes
in two CX4 ports to connect to other FPGAs.



On each Rack FPGA of the current BEE3 boards, we
evenly distribute four 32-thread server models to two host
DRAM channels and partition the host DRAM for server
computations, simulating four racks with 124 servers. Each
server model has one ToR switch model attached to the same
DRAM controller.

Component Name LUT Register BRAM LUTRAM
Server Models 28,445 37,463 96 6,584
NIC Models 9,467 4,785 10 752
Rack Switch Models 4,511 3,482 52 345
Miscellaneous 3,395 16,052 31 5,058
Total 45,818 62,811 189 12,739

Table 2. Rack FPGA resource utilization on Xilinx Virtex-5
LX155T after place and route using Xilinx ISE 14.3.

Table 2 shows the overall resource utilization of the Rack
FPGA on the BEE3 board. Including the resources dedicated
for FPGA routing, the device is almost fully utilized with
95% of logic slices occupied at a 90 MHz host clock rate.
The chip resources are dominated by structures to simulate
server computation. On each FPGA, we equally divide the
16 GB physical DRAM into 128⇥128 MB partitions. Each
simulated server uses one partition for target memory stor-
age. For each server pipeline, we use 31 threads out of the 32
available threads and save the DRAM storage of the remain-
ing thread for simulating packet buffers on the ToR switch.
Each DIABLO model has a dedicated on-chip host cache to
optimize simulator DRAM accesses.

All DIABLO models on the same FPGA share a single
Gigabit Ethernet connection as the frontend connection for
bootstrapping, console output and functional I/O, such as
keyboard and disk access.

The Switch FPGA is just a cut-down version of the
Rack FPGA containing only switch models and fewer server
model pipelines. A single server functional model pipeline,
without a timing model, is used to run functional configura-
tion for our switch models. The server functional model can
also act as a control-plane processor for a simulated switch.

We emphasized reliability over performance in physical
design. We protect all physical links, such as Gigabit Eth-
ernet and serial links, with hardware checksums and retries
to handle occasional soft errors, which we’ve observed oc-
cur a few times per day in our prototype. We also use ECC
to protect all memory data paths that interact with the ECC
memory DIMMs on our FPGA board.

A 3,000-node DIABLO system
We used 9 BEE3 boards totalling 36 FPGAs to build a siz-
able prototype, as Figure 5 shows. We use off-the-shelf CX4
breakout cables to connect arbitrary transceiver pairs on dif-
ferent FPGAs from the front panel following the target net-
work topology. We populate six boards with the Rack-FPGA
design simulating 2,976 servers with 96 rack switches. We
load the remaining three boards with the Switch-FPGA de-

(a) Without inter-board connections (b) Fully-connected with high-speed
cables

Figure 5. DIABLO cluster prototype

sign to simulate 6 array switches and one datacenter switch.
Using an additional 13 boards, we could scale the existing
system to build an emulated large WSC array with 11,904
servers and 385 rack switches.

The whole FPGA cluster has a total memory capacity
of 576 GB in 72 independent DRAM channels with an ag-
gregated bandwidth of 268 GB/s. All FPGA boards fit into
a standard server rack, and the prototype consumes about
1.5 kW when active. Each FPGA has a Gigabit frontend
control link connected to a shared 48-port gigabit switch.
We use two 12-core Intel Xeon X5680 servers to drive all
nine FPGA boards using our custom protocol over Ether-
net. Each server has four 1 Gbps interface card connected
to the 48-port switch to balance the control traffic to differ-
ent boards. We store boot disk images and console I/O logs
of all 2,976 servers on a striped RAID-0 partition on each
front-end server. This setup is used to optimize the simulated
Linux booting process, where all simulated servers access
disk images over 8⇥1 Gbps links simultaneously.

The BEE3 boards used have 2007-era FPGAs and older
DRAM DIMMs, and the BEE3 board was not designed with
low-cost simulations in mind. Each BEE3 cost $15K, and
the total cost of a 9-board system was about $140K. Al-
though the BEE3 hardware is now somewhat dated, the sys-
tem was sufficient to develop and evaluate the approach and
gather experience for the next system. Because DIABLO
uses a modular design and uses only the serial links between
FPGAs, we can readily port DIABLO to lower-cost single-
FPGA boards. Using the latest 20nm FPGAs in 2015 and
with a redesigned board, we estimate we could now poten-
tially build a 32,000-node DIABLO system using just 32 FP-
GAs and an overall cost of $150K including DRAM.

4. Case Studies
In this section, we demonstrate the capabilities of the DIA-
BLO prototype and validate its performance models using
case studies drawn from classic networking problems run at
scale. We show the effects of changing both hardware and
software parameters of the system, including switch band-



width, latency, buffer configuration, target server CPU per-
formance, operating systems, and application logic.

4.1 Reproducing TCP Incast
Incast is a classic many-to-one communication pattern com-
monly found in many WSCs implementing scale-out dis-
tributed storage and computing frameworks, such as Hadoop
and Map-Reduce. In particular, the TCP Incast problem [53,
60] refers to the application-level throughput collapse that
occurs as the number of servers returning data to a client in-
creases past the ability of an Ethernet switch to buffer pack-
ets. Previous work [28, 60] has focused on studying the inter-
play between the TCP retransmission timeout (RTO) value
and the limited capacity of buffers in low-cost ToR switches.
However, as pointed out in [53], TCP Incast is only obvious
under specific hardware and software setups, for instance
with switches that have very small shared packet buffers.

Our first experiment uses DIABLO to reproduce the ap-
plication throughput collapse observed with shallow-buffer
Gigabit switches, as used in many previous studies. We con-
figured the DIABLO packet-switching model for 1 Gbps
links, switch port-to-port delay of 1µs, and 4 KB packet
buffers per port, as found in a Nortel 5500 switch [29]. Com-
pared to existing ns2 [4] and analytical switch models, DI-
ABLO models a more advanced packet buffer architecture
that supports virtual queues to prevent head-of-line block-
ing, as usually used in high-end Cisco [11] and Fulcrum
switches [31]. The test program [3] we ran has been used
to test 10 Gbps production datacenter switches from Arista
and Cisco [9]. We selected a typical request block size of
256 KB for the client application. We configured our server
models to simulate a single-core 4 GHz CPU and ran Linux
2.6.39.3 on our simulated servers. We used up to 24 ports of
the simulated switch and ran the network transaction for 40
iterations.

(a) 1 Gbps shallow-buffer switch (b) 10 Gbps simulated switch

Figure 6. Reproducing the goodput of TCP Incast under
different configurations

We compare DIABLO results against an ns2 simulation
configured to match these parameters, and validate our re-
sults against a real hardware cluster containing 16 Intel
Xeon D7950 servers and a 16-port Asante IntraCore 35516-
T switch, where the commercial switches have a shared
packet buffer architecture. Figure 6(a) compares the aver-
age goodput of the three systems. With its abstract virtual-

output-queue switch model, DIABLO has a faster appli-
cation throughput collapse than measured on the hardware
with a shared-buffer switch. However, DIABLO captures the
throughput recovery trend after the collapse better than ns2.
The simulated throughput before collapse also matches that
on the real system at around 800 Mbps. Note that many de-
tails are different between the DIABLO system and the real
hardware, including instruction set, processor performance,
and NIC and switch architecture, yet DIABLO captures the
overall shape of the performance curve at the larger scale.

Traditional network simulators like ns2 focus on network
protocols but not the implementation of the OS network
stack and application interface, which become more impor-
tant for high-speed networks. To investigate the impact of
target OS and application interface, we modified the TCP In-
cast benchmark to use the epoll syscall instead of the origi-
nal pthread with blocking socket syscalls. The epoll syscall
has been used by many WSC applications, such as mem-
cached, to efficiently handle many client network connec-
tions. Applications using epoll proactively poll the kernel for
available data. This behavior is different from that of using
blocking syscalls to wait for OS notifications from multiple
user threads. We also configured the DIABLO server tim-
ing model to simulate target computations of a 2 GHz CPU
versus a 4 GHz CPU.

Figure 6(b) plots goodput curves of experiments under
different server hardware and software configurations using
a 10 Gbps network. With the same switch and TCP config-
uration, the results show that CPU speed and choice of OS
syscalls significantly affects the application throughput. As
pointed out in early work on 10 Gbps TCP performance at
the Fermi High Energy Physics Lab [62], there are many
other factors in the Linux kernel that could contribute to
packet losses, such as different queues for slow and fast path
handling of received packets. With 10 Gbps links, it is chal-
lenging for applications to sustain wire speed without signif-
icant tuning. Even when using scatter/gather zero-copy fea-
tures in the NIC, the simulated single-core 2 GHz CPU us-
ing pthread could only achieve 1.8 Gbps throughput when
there is no throughput collapse. Using epoll significantly
delays the onset of throughput collapse. In addition, we
only observed a moderate throughput collapse to 2.7 Gbps
starting from 9 servers and 1.8 Gbps with 23 servers using
4 GHz CPUs. Using 2 GHz CPUs, the collapse is much more
significant at 400–500 Mbps, which is less than a third of
the throughput with 4 GHz CPUs. The collapsed through-
put with the epoll client is only half of that of the origi-
nal pthread client. However, using the pthread version, the
throughput collapses quickly even with a faster CPU. The
throughput recovers to only 10% of the link capacity, which
again matches the observations from measurements and sim-
ulations in [60]. Moreover, the absolute throughput numbers
do not seem to be correlated with the target processor per-
formance when collapse happens.



In conclusion, switch buffers are not always the one and
only limiting factor for TCP Incast. The long TCP retrans-
mission timeout is just a consequence of an imbalanced sys-
tem. Simple analytical or network simulation models might
allow parameters to be set to match results for a small num-
ber of faster machines connected by a slower network, but
then the models will not correctly predict behavior of a
scaled system.

4.2 Studying memcached Latency Long Tail at Scale
One of the greatest challenges in building responsive large-
scale computer systems is the nature of request service vari-
ations. For example, Google researchers found long-tail dis-
tributions for web query latencies, where some request la-
tencies are multiple orders of magnitude longer than the me-
dian [24, 33]. Moreover, more requests fall into the tail as
the system scale increases. There are multiple complex un-
derlying causes of the long tail, including queuing in both
software and hardware, kernel schedulers, shared hardware
resources and many others [33]. Hence, reproducing the long
tail and understand the contributing factors requires analyz-
ing hardware along with the full software stack at large scale.
In this section, we use DIABLO to illustrate the impact on
tail latency of many factors including: implementation of
the application, versions of the OS kernel, network transport
protocols, as well as switch design.

Experiment setup
To demonstrate running production WSC software, we
ran the popular memcached [2, 5, 17] distributed key-
value store application on DIABLO. We used unmodified
memcached source code versions 1.4.15 and 1.4.17.

In a real production environment, the client workloads of
memcached servers are generated by the front-end web tier.
Although the API is simple, it is difficult to accurately repre-
sent a memcached workload. In particular, previous studies
show that the object size distribution has a large impact on
the system behavior [44]. Simple microbenchmark tools like
memslap do not attempt to reproduce the statistical charac-
teristics of real traffic. To provide a more realistic workload,
we built our own client based on recently published Face-
book live traffic statistics [23]. At Facebook, memcached

servers are partitioned based on the concept of pools. We
focused on one of the pools that is the most representative,
and validated our workload generator against the Facebook
data [23].

Figure 7 shows the simulated target topology. Each rack
contains 31 servers with one Top-of-Rack switch. We used
the 32nd port on the rack switch to connect to an array
switch, creating a bandwidth over-subscription ratio of 31 to
1. Each array switch supports up to 16 inward-facing links
and one uplink to the datacenter switch, thus having a band-
width over-subscription ratio of 16-to-1. With the runtime
configurable switch timing models, we are able to simu-
late a 1 Gbps interconnect with 1µs port-to-port switch la-
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Figure 7. Memcached experimental setup.

tency as well as a 10 Gbps interconnect with 100 ns port-
to-port switch latency. We used the same simulated switch
buffer configuration as in section 4.1, and used the simple
4 GHz fixed-CPI timing model for server CPUs. This simu-
lation required six BEE3 boards: four boards to simulate 64
server racks of 1,984 servers, one board to simulate all array
switches, and the remaining board for the datacenter switch
simulation.

We distributed 128 memcached servers evenly across all
64 racks to minimize potential hot spots in the network,
and used the remaining machines as clients. This creates a
configuration of two memcached servers and 29 clients in
a single rack. Each client sends 30K requests to a randomly
selected server from all 128 servers, each configured with a
64 MB memory pool.

We performed experiments at several scales: 496-node,
992-node, and 1984-node. For convenience when presenting
results, we round up the exact number of nodes to 500, 1000
and 2000 respectively in the rest of this paper. We scale down
the number of servers when running a smaller configuration,
maintaining a constant server-to-client ratio. The 500-node
setup uses only one 16-port array switch without a datacenter
switch, while both 1000-node and 2000-node experiments
exercise all three levels of switches. We also performed
our load tests using both TCP and UDP protocols. CPU
utilization in all servers is moderate, at under 50%. There is
also no packet retransmission due to switch buffer overruns.

Validating memcached on real clusters and
Reproducing the latency long tail on DIABLO
First, to validate our DIABLO models at an understand-
able scale, we deployed a set of memcached experiments
at the single-rack scale using a real cluster. Our single-rack
16-node testbed includes 3 GHz Intel Xeon D7950 servers
running Linux 2.6.34 connected with a 16-port Asante In-
traCore 35516-T Gigabit switch. We used two machines as
memcached servers with the rest as clients. We let each
client thread send 30,000 requests till completion. We also
tried 100,000 requests with up to 256 MB server memory
pool, and the steady-state performance numbers were simi-
lar. We configured each server with several parameter com-



binations, for example 4 or 8 worker threads using TCP or
UDP connections.

(a) Throughput

(b) Latency

Figure 8. Real machines vs. simulated memcached servers.

We compared results from the perspective of both server
and client. Figure 8(a) shows the throughput of a measured
server versus a simulated server under different number of
clients. We only show results from one server, as throughput
curves of other servers are similar. Figure 8(b) illustrates
the average request latencies measured at every client. For
all configurations we tested at this small scale, DIABLO
successfully reproduced the shapes of performance curves.
The client latency stays low and scales linearly with a small
number of clients, while more clients saturate the server. We
expect absolute performance differences between real and
simulated clusters, as DIABLO uses a different simulated
hardware specification. However, the goal is to reproduce
the trend at scale.

As with prior studies using real physical testbeds, our val-
idation efforts are limited by available networking and com-
puting hardware. To perform scale-out validations, we ran
the same experiments on an 8-rack 120-node Intel Xeon E5-
2620 v2 cluster with 10 Gbps rack switches and a 40 Gbps
aggregate switch [6]. As we could not obtain dedicated ac-
cess to this large shared cluster, we had to run the same ex-
periments many times and choose 10 runs without a signifi-
cant background workload in the cluster. Figure 9 compares
the client request latency tail measured from the large phys-
ical cluster with the simulation results from DIABLO. To
show the robustness of our data from the shared physical
cluster, we plotted the error bars in Figure 9. At the scale of
120 machines, we do see < 0.1% of total requests finish or-
ders of magnitude slower than regular requests. The newer
memcached 1.14.17 has a slightly better tail performance
than the older 1.14.15 on both simulated and real cluster. The
simulated 120-node setup is a more ideal environment with

less software services running in the background. Therefore,
there are fewer requests falling into the tail compared to a
real system. Similarly, the difference between the two ver-
sions of memcached becomes less obvious.
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Figure 10. PMF of client request latency at 2000-node on
DIABLO using UDP.

Figure 10 plots the Probability Mass Function (PMF) of
all client queries for the 2k-node DIABLO simulation run-
ning UDP over different interconnects. The shape of PMF is
similar at the scale of 500-node and 1k-node. We also ob-
served similar latency long tails using TCP. We found the
majority of requests finished in less than 100µs, but there
are a small number of requests that finished more than two
orders of magnitude slower than the average, reproducing
the long tail distribution. To understand the long tail better,
we classified all queries into three different categories based
on the number of physical switches they traverse, with local
indicating requests hit the same rack. From Figure 10, we
know that all three types of requests exhibit a long tail dis-
tribution. The more switches the query traverses, the greater
the latency variation. Moreover, 2-hop requests dominate the
overall latency distribution at large scale, as the majority of
requests travel to a remote rack.

From Figure 11, we can also tell the impact of system
scale on the latency tail. For example, the 99-percentile
latency of a 2K-node system is more than an order-of-
magnitude worse than that of a 500-node system. These ob-
servations from DIABLO match those reported in a recent
Google publication [33].



Figure 11. 95th � 100th percentile CDF of client latency at
different scales on a 1 Gbps interconnect running UDP.

Impact of network hardware
One straightforward solution to reduce request latency is
to upgrade the network hardware, and we next explore the
potential performance gain via DIABLO simulations. We
simulate a low-latency 10 Gbps switch with 10⇥ bandwidth
and 10⇥ shorter latency compared to the simulated 1 Gbps
network. From our results, the improved cut-through switch
does help to reduce request latencies, but the improvement is
no more than 2⇥. This indicates that the full OS networking
stack dominates the request latency. Google showed similar
results from their large-scale testbed using O(100 ns) low-
latency switches [24].

Further, to evaluate the robustness of our simulation re-
sults, we simulated the client latency tail with an additional
50 ns and 100 ns port-to-port latency at all switch levels,
with results in Figure 12. The error bars on the figure are
very small showing that the cycle-level DIABLO simulator
is quite stable when tweaking simulated hardware configura-
tions. We found that the extra switch latency does not affect
the shape of the tail curves, although the 99-percentile la-
tency increases to 364µs from 253µs. In addition, the extra
switch latency does not impose a significant tax on regular
non-tail request latencies.
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Figure 12. Client latency tail with different switch laten-
cies.

Impact of the network transport protocol at scale
As mentioned earlier, current evaluation technologies only
allow most networking researchers to conduct full-system

experiments at scales of O(10) to O(100). Often the most
intuitive solution to a networking issue is to change the
network transport protocol. However, one big question is
whether we can generalize O(10)–O(100) node results to a
larger scale at O(1000)–O(10,000). In this section, we con-
duct a simple experiment using DIABLO to quantitatively
analyze which network protocol (TCP or UDP) is better at
reducing the long-tail at scale, by sweeping through several
system parameters including interconnect performance and
system scale.

Figure 13 shows the cumulative tail distribution of using
different protocols. For the 1 Gbps interconnect, at the 500-
node scale the UDP protocol is a clear winner compared to
TCP. However, UDP’s advantage disappears when moving
to 1000 nodes, as TCP slightly outperforms UDP. When we
move to the 2000-node scale, TCP is better. The conclusion
at 2000-node scale is completely reversed to that at 500
nodes. On the other hand, upgrading the interconnect to
10 Gbps shows a very different result. Now, there is much
less difference between UDP and TCP.

The 500-node setup represents a small cluster in a full-
scale datacenter, with 13–14 fully populated standard server
racks connected to a single aggregate array switch. For the
given topology we simulated, both 1000-node and 2000-
node setups require an extra aggregate switch. The extra
aggregate switch contributes to the tail latency more than
using more ports (2000 vs. 1000) on the same extra switch.

Impact of target operating system
DIABLO is different from prior simulators in that it can run
1,000s of full OS instances while modeling time accurately.
This enables experiments that are difficult even in a real
WSC, e.g., deploying an experimental kernel on thousands
of machines.

We ported a more recent Linux 3.5.7 kernel and compared
its performance running our large-scale memcached exper-
iments against those from the one-year-older 2.6.39.3 kernel
used earlier in this section. We compare them at 2K nodes
with the same 10 Gbps interconnect and server hardware.
Figure 14 plots the cumulative distribution of 95-percentile
client request latencies. We can see that there are significant
improvements in terms of request responsiveness in the new
3.5.7 kernel. The average request latency is almost halved,
and the better kernel scheduler and more efficient network-
ing stack also helps to alleviate the latency long-tail issue.

This result shows that OS optimizations play a critical
role in the performance of distributed applications, and OS
behaviour should be modeled when evaluating any new pro-
posed new network designs.

Impact of application implementation
In addition to OS network stack design, another factor that
affects client request latency is the application’s implemen-
tation and choice of system calls. We ran two versions of
memcached, 1.4.17 and 1.4.15 on both the physical testbed
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(c) 2000-node 1 Gbps
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Figure 13. Comparing TCP vs UDP on CDFs of client request latency at different scale with different interconnect.

Figure 14. Impact of OS kernel versions on the 2,000-node
system.

Figure 15. Impact of memcachd versions on the latency
CDF. 1.4.17 has a slightly better tail performance similar to
our validation results in Figure 9.

and DIABLO. One of the major differences for the slight
newer 1.4.17 is the support of the accept4 syscall, which
eliminates one extra syscall for each new TCP connec-
tion [22].

For both versions, there is no significant difference be-
tween the client request latencies on the real cluster at the
scale of 120 nodes. The 1.4.17 memcached has a marginal
better 99 percentile latency of 197µs, while the older 1.4.15
is at 210µs.

To investigate the effectiveness of the accept4 syscall at
a larger scale, we simulate a configuration with 500 nodes
and another configuration with 2,000 nodes on DIABLO.
Figure 15 shows the CDF of client latency of both configura-
tions. At the 500-node scale, both versions of memcached on
the simulated cluster behave similarly to the 120-node real
cluster. The 99-percentile client request latency of 1.4.17
memcached is only 8µs faster on the simulated hardware.
Note that the absolute latency difference between the sim-
ulated hardware and real cluster is due to the fact that we
configure our abstract model with a slightly faster switch.

On the other hand, when scaling to the 2,000-node scale
with one more aggregate switch in the network hierarchy, the
benefit of fewer syscalls in the newer version of memcached
becomes more apparent. The 99-percentile client request la-
tency of version 1.4.17 is 145µs versus 345µs of version
1.4.15. This again shows how the scale of the system ampli-
fies the latency tail effect.

To summarize, in our case studies, the impact of software
implementation of OS and application interface are far more
important than all the hardware and network transport proto-
col changes we have studied. The detailed execution-driven
DIABLO models show that there are many more aspects in
both HW and SW stacks that could significantly affect the
application tail latency at scale.



5. Discussion and Future Work
When simulating 4 GHz servers with a 10 Gbps intercon-
nect, around 50 minutes of simulation wall-clock time are
required for one second of target time; software simulation
would take almost two weeks. Moreover, DIABLO’s simu-
lation performance scales perfectly. We observed no perfor-
mance drop from simulating 500 nodes with two boards, to
2,000 nodes using six boards. The simulation performance
is dominated by simulating the server computation using
RAMP Gold, which can be improved by reducing the num-
ber of model threads per host hardware pipeline at the cost
of reduced system scale or increased hardware cost [54].

The FAME-7 modeling technique gives us the capability
of emulating larger target systems with fewer virtualized
FPGA resources. However, the target memory capacity is
very hard to virtualize with limited physical DRAM storage.
We should note that this is an open topic for any work that is
trying to emulate a WSC with limited hardware resources.
Another limitation is that we have only simulated fixed-
CPI single-CPU servers with one hardware thread per server
model. A more complex timing model supporting multi-core
CPUs is planned for DIABLO-2.

Neither limitation is intrinsic to the methodology, but in-
stead reflects our use of a 5-year-old FPGA board. We are
developing a new FPGA board using upcoming 20 nm FP-
GAs that should support a quad-core 64-bit server model
with 4 GB/node memory capacity. Additional simulated
DRAM storage will be provided through PCIe-attached
NAND FLASH storage.

Our current prototype used FAME-7 style NIC/switch
models, which run far faster than necessary for the sim-
ulation while consuming considerable FPGA resources.
We will replace these hardware models with a software-
programmable microcoded model, to provide additional
flexibility as well as reduced resource usage.

6. Conclusion
We believe the research community needs a boost in evalu-
ation technology to look at systems with scale of O(1,000)
to O(10,000), as behavior is drastically different compared
to O(10) to O(100) systems. The working DIABLO proto-
type enables networking researchers to conduct controllable,
reproducible, full-stack WSC simulations at much larger
scales than previously possible. We show that considering
end-to-end server computation, including full OS and ap-
plication code, is essential to understanding network system
performance, and has much greater impact than networking
hardware and protocols.
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