
RLDRM: Closed Loop Dynamic Cache Allocation
with Deep Reinforcement Learning for Network

Function Virtualization
Bin Li†, Yipeng Wang†, Ren Wang†, Charlie Tai†, Ravi Iyer†, Zhu Zhou†, Andrew Herdrich†, Tong Zhang†,

Ameer Haj-Ali‡*, Ion Stoica‡, Krste Asanovic‡
†Intel Corporation

{bin.li, yipeng1.wang, ren.wang, charlie.tai, ravishankar.iyer, zhu.zhou, andrew.j.herdrich, tong2.zhang}@intel.com
‡ University of California, Berkeley
{ameerh, istoica, krste}@berkeley.edu

Abstract—Network function virtualization (NFV) technology
attracts tremendous interests from telecommunication industry
and data center operators, as it allows service providers to assign
resource for Virtual Network Functions (VNFs) on demand,
achieving better flexibility, programmability, and scalability. To
improve server utilization, one popular practice is to deploy best
effort (BE) workloads along with high priority (HP) VNFs when
high priority VNF’s resource usage is detected to be low. The key
challenge of this deployment scheme is to dynamically balance
the Service level objective (SLO) and the total cost of ownership
(TCO) to optimize the data center efficiency under inherently
fluctuating workloads. With the recent advancement in deep
reinforcement learning, we conjecture that it has the potential to
solve this challenge by adaptively adjusting resource allocation
to reach the improved performance and higher server utilization.
In this paper, we present a closed-loop automation system
RLDRM1 to dynamically adjust Last Level Cache allocation
between HP VNFs and BE workloads using deep reinforcement
learning. The results demonstrate improved server utilization
while maintaining required SLO for the HP VNFs.

I. INTRODUCTION

Network function virtualization (NFV) becomes more and
more popular among telecommunication industry and cloud
service providers due to its scalability, flexibility, and cost
efficiency. NFV enables people to develop and deploy net-
working services on general purpose servers quickly, without
relying on proprietary networking hardware [1]–[4].

With the new NFV paradigm, network service providers
build virtual network functions (VNFs) such as virtual
switches, gateways, and firewalls, and consolidate those VNFs
to run on commodity servers. To maintain the service level
objectives (SLOs), the servers running VNFs are usually
over-provisioned, which leads to wasted power and hardware
resources and increased cost of ownership [5], [6]. In order
to further improve server utilization and reduce cost, service
providers often launch certain best effort (BE) workloads on

*Part of this work was done while Ameer Haj-Ali was in a summer
internship at Intel Labs

1RLDRM: Reinforcement Learning Dynamic Resource Management

Best Effort
Workloads

LLC for
best

effort
LLC for high priority

High Priority
VNFs

Server Platform

Fig. 1. Example showing HP VNFs and BE consolidation on server platform
with Intel® RDT

the same server with the high priority (HP) and latency sensi-
tive VNFs to utilize any remaining resources. This is known
as workload consolidation [7]. While workload consolidation
improves server utilization, it also introduces performance-
impacting contention on shared resources between the HP
VNFs and the BE workloads, which results in possible SLO
violations to the VNFs.

To alleviate this shared resource contention problem, hard-
ware vendors such as Intel® provides new technologies for
users to control hardware resources with finer granularity.
Intel Resource Director Technology (Intel® RDT) [8], [9] is
one example that enables last-level cache (LLC) and memory
bandwidth partitioning between different applications. The
proper use of Intel® RDT can isolate the HP workloads and
the BE workloads that run on the same platform, which helps
increase the server utilization while avoid SLO violations.

One way of utilizing Intel® RDT is to profile the HP
workloads offline, finding the resource allocation configura-
tions that satisfy the throughput/latency requirements for the
HP workloads at the worst case. The remaining resources are
then allocated to the BE tasks as shown in Figure 1. We call
this offline profiling based resource allocation method as static
resource allocation. The static resource allocation is relatively
simpler to set up. However, it is totally unaware of the dynamic978-1-7281-5684-2/20/$31.00 ©2020 IEEE

2020 6th IEEE International Conference on Network Softwarization (NetSoft)

335Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

Static
resource
allocation

Open loop
dynamic
resource
allocation

Closed loop
automation

Pros: Set only once
Cons: Cannot
handle workload
changes

Pros: Handling
variability
Cons: No performance
feedback

Pros: Policy driven
Cons: More complex

Fig. 2. Resource allocation approaches summary

workload variance during run time.
In real data center environment, the amount of traffic

processed by the networking servers typically has some coarse
grained time-based patterns. For example, during the day time
(8am to 5pm for example), there is more traffic as the users are
active. And during night time (5pm to 8am for example), the
traffic becomes lighter. Based on this observation, operators
can set up an open-loop dynamic controller to change the
RDT configuration based on day time and night time period,
so that the HP and BE applications can get different shares
of the hardware resources at different time. However, there
is no performance feedback in this open-loop controller. As
a result, it cannot handle the variance of traffic patterns on
each day, and cannot cope with unexpected situations. It also
requires human experience and data center statistics to decide
which time period to profile, which confines the method to be
coarse-grained only.

The static resource allocation and open-loop dynamic re-
source allocation methodologies leave a lot to be desired.
The industry is asking for a closed-loop, online automation
approach that automatically tunes the hardware resources at
run time with considering complex workload behavior, and
operates continuously and promptly to account for the applica-
tion demands. The evolvement from static resource allocation
to open-loop dynamic resource allocation, and to closed-loop
automation are summarized in Figure 2.

In this paper, we propose a closed-loop automation frame-
work RLDRM to dynamically adjust the last level cache
(LLC) allocation between the HP VNFs and the BE workloads
using deep reinforcement learning (RL). In deep RL, an
agent observes an environment and interacts with it by taking
actions. From these actions, the agent receives rewards and
observations. The agent’s ultimate goal is to learn a policy
that maximizes the long term reward. In this work, the agent’s
goal is to ensure that the HP workloads meet SLO (e.g., packet
loss or throughput target) while maximizing the performance
for the BE tasks, and thus to improve the server utilization
and reduce the TCO. To the best of our knowledge, this
is the first study that applies deep RL techniques to tackle
dynamic cache allocation problem in real-time control system,
and demonstrates the potential of deep RL in system resource
management and optimization.

Our main contributions are as follows:
• We propose a closed-loop deep RL based resource alloca-

tion system RLDRM. The system dynamically allocates
hardware resources between HP VNFs and BE work-

OS/Hypervisor

Physical NIC Physical NIC Physical NIC

Virtual switch
DPDK drivers

VM 1 VM 1 VM 1

Fig. 3. A diagram showing the virtual switch delopyment with multiple VMs
and kernel bypass.

loads. The goal is to allocate the fewest possible resources
for the HP workloads that to satisfy their SLOs, and
allocating the remaining resources to the BE workloads
to improve sever utilization and reduce the TCO.

• We implemented the proposed closed-loop dynamic re-
source allocation system RLDRM with deep RL on a
real server system. Our evaluation results show that deep
RL based dynamic cache allocation approach is effective
in finding cache allocations that achieve improved per-
formance for BE workloads while maintaining the SLO
for HP VNFs.

The rest of the paper is organized as follows. Section II
provides background information on NFV, Intel® RDT tech-
nology and deep RL. It also demonstrates the benefit of
applying Intel® RDT for performance isolation between the
HP VNFs and the BE workloads. Section III describes the
design of our proposed RLDRM framework in detail. Sec-
tion IV presents the implementation details and evaluation
results. Section V reviews prior shared resource management
works and works that apply RL for resource management and
system scheduling. Finally, Section VI concludes the paper
and discusses future works.

II. BACKGROUND

A. Network Function Virtualization (NFV)

Network Function Virtualization (NFV) is the technology
to virtualize hardware network function to virtual network
function (VNF) . Compared to traditional hardware black
boxes, VNFs can be easily scaled and configured, enabling
much shorter development to production time, and reducing
the cost of upgrade and maintenance. However, the hardware
based networking functions in many scenarios still have sig-
nificant throughput and latency advantages over VNFs. To
this end, industry and academia have developed various tech-
niques to improve the performance of NFV platform. Some
examples include software algorithm improvements [10], [11],
kernel bypass technologies [12], and in-core hardware ac-
celerators [13], [14]. With these technologies, NFV become
more and more popular in data centers. Figure 3 shows an
example deployment of a virtual switch running with multiple
virtual machines (VMs) through kernel bypass technology

336Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

DPDK [12]. In this scheme, networking packets are directly
processed by the virtual switch in user space without involving
the kernel stack, thus the latency and throughput are improved
significantly. Meanwhile, since both of the virtual switch and
the VMs are running on the same server platform, there could
be undesirable performance interference, which harms the
SLOs. In this paper, we are focusing on taking advantage of
the state-of-the-art resource allocation technologies to solve
the performance interference issues.

B. Intel® RDT Cache Allocation Technology

Modern CPUs use set associative cache, which comprises
multiple sets and each set comprises multiple ways. Data that
falls into the same set can evict each other following certain
replacement policy. For example, one of the most popular
replacement policy is least-recently-used (LRU) policy, which
means the least recently used cache line is evicted in the
case of replacement. In a modern CPU chip, multiple cores
share a single logical LLC. Applications that are running
simultaneously on different cores will compete for the limited
LLC capacity. In other words, one application may evict the
useful data of another application from the same cache set,
thus interfere the performance of each other.

To alleviate the resource contention problem in multicore
system, numerous software and hardware solutions have been
proposed [15]–[26]. One of the most mature technologies that
is available today is Intel® Resource Director Technology
or Intel® RDT [8], [9]. Intel® RDT provides the capability
to partition LLC to restrict the usage of each co-running
application. This cache partitioning capability is also known
as CAT, or Cache Allocation Technology [8]. CAT controls a
fraction of the capacity based on classes of services (CLOS),
which may map to ways [8], [9]. Each CLOS consists of a
group of cores or threads that share the LLC ways allocated to
this CLOS. Each CLOS can be mapped to one or more LLC
ways. And each LLC way can be used by one or more CLOS.
When a thread is assigned to a CLOS, it is only allowed to
allocate data in the cache ways belonging to its own CLOS.
Thus, the thread can never evict data of other applications that
belong to a different CLOS and mapped to different cache
ways.

By using Intel® RDT, one can guarantee the performance
SLOs of the critical networking functions while allowing the
BE applications to run on the same platform. In this paper, we
propose a novel closed-loop controller to dynamically balance
the resources between the HP and BE workloads by leveraging
the ability to update Intel® RDT configurations during run
time.

C. Deep RL

RL is an important area in machine learning, where an
agent interacts with an environment and learns to take ac-
tions that would maximize cumulative rewards [27]. RL does
not learn from labeled input/output pairs as in supervised
learning. Instead, it learns based on its own interaction with
the environment. Using a deep neural network to learn the

EnvironmentAgent

Action

Reward
State,

Fig. 4. Illustration of the standard RL architecture

policy that optimizes the actions is called deep RL. Recent
advancements in deep RL can solve complex problems, learn
complex functions, or predict actions in states that were not
seen previously [28], [29]. In more details, RL has an agent
and environment in the system as shown in Figure 4. The
agent takes an action and then observes the state and reward
from the environment. The reward is then used to improve
the policy of the agent. By trial and error, the agent learns to
take actions that would yield the most cumulative long term
rewards.

In this work, we use Deep Q-Network (DQN) [30] based
algorithm to learn the deep RL policy. DQN has been applied
to computer games such as the Go game and Atari games [28],
[29]. DQN bootstraps and learns a Q-function, which estimates
the long term reward from taking an action, which improves its
sample efficiency. Two techniques has been proposed to further
improve the performance and stability of DQN: (1) Double
DQN [31]: The action choice and target Q-value generation
is decoupled, which mitigates the overestimation of the Q
value as in DQN. (2) Dueling DQN [32]: the value function
and advantage function are separately computed and then
combined into a single Q-function. This improvement results
in better policy evaluation. Combining these two techniques
can achieve better performance and faster convergence.

DQN and its variances have been used to tackle problems in
system optimization such as dynamic power management [33],
[34], and resource allocation in the cloud [35]–[37]. In this
paper, we developed a deep RL based methodology to dynami-
cally control LLC resource allocation in server platform based
on traffic load. Unlike most prior works that use simulators
to evaluate the system, we evaluate and run our deep RL
algorithms in a real system.

D. Benefit of Intel® RDT

In this section, we show the benefit of applying static LLC
capacity allocation between a critical HP VNF and a BE
workload for performance isolation, as well as potentials of
dynamically partitioning the LLC capacity between HP VNF
and BE workload to further improve server utilization.

To mimic workload consolidation scenario in networking
platform, we run a DPDK-based IPv4 traffic forwarding
benchmark as the HP VNF workload to process contiguous
incoming traffic. We then co-run a BE workload omnetpp
from SPEC CPU2006 benchmark suite [38] on the same
platform (details about the workloads and experiment setup
can be found in Section IV). We first allow the two workloads
to run without any RDT partitioning. In this experiment,
the HP VNF and BE workload compete for the LLC cache
resource and interfere with each other due to contention. This

337Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

5.34

5.08

5.34

3

3.5

4

4.5

5

5.5

Ingress traffic No RDT Static RDT

Th
ro

u
gh

p
u

t
(G

b
p

s)

Fig. 5. HP VNF Performance Comparison (higher is better). No RDT: ap-
plications share LLC. Static RDT: Static LLC partition between applications.
Partition remains the same during execution.

1

1.48

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

No RDT Static RDT

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Fig. 6. BE SPEC omnetpp Execution Time Comparison (lower is better)

is referred to as No RDT scenario. Our experiment shows that
the throughput of the high priority VNF can degrade by 4.9%
due to the cache contention as shown in Figure 5.

We then statically allocate nine LLC ways to the HP VNF
workload, and allocate the remaining two LLC ways to the BE
workload. The LLC way allocation between the HP VNF and
BE workload remains to be the same throughout the execution.
This is referred to as Static RDT scenario. In this case, the
BE workload will not interfere with the HP VNF workload
so that the performance of the HP VNF can be guaranteed.
With this static cache way enforcement, the performance of
the HP VNF has been restored to its peak performance as
shown in Figure 5. This demonstrates that the isolated LLC
way allocation is effective in protecting performance for HP
VNF. On the other hand, the BE workload’s performance drops
significantly. The execution time is now increased by 48%
when applying static RDT allocation compared to when there
is no RDT restriction as shown in Figure 6. This is expected
as the BE workload is now restricted to use only two LLC
ways.

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

Upstream Downstream

Bandwidth curve during 24-hour period

B
an

d
w

id
th

Fig. 7. Network traffic 24-hour pattern

Best Effort
Workloads

Telemetry

Monitoring and
Storage

Analytic and
Dynamic Resource

Allocation Controller

High Priority VNF

Server Platform

RDT
Action

Fig. 8. RLDRM: Closed-loop dynamic resource allocation framework.

In real deployment, the load of networking traffic varies
significantly over time. Figure 7 shows a typical 24 hour traffic
fluctuation in networking [33]. Conservative static allocation
targeting worst case usage protects HP workloads. However,
it reduces the opportunities to achieve higher performance for
BE workloads, and hence higher server utilization. Dynamic
resource allocation based on the fluctuated traffic condition
and platform utilization is thus desirable. With dynamic RDT
allocation, we can guarantee the performance of the critical HP
VNF workloads while allocating as much resource as possible
to the BE workloads. How to determine the amount of RDT
resource to allocate at run time with varying traffic remains a
challenge.

In this paper, we propose to use deep RL to address
the challenge, where the RL algorithms can learn the RDT
allocation policy in a dynamic environment and take actions
proactively. Deep RL has the following capabilities: it learns
the optimal policy to achieve defined goals by itself, it can
adapt to changing environment, and it is capable of handling
varying workload under different situations. As a result, deep
RL fits the dynamic resource allocation task well.

III. CLOSED-LOOP DYNAMIC RDT RESOURCE
ALLOCATION DESIGN

In this section, we present our closed-loop dynamic RDT
allocation framework RLDRM. Although the framework fo-
cuses on VNFs, the general concept can also be applied to
other use cases such as partitioning cloud applications.

A. RLDRM Framework Overview

Figure 8 shows the RLDRM framework of our closed-
loop system for dynamic hardware resource allocation with
deep RL. It works for a platform that runs both HP and
BE workloads. The HP VNF workloads are usually the
user facing, latency critical workloads. Meanwhile, system
schedulers schedule the BE workloads on the same server to
improve server utilization. The telemetry tool periodically col-
lects telemetry data (such as platform performance counters,
application throughput, etc). The telemetry data are then stored
and processed further by the Analytic and Dynamic Resource
Allocation Controller to make decision for the resource allo-
cation for the next time window.

338Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

Set RDT CAT
allocation

Measure state
RL Agent: Dynamic

Resource Controller
(policy S->A)

Action

Reward

HP BE

Platform

Measure packet
loss and calculate

reward

State

Fig. 9. Deep RL design for RDT allocation

B. Deep RL design for dynamic RDT allocation

Figure 9 shows an overview of our proposed deep RL based
framework for dynamically controlling RDT allocation among
multiple workloads at run time. The RL agent continuously
interacts with the system and learns a policy that maximizes
the long term reward.

There are four key components in RL: (1) action, (2) state,
(3) policy, and (4) reward. The policy takes the state and
outputs the Q-values for each possible action. The action
with the maximum Q-value is applied by the agent to the
environment. After each action, a new state and reward is
obtained from the system. The reward is then used to improve
the policy of the agent.

The key challenge of applying deep RL to solve real world
problems is to select the right algorithm for the problem, and
to define the appropriate states (feature selection), actions,
and the rewards. Most prior works that apply deep RL for
optimization are simulator based, such as gaming, which
do not need to consider algorithm sample efficiency. In our
design, since we train the deep RL model on real machines,
sample efficiency is a major consideration when choosing the
algorithm. Due to this reason, we choose dueling double deep
Q-learning (DDDQN) [31], [32] with prioritized experience
replay as our deep RL algorithm due to its sample efficiency
and stability. We also experimented with the original DQN
model as well. However, DDDQN model gives better perfor-
mance compared to DQN due to its improved performance
and stability features as explained in Section II-C.

Below is the detailed design for the DDDQN algorithm for
controlling RDT:

Actions A: The action A is the number of RDT LLC ways
allocated to HP and BE workloads for the next time window.

State S: The state S consists of the ingress traffic rate for
the past N time windows, as well as the current RDT LLC
way allocation to the HP VNF and the BE workload.

Reward R: In our design, the reward reflects the goal of
allocating the fewest possible LLC ways for the HP workloads
with lowest possible packet loss, and allocating the remaining
LLC ways to the BE workloads to improve sever utilization.
We design the reward function as follows:

Rpktloss =

−m1 if pktloss > th1

−m2 else if pktloss > th2

−m3 else if pktloss > th3

+m4 else if pktloss <= th3

(1)

TABLE I
SYSTEM CONFIGURATION

Component Description
Processor Intel® Xeon® Platinum 8176 CPU @ 2.10GHz

L1 D-cache 32KB
L1 I-cache 32KB
L2 cache 1MB
L3 cache 38.5MB
Memory 192GB

Linux

Physical NIC

IPv4-forward

DPDK drivers

BE
Workload

RX TX

RLDRM

Fig. 10. A diagram showing the evaluation platform.

Rrdt =

{
LLCHP if pktloss > th3

TotalLLC − LLCHP if pktloss <= th3

(2)

Rtotal = Rpktloss +Rrdt (3)

Here the pktloss is the number of packets being dropped
during the current time window. Rpktloss is the reward for
packet loss. If the pktloss is smaller than a predefined accept-
able threshold th3 (can be either zero packet loss or low packet
loss depending on the use cases), we assign a positive reward
for the Rpktloss. If the packet loss is above this threshold
th3, we assign a negative reward for the Rpktloss as penalty.
The greater the pktloss, the bigger the penalty (m1 > m2 >
m3) is. Rrdt is the reward for LLC way allocation. When the
pktloss is smaller than threshold th3, we give higher reward
for using less LLC ways for the HP workloads. When the
pktloss is above this threshold th3, we give higher reward for
using more LLC ways for HP workload. Total reward Rtotal

is the sum of Rpktloss and Rrdt, which takes consideration of
both packet loss and LLC way allocation.

As the model being trained, it will take the current appli-
cation and platform parameters as the inputs, and output the
RDT LLC way allocation strategy for the next time window.

IV. EVALUATION

A. Experiment setup

We evaluate the RLDRM framework on a two-socket server
with Intel® Xeon® Platinum 8176 CPU (code name Skylake).
The CPU runs at 2.1 GHz and has a 38.5MB LLC with 11

339Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

6

0 200 400 600 800In
gr

es
s

Pa
ck

et
 R

at
e

(G
b

p
s)

Time window

Fig. 11. Ingress network traffic

ways to be partitioned between applications [39]. Detailed sys-
tem configuration is shown in table I. We run IPv4-forwarding
benchmark from DPDK [40] as the HP VNF workload, and
omnetpp from SPEC suite [38] as the BE workload. omnetpp
is a simulation software to simulate large communication
systems which we find it to be cache sensitive. Each cache way
capacity is 3.5 MB. The server is connected to a TRex [41]
traffic generation server with two 10GbE network interfaces.
To compare with the deep RL based dynamic allocation
algorithm, the baseline static LLC allocation allocates nine
ways to the HP IPv4-forwarding and two ways to the BE
omnetpp (baseline static RDT allocation). We found nine LLC
ways to the HP VNF can satisfy the QoS requirement for
HP IPv4-forwarding at peak throughput. Thus, we allocate the
remaining two ways to the BE omnetpp workload.

The IPv4-forwarding workload is a slightly modified version
of DPDK L3fwd sample application (the flow pattern in the
flow table is modified to match the flow generated by the traffic
generator, and the SW prefetcher is turned off to have a more
determined behavior). The IPv4-forwarding application works
as a L3 router that forwards each packet to a specific port. The
forwarding application maintains an internal flow table which
is implemented by a hash table. It looks up the five-tuple (i.e.
IP addresses, port numbers, and protocol) of each packet from
the flow table to decide if the packet should be forwarded or
not. We insert 1 million flows into the table which occupies
around 24MB memory space.

We implement the proposed closed-loop dynamic RDT
allocation framework RLDRM on the target Skylake server
platform. We use TRex [41] as our traffic generator. The
traffic generator generates network traffic to mimic a 24-
hour network traffic pattern as shown in Figure 11. The
generated packets belong to the 1-million flows were inserted
into the flow table and have random sequence. We choose to
collect the states and make resource allocation decision every
2 seconds assuming traffic pattern does not change rapidly
within 2 seconds. To match with this, each time window in
our experiment is set to 2 seconds.

We use collectd [42] to collect both platform hardware
telemetry data as well as the VNF specific application perfor-
mance data. We configure the collectd to collect data at the end
of each 2-second time window. Collectd feeds the collected
telemetry data (including the ingress packet rate and packet
loss) into a database managed by InfluxDB [43]. The analytic

0

1

2

3

4

5

6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 51 101 151 201 251 301 351

In
gr

e
ss

 P
ac

ke
t

R
at

e
 (

G
b

p
s)

Pa
ck

et
 L

o
ss

 R
at

e

Time window
No RDT Static RDT
Oracle dynamic RDT Dynamic RDT with RL
Ingress packet rate

Fig. 12. High priority VNF workload packet drop. Curvers for static RDT,
oracle dynamic RDT, and dynamic RDT with deep RL are overlapping with
each other

Fig. 13. High priority VNF workload packet drop in log scale

agent then reads the data from InfluxDB and issues actions
every 2 seconds. Figure 10 shows the simplified scheme of
the platform that we use to evaluate RLDRM.

Our designed DDDQN model has two dense layers each
having 256 neurons. The input state includes the ingress traffic
for the previous N=40 time windows and the current RDT
allocation, which forms a 41 feature input to the model.
We experimented with multiple values for the N past time
windows, and found N=40 to be a good setting that balances
between accuracy and overhead. The output action is the
next time window’s RDT allocation. The RDT allocation for
HP VNF ranges from two ways to nine ways (nine ways
is the default setting). The remaining LLC ways are then
allocated to BE workload (ranges from nine ways to two
ways). This gives totally eight discrete actions. To run our
deep RL algorithms, we use RLlib [44], a unified open-source
library that provides scalable software primitives for RL. RLlib
is built on top of Ray [45], a high-performance distributed
execution framework. The initial learning rate is set to 0.001.

B. Evaluation results

We compare the performance of the HP IPv4 forwarding
VNF and the BE workload omnetpp from SPEC in four
scenarios. The first experiment is when the HP VNF and

340Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

1.48

1

1.52
1.59

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

No RDT Static RDT Oracle
dynamic RDT

Dynamic RDT
with RL

Sp
ee

d
u

p

Fig. 14. Best effort workload speedup (higher is better)

the BE workload share the LLC resources without any RDT
enforcement. The second experiment is applying the static
RDT allocation policy between the HP VNF and the BE
workload (nine LLC ways are allocated to HP VNF and two
LLC ways are allocated to BE). This is our baseline scenario.
The third experiment is the oracle policy which always leave
the maximum possible LLC ways to BE while maintain the
throughput of HP VNF. The fourth experiment is our proposed
dynamic RDT allocation scheme using deep RL.

Figure 12 shows the packet drop rate as the metric in the
above mentioned four scenarios. From the figure, we can see
that when there is no RDT applied in the system, the HP
VNF and the BE workload compete for the shared resource.
As a result, HP VNF experiences significant packet drop
(4.9%) when the ingress packet rate is high. Meanwhile, BE
performance increases by 48% compared to baseline static
RDT case as shown in Figure 14. When applying static RDT
policy in the system, HP VNF’s packet drop rate is minimal
(zero packet drop for most of the times, happens at 10−5 rate
occasionally). On the other hand, BE workload has the lowest
performance since it has limited LLC resources now, which is
expected.

When we apply the oracle dynamic RDT allocation policy in
the system based on ingress traffic rate, where RDT LLC way
allocation between HP VNF and BE workload is determined
at the optimal point, the packet drop rate for HP VNF is
close to static allocation case as shown in Figure 12 (zero
packet drop for most of the times, packet drop happens
occasionally at the order of 10−5 drop rate when ingress packet
rate is high). Figure 13 shows the packet drop rate for HP
VNF in log scale. BE performance has been improved by
52%. This demonstrates that with oracle dynamic resource
allocation policy, one can guarantee the SLO of HP VNF
while improve BE workload’s performance significantly, thus
improving server utilization.

We then apply the proposed deep RL based methodology to
train the system to self-learn the RDT allocation policy for the
dynamically injected traffic. By running the trained deep RL
model as the controller for dynamic RDT allocation based on
ingress traffic, BE workload’s performance has been improved
by 59% compared to the baseline static RDT allocation while
packet drop rate for HP VNF is maintained at a similar range
as in baseline and oracle (happens occasionally between 10−7

to 10−5 range). When we look at the packet drop rate in

Figure 13, we can see that the packet drop occurs more
times in deep RL based model than in oracle, which means
that the trained deep RL model is a bit more aggressive in
minimizing cache allocation for HP VNF than oracle, thus
causing more packet drops for HP VNF. Even though, the
packet drop rate in deep RL based methodology is still in the
same range as in oracle. On the other hand, BE benefited from
having more cache allocation, resulting in higher performance
improvement as shown in Figure 14 (59% improvement in
deep RL based model while 52% improvement in oracle).
In summary, our experiment result demonstrates that the
proposed deep RL methodology is effective in learning the
dynamic RDT allocation policy which is very close to the
oracle policy.

It is worth noting that although one could come up with
heuristic policies like the oracle one we use in the experiments
without machine learning, it requires enormous human effort
to profile the workloads. Deep RL fully automates the process,
and thus it is more scalable and practical.

V. RELATED WORK

There are many prior studies for architectural and system
support to partition shared resources, which provide per-
formance isolation, improve fairness, or maximize system
throughput [15]–[26]. These prior works have paved the way
for exploring QoS and shared resource management. Some of
the proposals have been implemented in commercial proces-
sors [21].

Recently, there have been works that explore dynamic re-
source management techniques for workload consolidation in
servers where user-facing workloads and background best ef-
fort workloads are running simultaneously on the platform [6],
[46], [47]. For example, Heracles [6] develop heuristics to
isolate latency-sensitive jobs while maximizing resources for
best effort jobs and applying Intel® RDT technology for dy-
namic cache allocation. However, the cache allocation policy is
adjusted gradually instead of being promptly set to the optimal
point, thus cannot react quickly enough to short-term behavior.
Dirigent [46] relies on profiling the latency-critical application
offline first, and then predicts the completion time at run time,
and makes resource allocation decision accordingly. While ef-
fective, this approach can be hard to be generalized to different
workloads. Fast and prompt response is critical for networking
workloads since sudden packet loss is unacceptable in many
cases. Our deep RL based algorithm learns to react ahead of
time to prevent packet loss from happening.

Recent advancement in deep RL provides new opportunities
to optimize resource management and scheduling [33], [48]–
[53]. Most of the prior works focus on resource allocation for
job scheduling and power management, which is orthogonal
to our work. There has been very limited work to explore RL
for dynamic resource allocation in a fine granularity.

VI. CONCLUSION

In this paper, we demonstrate the use of Intel® RDT tech-
nology to help with efficient workload consolidation. We show

341Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

that the static RDT allocation can be too conservative. We pro-
posed a closed-loop dynamic RDT allocation system RLDRM.
The RLDRM system consists of telemetry collection and
analysis, and generates action based on a deep RL algorithm.
Our experiment results show that deep RL based dynamic
RDT allocation approach is effective in finding dynamic RDT
allocation policy, resulting in improved performance for BE
workloads while maintaining the required SLO for HP VNFs.
Future research plan includes exploring more benchmarks and
various deep RL algorithms to balance sample efficiency and
computation complexity given more complex systems. We also
plan to study online model update to track the changing traffic
pattern and operation environment.

REFERENCES

[1] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-
H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang,
“Network Virtualization in Multi-Tenant Datacenters,” in Proceedings
of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’14), Seattle, WA, apr 2014.

[2] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, Nov. 2016.

[3] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling Network
Function Parallelism in NFV,” in Proceedings of the 2017 ACM SIG-
COMM Conference (SIGCOMM’17), Los Angeles, CA, aug 2017.

[4] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV Service Chains at the True Speed of the Underlying
Hardware,” in Proceedings of 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA, Apr. 2018.

[5] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou, “Cost-
effective cloud server provisioning for predictable performance of big
data analytics,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 5, pp. 1036–1051, May 2019.

[6] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Improving resource efficiency at scale with heracles,” ACM Trans.
Comput. Syst., vol. 34, no. 2, pp. 6:1–6:33, May 2016.

[7] X. Liu, C. Wang, B. B. Zhou, J. Chen, T. Yang, and A. Y. Zomaya,
“Priority-based consolidation of parallel workloads in the cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 9, pp.
1874–1883, Sep. 2013.

[8] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache qos: From concept to reality in the intel® xeon®
processor e5-2600 v3 product family,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), March
2016, pp. 657–668.

[9] “Intel 64 and IA-32 Architectures Software Developer’s Manual.”
[10] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15), Oakland, CA, May 2015, pp. 117–130.

[11] Y. Wang, T. C. Tai, R. Wang, S. Gobriel, J. Tseng, and J. Tsai,
“Optimizing open vswitch to support millions of flows,” in GLOBECOM
2017 - 2017 IEEE Global Communications Conference, Dec 2017, pp.
1–7.

[12] Intel Corporation, “Data Plane Development Kit (DPDK),”
https://www.dpdk.org, 2018.

[13] Y. Yuan, Y. Wang, R. Wang, and J. Huang, “Halo: Accelerating flow
classification for scalable packet processing in nfv,” in Proceedings of
the 46th International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 601–614.

[14] Intel Corporation, “Intel® Data Direct I/O (DDIO),”
https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html, 2018.

[15] S. Cho and L. Jin, “Managing distributed, shared l2 caches through os-
level page allocation,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), Dec 2006, pp. 455–468.

[16] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), Dec 2006, pp. 423–432.

[17] R. Iyer, “Cqos: A framework for enabling qos in shared caches of cmp
platforms,” in Proceedings of the 18th Annual International Conference
on Supercomputing, ser. ICS ’04. New York, NY, USA: ACM, 2004,
pp. 257–266.

[18] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt, “Qos policies and architecture for
cache/memory in cmp platforms,” in Proceedings of the 2007 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’07. New York, NY, USA:
ACM, 2007, pp. 25–36.

[19] B. Li, L. Zhao, R. Iyer, L.-S. Peh, M. Leddige, M. Espig, S. E. Lee,
and D. Newell, “Coqos: Coordinating qos-aware shared resources in noc-
based socs,” J. Parallel Distrib. Comput., vol. 71, no. 5, pp. 700–713,
May 2011.

[20] B. Li, L.-S. Peh, L. Zhao, and R. Iyer, “Dynamic qos management for
chip multiprocessors,” ACM Trans. Archit. Code Optim., vol. 9, no. 3,
pp. 17:1–17:29, Oct. 2012.

[21] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Sing-
hal, and R. Iyer, “Cache QoS: From Concept to Reality in the In-
tel® Xeon® Processor E5-2600 v3 Product Family,” in Proceedings of
the 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA’16), Barcelona, Spain, Mar. 2016.

[22] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez,
“Application clustering policies to address system fairness with intel’s
cache allocation technology,” in 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2017,
pp. 194–205.

[23] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio, and Y. Li,
“dcat: Dynamic cache management for efficient, performance-sensitive
infrastructure-as-a-service,” in Proceedings of the Thirteenth EuroSys
Conference, ser. EuroSys ’18. New York, NY, USA: ACM, 2018, pp.
14:1–14:13.

[24] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict qos
for latency-critical workloads,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’14. New York, NY, USA: ACM,
2014, pp. 729–742.

[25] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” in 2011 38th Annual International Symposium on
Computer Architecture (ISCA), June 2011, pp. 57–68.

[26] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A hardware evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness,” SIGARCH Comput.
Archit. News, vol. 41, no. 3, pp. 308–319, Jun. 2013.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 12 2013.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, Jan 2016.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[31] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 2094–
2100.

[32] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proceedings of the 33rd International Conference on Inter-

342Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

national Conference on Machine Learning - Volume 48, ser. ICML’16.
JMLR.org, 2016, pp. 1995–2003.

[33] Z. Zhou, T. Zhang, and A. Kwatra, “Nfv closed-loop automation
experiments using deep reinforcement learning,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2019, pp. 696–701.

[34] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras, “A
deep q-learning approach for dynamic management of heterogeneous
processors,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp.
14–17, Jan 2019.

[35] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, “Software-defined
networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 31–37, Dec 2017.

[36] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55,
Jan 2018.

[37] A. Haj-Ali, N. K. Ahmed, T. Willke, J. Gonzalez, K. Asanovic, and
I. Stoica, “A view on deep reinforcement learning in system optimiza-
tion,” arXiv preprint arXiv:1908.01275, 2019.

[38] Standard Performance Evaluation Corporation, “SPEC CPU 2006 bench-
mark suite,”
https://www.spec.org/cpu2006/.

[39] Intel Corporation, “Intel® Xeon® Platinum 8176 Processor,”
https://ark.intel.com/content/www/us/en/ark/products/120508/intel-
xeon-platinum-8176-processor-38-5m-cache-2-10-ghz.html.

[40] “DPDK Programmer’s Guide: Access Control,”
https://doc.dpdk.org/guides/sample app ug/l3 forward.html.

[41] Cisco Systems Traffic Generators,
https://trex-tgn.cisco.com/.

[42] “The system statistics collection deamon,”
https://collectd.org.

[43] “Influxdb database,”
https://influxdata.com/influxdb.

[44] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez,
K. Goldberg, and I. Stoica, “Ray rllib: A composable and scalable
reinforcement learning library,” arXiv preprint arXiv:1712.09381, 2017.

[45] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging ai applications,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 561–577.

[46] H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-critical tasks
on shared multicore systems,” SIGOPS Oper. Syst. Rev., vol. 50, no. 2,
Mar. 2016.

[47] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio,
and Y. Li, “dcat: Dynamic cache management for efficient,
performance-sensitive infrastructure-as-a-service,” in Proceedings of
the Thirteenth EuroSys Conference, ser. EuroSys ’18. New
York, NY, USA: ACM, 2018, pp. 14:1–14:13. [Online]. Available:
http://doi.acm.org/10.1145/3190508.3190555

[48] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, ser. HotNets ’16, New York,
NY, USA, 2016, pp. 50–56.

[49] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, “Software-defined
networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,” Comm. Mag., vol. 55,
no. 12, pp. 31–37, Dec. 2017.

[50] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55,
Jan 2018.

[51] C.-Z. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement learning ap-
proach for autonomic cloud management,” J. Parallel Distrib. Comput.,
vol. 72, no. 2, pp. 95–105, Feb. 2012.

[52] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2017, pp. 64–73.

[53] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: A reinforcement
learning approach to virtual machines auto-configuration,” in Proceed-

ings of the 6th International Conference on Autonomic Computing, ser.
ICAC ’09, New York, NY, USA, 2009, pp. 137–146.

343Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2020 at 21:11:56 UTC from IEEE Xplore. Restrictions apply.

