
A Hardware Accelerator for
Tracing Garbage Collection

Martin Maas
Google Brain

Krste Asanovic and John Kubiatowicz
University of California Berkeley

Abstract—Manyworkloadsarewritten ingarbage-collected languagesandGCconsumes

asignificant fraction of resources for theseworkloads.Wepropose todecrease this

overheadbymovingGC intoa small hardwareaccelerator that is locatedclose to

thememorycontroller andperformsGCmoreefficiently thanaCPU.Wefirst showa

general designof suchaGCacceleratoranddescribehow itcanbe integrated intoboth

stop-the-world andpause-freegarbagecollectors.We thendemonstrateanend-to-endRTL

prototype, integrated intoaRocketChipRISC-VSystem-on-Chip (SoC) executing full Java

benchmarkswithin JikesRVMrunningunder LinuxonFPGAs.Our prototypeperforms the

markphaseofa tracingGCat4.2� theperformanceof an in-orderCPU,at just18.5%thearea.

Byprototypingourdesign ina real system,weshow thatour accelerator canbeadopted

without invasivechanges to theSoC, andestimate itsperformance, area, andenergy.

& A LARGE FRACTION of programs are written in

garbage-collected languages, on servers (C#, Java,

Python), web browsers (JavaScript), and mobile

devices (Android). These workloads spend up to

35% of their CPU cycles on GC (10% on average for

Java applications1), and this increases further for

pause-free concurrent collectors. In other words:

a significant fraction of all compute cycles globally

are spent on the GC alone. If we could dramatically

reduce its cost, we would therefore save a sub-

stantial fraction of cycles and energy, and improve

the user experience by reducing GC pauses.

However, despite several decades of work

and significant GC improvements—including

hardware support for GC on architectures such

as Azul’s Vega and the IBM z14—the situation

has not improved substantially. Our work sug-

gests that this is because CPUs are a fundamen-

tally bad fit for GC (even with hardware support,

the actual GC operation is usually still performed

by the CPU).

We demonstrate how codesigned hardware

can exploit the properties of the GC operation to

perform it at 18� higher performance per area,

even when compared to a wimpy CPU core

(currently the best choice for GC1). Our proposal

consists of a GC accelerator that is located close

to the memory controller and integrated into an

SoC like any other IP block, without requiring any

Digital Object Identifier 10.1109/MM.2019.2910509

Date of publication 23 April 2019; date of current version 8

May 2019.

Top Picks

38
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

changes to the CPU or memory system. The accel-

erator is small (about the size of a 64KB cache),

which makes it a cheap and low risk addition to

existing SoCs.

In addition to the hardware and software

techniques that make this accelerator possible,

we make contributions on two fronts: First, we

describe the design space associated with

GC acceleration and

show how it could

be used for different

types of collectors

and settings. Sec-

ond, we demon-

strate both the

efficiency and the

noninvasive integra-

tion of our acce-

lerator by building

an end-to-end RTL

prototype of the

unit into a complete

RISC-V System-on-Chip (using RocketChip,2 an

open-source SoC used in academia and industry).

We evaluate this end-to-end design by mapping it

to FPGAs, running a full software stack that

includes Linux with drivers for our GC accelera-

tor, a Java Virtual Machine with software modifi-

cations to support the unit, and full Java

benchmarks. Using this setup, we demonstrate

that the prototype performs the mark phase of

the GC at 4.2� the performance of a CPU, at

18.5% its area (reclamation speed-up is 1.9�
with two sweeper units).

MOTIVATION AND HISTORICAL
PERSPECTIVE

GC is a significant problem that has been

the topic of research for over 50 years but is

still not “solved.” At a fundamental level, exist-

ing GCs have to trade off among three metrics:

pause time, application performance, and

memory utilization (which is determined by

the GC throughput). Arguably, current GCs

can perform well on any two of these metrics

but not on all of them simultaneously. While

this has been a challenge for several decades,

the problem is being exacerbated by current

trends, particularly ever-growing heap sizes.

Terabyte-sized heaps in servers are now

feasible, and the amount of garbage collection

work grows with the size of live memory. At the

same time, an increasing number of latency-sensi-

tive workloads are written in garbage-collected

languages, making them sensitive to pauses.

As such, a garbage collector that avoids pauses

and utilizes the availablememory, whilemaintain-

ing high application performance, is becoming

increasingly important yet harder to achieve.

It seems unlikely that we will find another order-

of-magnitude improvement of GC in software—we

therefore think that the solution to GC has to be

hardware.

The idea of hardware support for GC is not

new, but past work typically focused on general

CPU features that improve some aspect of GC

(such as read barriers), instead of the actual GC

operation. However, none of these techniques

have been widely adopted. We think there are

three reasons for this:

1) Moore’s Law: Most work on hardware-assisted

GC was done in the 1990s and 2000s when

Moore’s Law meant that next-generation

general-purpose processors would typically

outperform specialized chips for languages

such as Java, even on the workloads they were

designed for. This gave a substantial edge to

nonspecialized processors. However, with the

end of Moore’s Law, there is now a renewed

interest in accelerators for common workloads.

2) Server Setting: The workloads that would

have benefitted the most from hardware-

assisted garbage collection were server

workloads with large heaps. These work-

loads typically run in data centers, which are

cost-sensitive and, for a long time, were built

from commodity components. This approach

is changing, with an increasing amount of

custom hardware in data centers, including

custom silicon (such as Google’s Tensor

Processing Unit).

3) Invasiveness: Most hardware-assisted GC

designs were invasive and required rearchi-

tecting the memory system. However, mod-

ern accelerators (such as those in mobile

SoCs) are typically integrated as memory-

mapped devices, without invasive changes.

We think that this makes it the perfect time to

revisit hardware-assisted GC. We exploit these

The idea of hardware

support for GC is not

new, but past work

typically focused on

general CPU features

that improve some

aspect of GC (such as

read barriers), instead

of the actual GC opera-

tion. However, none of

these techniques have

been widely adopted.

May/June 2019 39

trends through a design that performs the GC

operation in hardware while being noninvasive

and general enough to be integrated into

any SoC.

GARBAGE COLLECTION
BACKGROUND

In object-oriented languages, the garbage col-

lector periodically identifies objects that are no

longer reachable by the program, and recycles

them. Figure 1 shows an example: Reachability is

defined by the object graph, where each node is

an object and there is a directed edge from one

node to another if there is a field in the first

object that stores a reference to the second.

The most common type of GC in managed

languages is tracing garbage collection—in fact,

seven out of the ten most popular programming

languages3 use a tracing GC, either as their pri-

mary garbage collection mechanism or as cycle

collector in a reference counting scheme. There

are many variants of tracing collectors, but

fundamentally, they all consist of two phases:

1) a traversal phase that starts from a set of

roots (e.g., global variables or pointers stored on

the stack) and traverses the object graph to iden-

tify and mark objects that are reachable; and 2) a

reclamation phase that reclaims unmarked

objects—e.g., by assembling them into a free list

(known as “sweeping”) or copying them into a

new region (known as “compacting”). There are

many variations of this theme, and some fold

the two phases into one (e.g., scavenging GC).

The phases can run in a stop-the-world pause or

at the same time as the application (the latter

type of GC is called “concurrent”).

The key insight of our work is that both

phases are a bad fit for traditional CPUs, as they

are limited by keeping a large number of memory

requests in flight, with little temporal locality.

The CPU’s sequential control flow and its load-

store queue therefore limit performance, while

both operations do not use most of the CPU’s

functional units or its area-intensive caches,

hence wasting chip area. Similar to the argument

for page table walkers, we therefore believe GC

should be entirely performed in hardware to

both increase the throughput of the operation

and reduce the required area.

ACCELERATOR DESIGN
Our garbage collection accelerator is

designed to be minimally invasive and requires

no changes to the CPU or memory system. It is

integrated into an SoC as an independent block,

similar to other DMA-capable devices such as

network adapters or flash controllers. The accel-

erator is connected to the existing cache-coher-

ent interconnect, and all communication with

the CPU occurs through this interconnect. To

operate on the same virtual address space as

the CPU, the accelerator has its own TLB and

page table walker. As such, the application on

the CPU perceives the GC accelerator as no dif-

ferent from another CPU performing the GC

operation, which makes it easier to reason about

correctness.

Internally, our accelerator consists of two

units that implement the two phases of the GC

operation: a traversal unit and a reclamation

unit. We first show how these units work in a

stop-the-world setting, and later discuss how the

system would need to be adapted for a concur-

rent (pause-free) garbage collector.

Traversal Unit

Achieving high performance for the traversal

phase while minimizing area is challenging. It

Figure 1. Basic GC operation. (a) Original heap. (b) After Mark & Sweep. (c) After compaction.

Top Picks

40 IEEE Micro

requires codesign across both hardware and

software layers. We now describe the key

insights for achieving these goals.

Bidirectional Object Layout: At a high level, a

typical traversal operation performs a breadth-

first search (BFS). It keeps a frontier (mark

queue) of pointers and, in every step, takes

out an element, marks the object at that loca-

tion, identifies all object fields that contain

pointers, and copies them back into the mark

queue [see Figure 2(a)]. In software, this is typ-

ically implemented as a loop that looks up a

type descriptor in the object’s header, which

lists the fields that contain references (these

fields are usually interspersed through the

object—to support inheritance, objects must

typically start with the fields belonging to par-

ent classes, followed by the children).

On a CPU, this works well, as the type

descriptor is typically in the cache. However,

our accelerator strives to avoid using cache

area. We therefore need to identify the pointer

fields without this extra lookup. We hence

change the language runtime system to inter-

nally use a bidirectional object layout,4 which

is an old idea that was originally proposed to

improve locality on CPUs but has seen limited

success and adoption there. In a bidirectional

object layout, the header (i.e., base of the

object) is placed in the middle, and all refer-

ence fields are placed to one side, while all

the non-reference fields are to the other. We

found that while this change does not make

much difference on a CPU, it is a perfect fit

for an accelerator. Now, instead of having to

do an extra lookup, we can simply store the

number of references and the mark bit in the

same header word, and mark the object and

identify the number of references in a single

fetch-or operation.

Decoupled Marking and Copying: The BFS tra-

versal on the CPU is a nested loop, which means

that we can only keep as many requests in flight

as we can speculate ahead in the control flow. In

our unit, we want to issue as many memory

requests as possible, up to one every cycle the

memory system is ready. To do so, we pipeline

the operation [see Figure 2(b)]. One stage, the

Marker, is taking a pointer off the mark queue

every cycle and sends out a memory request to

set the object’s mark bit and fetch the number of

references. If the mark bit was not set and there

is at least one reference field, those references

need to be copied into the mark queue. This is

done by the Tracer, which copies pointers back

into the queue for those objects that were identi-

fied by the marker. To maximize memory band-

width, we pipeline these two units and decouple

them using a queue: When the marker encoun-

ters a large number of already marked objects,

the tracer does not stall but can still perform

work from the queue, and if the tracer is copying

an object with many references (e.g., a pointer

array), it does not stall the marker until the

queue fills up.

Untagged Memory Requests: The final insight is

how to perform the memory requests themselves.

GC does not rely on the order in which the graph

is visited, and we therefore do not need to main-

tain ordering between the memory requests. This

means that we can reduce the amount of on-chip

state to store per memory request in flight. In fact,

the tracer does not need to keep any state; it sim-

ply sends requests into the memory system and

Figure 2. High-level overview of the traversal unit’s operation. (a) Traditional traversal phase. (b) Traversal phase on the

GC accelerator.

May/June 2019 41

adds them to the mark queue in the order they

return. The marker, on the other hand, needs to

store a tag and the base address for each request

it sends into the memory system; however, this is

much less state than on a CPU, which would need

one miss status holding register (MSHR) for each

request in flight and store information about

ordering, the type of request, etc. As a result, we

save a large fraction of the on-chip state and can

keep a larger number of requests in flight.

Reclamation Unit

While traversal accounts for the majority of

cycles of the garbage collection operation, we

offload the reclamation phase as well. In con-

trast to the traversal operation, the reclama-

tion operation is typically embarrassingly

parallel. It can be parallelized by dividing the

heap into blocks, performing a linear scan

through each block, and either assembling all

unmarked objects in the block into a free list,

or compacting (i.e., copying) all marked

objects into a new region. To support such

operations efficiently, the reclamation unit

consists of a number of parallel “block

sweepers,” which are state machines that each

operate on one block at a time. The number of

such state machines is a configuration parame-

ter and is explored in our original paper.5

RISC-V-BASED PROTOTYPE SYSTEM
While the previous section describes the

high-level design, there are many details on

how to make the design work in practice and

how to integrate it into a full system. At the

microarchitectural level, our unit can take

advantage of the fact that most of our memory

requests are of the same type and do not have

to maintain ordering constraints between

them, which allows us to save area that would

be spent on MSHRs on a traditional CPU.

Another challenge is how to represent the

mark queue: In our design, we keep the middle

of the queue in main memory, with head and

tail sections cached on-chip. The size of the

on-chip portion is a design parameter.

We implemented our design in a RISC-V Rock-

etChip SoC2 (Figure 3 shows an overview). Rock-

etChip is a framework for generating SoC designs

that can target both FPGAs and ASICs. It supports

a range of different processor designs and IP

blocks, combined with generators for intercon-

nects and caches. RocketChip has been used in

over a dozen tape-outs, both in academia and

industry. To evaluate our design with a full soft-

ware stack, we ported the Yocto Linux distribu-

tion generator to RISC-V, in order to provide the

necessary dependencies to execute a full JVM.

We then ported the JikesRVM research Java vir-

tual machine6 to RISC-V, including its nonoptimiz-

ing JIT compiler. This full software stack allowed

us to perform an end-to-end evaluation of the sys-

tem, running Dacapo benchmarks.7

The accelerator is implemented as a DMA-

capable device and communicates with the CPU

through the cache-coherent on-chip intercon-

nect. It has its own TLB and page-table walker,

which allows it to operate on the same virtual

address space as the application on the CPU.

The JVM communicates with the unit through

shared memory and a Linux kernel driver, and

we modified the runtime system to implement

Figure 3. System-level overview of the prototype.

Top Picks

42 IEEE Micro

our object layout and add a new GC scheme that

uses the unit. At initialization time, the driver

allocates a physical region for the unit which is

used to spill the content of the mark queue when

it fills up. When the JVM triggers a GC pass, our

new GC scheme will instead call into a C library,

which communicates with the Linux driver

through a character-based device interface. The

driver will write information such as the page

table base register and the base address of a

shared memory region within the JVM into mem-

ory-mapped registers within the GC accelerator.

During the rest of the GC operation, communi-

cation between the JVM and the accelerator

primarily occurs through this region, which

removes the driver from the critical path. In par-

ticular, the JVM scans all of its threads for roots

and writes them into the memory region (while

this operation could be offloaded as well, we

refrain from doing so in our prototype).

EVALUATION
We evaluate the system using an FPGA simu-

lation framework called FireSim,8 which allows

us to run the entire SoC design cycle accurately

on AWS F1 FPGAs in the cloud, while running

FPGA-based timing models of DRAM and the

memory system to simulate the performance

that we would see if the design was implemented

as an ASIC running at 1 GHz. This setup produces

cycle-accurate results while running the simula-

tion at 125 MHz.

Our baseline is a Rocket in-order CPU with a

256-KB L2 cache. This is representative of the

type of wimpy CPU that has been shown to be effi-

cient for garbage collection. Note that previous

research1 showed that out-of-order CPUs, while

faster, are not the best tradeoff point for GC (a

result we confirmed in preliminary simulations).

Compared to our baseline, our accelerator

achieves 4.2� the mark performance as the CPU,

and a 1.9� speed-up for the sweep phase with

two sweepers [see Figure 4(a) and (b)].

However, the performance of the accelerator

is limited by the memory system (the SoC design

we used only had a relatively small amount of

memory bandwidth). We therefore studied the

limits of scaling our system as the memory sys-

tem bandwidth increases. We repeated our

experiments with a memory system where every

request returns after one cycle, and found that

while the CPU cannot exploit most of the addi-

tional bandwidth, the accelerator can, leading

to a mark speed-up of 9.0� over the CPU.

This indicates that the speed-ups in a realistic

memory system will be higher, likely between

4.2�and 9.0�.

We also estimate the unit’s area by running the

design through Synopsys Design Compiler with

the SAED EDK 32/28 educational standard-cell

library [see Figure 4(c)]. Compared to the CPU,

the unit occupies 18.5% of the CPU’s area, a size

equivalent to a 64 KB cache. Note that these

numbers are conservative and that there is ample

Figure 4. Performance, area, and power of the garbage collection accelerator. (a) GC performance.

(b) Area. (c) Memory bandwidth. (d) Power and energy.

May/June 2019 43

room for further improvements on both perfor-

mance and area (we describe some of these oppor-

tunities in our original paper5). Finally, we estimate

power consumption [see Figure 4(d)] and con-

clude that the accelerator reduces the energy of

the GC operation by 15%.

CONCURRENT GARBAGE
COLLECTION

While our prototype is implemented as a stop-

the-world collector, we also show a solution

to the problem of

using the design

for concurrent GC

without changing

the CPU. The key

challenge of a

concurrent garbage

collector is that the

application threads

(or “mutators”) are

running in parallel with garbage collection,

which means that the GC can move objects

while the application is trying to access them and

vice versa.

This problem is typically addressed through

constructs called “barriers” (not to be confused

with barriers in memory consistency or parallel

computing). In this context, a barrier refers to a

small amount of code that is compiled into the

instruction stream and guards a reference opera-

tion; for example, a read barrier is compiled into

every read of a reference into a register, and

checks whether the object that is being loaded

has been moved. Since barriers need to be

added for every reference access, they can incur

a significant cost both in terms of execution time

and instruction overhead.

Barriers typically have a fast path (“the

object has not been moved”) and a slow path.

Existing hardware support for GC has focused

on improving the barrier fast path, e.g., by com-

bining it with virtual memory checks.9 However,

when the barrier encounters the slow path,

it needs to redirect the instruction stream to a

handler, either through a branch or a trap. Both

cases will cause the CPU pipeline to be flushed,

which is expensive.

Therefore, we propose (but do not pro-

totype) a mechanism that never flushes the

pipeline. The semantics of our proposed bar-

rier are those of a load that always returns the

new location of an object, whether or not the

object has moved. This means that the CPU

can speculate over the barrier in the same

way as over any other load, without flushing

the pipeline. We propose two different ways of

implementing this barrier, one that modifies

the CPU and one that uses virtual memory

tricks to achieve the same behavior and does

not modify the CPU. We refer to the full paper

for details.5

EXTENSIONS FOR REAL-WORLD
ADOPTION

While our prototype could be directly inte-

grated into a real-world system, we believe that

there are several extensions that should be con-

sidered for real-world adoption:

� Multiple Processes: Our current design only

supports one process at a time, but the same

unit could perform GC for multiple processes

simultaneously, by tagging references by

process and supporting multiple page tables.

This would allow amortizing the GC unit

across multiple workloads and exploiting

more of the available bandwidth.

� Programmability and Object Layout: While the

bidirectional layout helps performance, it is

not fundamental to our approach and forcing

runtimes to adapt it to support our unit is lim-

iting. A more general accelerator could sup-

port arbitrary layouts—and even algorithms—

by replacing the marker with a small RISC-V

microcontroller (only implementing the base

ISA). We could then load a small program into

this core which parses the object layout,

schedules the appropriate requests, and

enqueues outgoing references for the tracer.

� Bandwidth Throttling: Our GC unit aims to

maximize bandwidth, potentially interfering

with applications on the CPU. This interfer-

ence could be reduced by communicating

with the memory controller to throttle the

accelerator dynamically and only use resid-

ual bandwidth not used by the application.

We believe that all of these extensions are

compatible with our proposed design.

While our prototype is

implemented as a stop-

the-world collector, we

also show a solution to

the problem of using

the design for concur-

rent GC without chang-

ing the CPU.

Top Picks

44 IEEE Micro

LONG-TERM VISION: GC-OBLIVIOUS
SYSTEMS

In this article, we provide a blueprint forwhat a

real-world GC accelerator could look like.

We believe that this kind of accelerator could

become a standard

component in all

server, desktop,

and mobile chips,

due to its low area

cost, noninvasive

design, and the per-

vasiveness of GC.

The fact that server

designs such as

the IBM z14 have

already adopted

more invasive but

limited GC hard-

ware points to the

willingness of manu-

facturers to do so.

One could also see

intermediate points

where the accelerator would be implemented as

an add-on card connected through QPI or PCIe, or

is implemented on the FPGA of integrated

FPGAþCPUplatforms.

While our prototype looks at a specific

design of such an accelerator, our overarching

long-term vision is broader. We envision that

future systems could have a GC accelerator that

completely eliminates garbage collection from

software and is invisible to the application.

Such an accelerator would be fully concurrent

(i.e., never pause the application), adjust its

bandwidth consumption dynamically to never

interfere with the application, and not need to

run any code on the CPU. In this setting, the

application on the CPU would be under the illu-

sion that there is a constant supply of available

memory and never needs to schedule garbage

collector threads, work around GC pauses, or

incur unexpected slowdowns due to barriers.

We call such systems “GC-oblivious,” and we

think that our collector design and the techni-

ques introduced in our paper are a first step

toward such a system.

CONCLUSION
We introduced a hardware accelerator for GC

that can be implemented at a very low hardware

cost (equivalent to 64 KB of SRAM) and does not

require modifications to the SoC beyond those

required by any DMA-capable device. At this low

cost, we believe that there is a strong case to

integrate such a device into any SoC design.

ACKNOWLEDGMENT
This work was done at the University of Cali-

fornia, Berkeley. It was supported in part by

ASPIRE Lab sponsors and affiliates Intel, Google,

HPE, Huawei, LGE, NVIDIA, Oracle, and Samsung.

& REFERENCES

1. T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley,

“The yin and yang of power and performance for

asymmetric hardware and managed software,” in

Proc. 39th Annu. Int. Symp. Comput. Archit., 2012,

pp. 225–236.

2. K. Asanovic et al., “The rocket chip generator,” EECS

Dept., Univ. California, Berkeley, CA, USA, Tech. Rep.

UCB/EECS-2016-17, 2016.

3. S. Cassand P. Bulusu, “Interactive: The top

programming languages 2018,” IEEE Spectrum.

[Online]. Jul. 31, 2018, https://spectrum.ieee.org/

static/interactive-the-top-programming-languages-

2018

4. E. M. Gagnon and L. J. Hendren, “Sable VM: A

research framework for the efficient execution of java

bytecode,” in Proc. Java Virtual Mach. Res. Technol.

Symp., 2001, pp. 27–40.

5. M. Maas, K. Asanovic, and J. Kubiatowicz, “A

hardware accelerator for tracing garbage collection,”

in Proc. 45th Annu. Int. Symp. Comput. Architecture.,

2018, pp. 138–151.

6. B. Alpern et al., “The jikes research virtual machine

project: Building an open-source research community,”

IBM Syst. J., vol. 44, no. 2, pp. 399–417, 2005.

7. S. M. Blackburn et al., “The dacapo benchmarks:

Java benchmarking development and analysis,”

ACM Sigplan Notices, vol. 41, no. 10, pp. 169–190,

2006.

8. S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid,

D. Lee, N. Pemberton, E. Amaro, C. Schmidt, A.

Chopra, and Q. Huang, “Firesim: FPGA-accelerated

We envision that future

systems could have a

GC accelerator that

completely eliminates

garbage collection

from software and is

invisible to the applica-

tion. Such an accelera-

tor would be fully

concurrent (i.e., never

pause the application),

adjust its bandwidth

consumption dynami-

cally to never interfere

with the application,

and not need to run any

code on the CPU.

May/June 2019 45

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

cycle-exact scale-out system simulation in the public

cloud,” in Proc. 45th Ann. Int. Symp. Comput.

Architecture., 2018, pp. 29–42.

9. C. Click, G. Tene, and M. Wolf, “The pauseless GC

algorithm,” in Proc. 1st ACM/USENIX Int. Conf. Virtual

Execution Environ., 2005, pp. 46–56.

Martin Maas is a research scientist at Google,

where he is a member of the Google Brain team. His

research interests span language runtimes, com-

puter architecture, systems and machine learning.

He has a PhD in computer science from the Univer-

sity of California, Berkeley. This work was done while

he was a graduate student at UC Berkeley. Contact

him at mmaas@google.com.

Krste Asanovic is a professor in the Department

of Electrical Engineering and Computer Sciences,

University of California, Berkeley. He has a PhD in

computer science from the University of California,

Berkeley. He is a Fellow of the IEEE and the Associa-

tion for Computing Machinery (ACM). Contact him

at krste@berkeley.edu.

John Kubiatowicz is a professor of electrical

engineering and computer science at the University

of California at Berkeley. His specialties include com-

puter architecture, operating systems, and network-

ing. His research interests include speculative

approaches for computer design, such as quantum,

biological, and autonomic computing, as well as

issues in internet-scale systems design, namely

security, privacy, and denial-of-service resilience.

He has a PhD in electrical engineering and computer

science from MIT and a dual BS in electrical engi-

neering and physics, as well as an MS in electrical

engineering and computer science from MIT.

Contact him at kubitron@cs.berkeley.edu.

Top Picks

46 IEEE Micro

mmaas@google.com
krste@berkeley.edu
kubitron@cs.berkeley.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

