
Instruction Sets Should Be Free: The Case For RISC-V

Krste Asanović
David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-146

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

August 6, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 1	

Custom systems-on-a-chip (SoCs), where the processors
and caches are a small part of the chip, are becoming
ubiquitous; it is rare today to find an electronics product
at any scale that does not include an on-chip processor.
Thus, many more companies are designing chips that
include processors than in the past. Given that the
industry has been revolutionized by open standards and
open source software—with networking protocols like
TCP/IP and operating systems (OS) like Linux—why is
one of the most important interfaces proprietary?
The Case for a Free, Open ISA

While instruction set architectures (ISAs) may be
proprietary for historical or business reasons, there is no
good technical reason for the lack of free, open ISAs:
• It’s not an error of omission. Companies with

successful ISAs like ARM, IBM, and Intel have
patents on quirks of their ISAs, which prevent others
from using them without licenses.1 Negotiations take
6-24 months and they can cost $1M-$10M, which
rules out academia and others with small volumes.2
An ARM license doesn’t even let you design an
ARM core; you just get to use their designs. (Only
≈15 big companies have licenses that allow new
ARM cores.) Even “OpenPOWER” is an oxymoron;
you must pay IBM to use its ISA. While business
sound, licenses stifle competition and innovation by
stopping many from designing and sharing their
ISA-compatible cores.

• Nor is it because the companies do most of the
software development. Despite the value of the
software ecosystems that grow around popular ISAs,
outsiders build almost all of the software for them.

• Neither do companies exclusively have the
experience needed to design a competent ISA. While
it’s a lot of work, many today can design ISAs.

• Nor are the most popular ISAs wonderful ISAs.
80x86 and ARM aren’t considered ISA exemplars.

• Neither can only companies verify ISA compatibility.
Open organizations developed mechanisms to ensure
compatibility with hardware standards long ago,
such as IEEE 754 floating point, Ethernet, and PCIe.
If not, open IT standards would not be so popular.

• Finally, proprietary ISAs are not guaranteed to last.
If a company dies, it takes its ISAs with it; DEC’s
demise also terminated the Alpha and VAX ISAs.

Note that an ISA is really an interface specification, and
not an implementation. There are three types of
implementations of an ISA:
1. Private closed source, analogous to Apple iOS.
2. Licensed open source, like Wind River VxWorks.
3. Free, open source that users can change and share,

like Linux.
Proprietary ISAs in practice allow the first two types of
cores, but you need a free, open ISA to enable all three.

We conclude that the industry would benefit from
viable freely open ISAs just as it has benefited from free

open source software. For example, it would enable a
real free open market of processor designs, which
patents on ISA quirks prevent. This could lead to:
• Greater innovation via free-market competition from

many more designers, including open vs. proprietary
implementations of the ISA.

• Shared open core designs, which would mean
shorter time to market, lower cost from reuse, fewer
errors given many more eyeballs3, and transparency
that would make it hard, for example, for
government agencies to add secret trap doors.

• Processors becoming affordable for more devices,
which helps expand the Internet of Things (IoTs),
which could cost as little as $1.

The Case for RISC as the Free, Open ISA Style
For an ISA to be embraced by an open-source

community, we believe it needs a proven commercial
record. The first question, then, is which style of ISA has
a history of success. There hasn’t been a successful stack
ISA in 30 years. Except for parts of the DSP market,
VLIWs have failed: Multiflow went belly up and Itanium
was a bust despite billions of dollars invested by HP and
Intel. It’s been decades since any new CISC ISA has
been successful. The surviving CISCs translate from
complex ISAs to easier-to-execute ISAs, which makes
great sense for executing a valuable legacy code-base. A
new ISA by definition won’t have any legacy code, so
the extra hardware cost and energy cost of translation are
hard to justify; why not just use an easy-to-execute ISA
in the first place? RISC-style load-store ISAs date back
at least 50 years to Seymour Cray’s CDC 6600. While
the 80x86 won the PC wars, RISC dominates the tablets
and smart phones of the PostPC Era; in 2013 more than
10B ARMs were shipped, as compared to 0.3B 80x86s.
Repeating what we said in 19804, we propose that RISC
is the best choice for an (free, open) ISA.

Moreover, a new RISC ISA can be better than its
predecessors by learning from their mistakes:
• Leaving out too much: No load/store byte or

load/store half word in the initial Alpha ISA, and no
floating-point load/store double in MIPS I.

• Including too much: The shift option for ARM
instructions and register windows in SPARC.

• Allowing current microarchitectural designs to
affect the ISA: Delayed branch in MIPS and SPARC,
and floating-point trap barriers in Alpha.

To match embedded market needs, RISCs even offered
solutions to the code size issue: ARM Thumb and
MIPS16 added 16-bit formats to offer code smaller than
80x86. Thus, we believe there is widespread agreement
on the general outline of a good RISC ISA.
The Case for Using an Existing RISC Free, Open ISA

The good news is that there are already three RISC
free, open ISAs5:
• SPARC V8 - To its credit, Sun Microsystems made

SPARC V8 an IEEE standard in 1994.

 2	

• OpenRISC - This GNU open-source effort started in
2000, with the 64-bit ISA being completed in 2011.

• RISC-V - In 2010, partly inspired by ARM's IP res-
trictions together with the lack of 64-bit addresses
and overall baroqueness of ARM v7, we and our
grad students Andrew Waterman and Yunsup Lee
developed RISC-V6 (pronounced "RISC 5") for our
research and classes, and made it BSD open source.

As it takes years to get the details right—the gestation
period for OpenRISC was 11 years and RISC-V was 4
years—it seems wiser to start with an existing ISA than
to form committees and start from scratch. RISC ISAs
tend to be similar, so any one might be a good candidate.

Given ISAs can live for decades, let’s first project
the future IT landscape to see what features might be
important to help rank the choices. Three platforms will
likely dominate: 1) IoTs – billions of cheap devices with
IP addresses and Internet access; 2) Personal mobile
devices, such as smart phones and tablets today;
3) Warehouse-Scale Computers (WSCs). While we
could have distinct ISAs for each platform, life would be
simpler if we could use a single ISA design everywhere.

This landscape suggests four key requirements:
1. Base-plus-extension ISA.7 To improve efficiency and

to reduce costs, SoCs add custom application-specific
accelerators. To match the needs of SoCs while
maintaining a stable software base, a free, open ISA
should have: i) a small core set of instructions that
compilers and OS’s can depend upon; ii) standard
but optional extensions for common ISA additions to
help customize the SoC to the application; and
iii) space for entirely new opcodes to invoke the
application-specific accelerators.

2. Compact instruction set encoding. Smaller code is
desirable given the cost sensitivity of IoTs and the
resulting desire for smaller memory.

3. Quadruple-precision (QP) as well as SP and DP
floating point. Some applications running in WSCs
today process such large data sets that they already
rely on software libraries for QP arithmetic.

4. 128-bit addressing as well as 32-bit and 64-bit. The
limited memory size of IoTs means 32-bit addressing
will be important for decades to come, while 64-bit
addressing is the de facto standard in anything larger.
Although the WSC industry won’t need 2128 bytes,
it’s plausible that within a decade WSCs might need
more than 264 bytes (16 exabytes) to address all of
their solid-state non-volatile storage. As address size
is the one ISA mistake from which it is hard to
recover8, it’s wise to plan for bigger addresses now.

The table below scores the 3 free open ISAs using these
4 criteria, plus a listing of critical compiler and OS ports.

Address Software
ISA

Ba
se

+
Ex

t
C

om
pa

ct

C
od

e

Q
ua

d
FP

32
-b

it

64
-b

it

12
8-

bi
t

G
C

C

LL
VM

Li
nu

x

Q
EM

U

SPARC V8 ✓ ✓ ✓ ✓ ✓ ✓

OpenRISC ✓ ✓ ✓ ✓ ✓ ✓

RISC-V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The Case for RISC-V as the RISC Free, Open ISA
Our community should rally around a single ISA to

test whether a free, open ISA can work. Only RISC-V
meets all four requirements. RISC-V is also 10 to 20
years younger, so we had the chance to learn from and
fix the mistakes of previous RISC ISAs—e.g., SPARC
and OpenRISC have delayed branches—which is why
RISC-V is so simple and clean (see Tables 4 and 5 and
www.riscv.org). In addition to the other ISAs missing
most requirements, a concern is that the 64-bit address
version of SPARC (V9) is proprietary, and that
OpenRISC may have lost momentum.

RISC-V has plenty of momentum. Table 1 lists other
groups designing RISC-V SoCs. Thanks in part to the
highly productive, open-source hardware design system
Chisel9, Berkeley has 8 silicon chips already and more in
progress. Table 2 shows one 64-bit RISC-V core that is
half the area, half the power, and faster than a 32-bit
ARM core with a similar pipeline in the same process.

Although it’s hard to set aside biases, we believe that
RISC-V is the best and safest choice for a free, open
RISC ISA. Thus, we will hold workshops and tutorials10
to expand the RISC-V community and, inspired by
Table 3, plan to start a non-profit foundation to certify
implementations and to maintain and evolve the ISA.
Conclusion

The case is even clearer for an open ISA than for an
open OS, as ISAs change very slowly, whereas
algorithmic innovations and new application demands
force continual OS evolution. It is also an interface
standard like TCP/IP, thus simpler to maintain and
evolve than an OS.

Open ISAs have been tried before, but they never
became popular due to the lack of demand. The low cost
and power of IoTs, the desire for a WSC alternative to
the 80x86, and the fact that cores are a small but
ubiquitous fraction of all SoCs combine to supply that
missing demand. RISC-V is aimed at SoCs, with a base
that should never change given the longevity of the basic
RISC ideas; a standard set of optional extensions that
will evolve slowly; and unique instructions per SoC that
never need to be reused. While the first RISC-V
beachhead may be IoTs or perhaps WSCs, our goal is
grander: just as Linux has become the standard OS for
most computing devices, we envision RISC-V becoming
the standard ISA for all computing devices.

 3	

References
1 MIPS letter (2002). http://brej.org/yellow_star/letter.pdf.	
2 Demerjian, C. (2013). “A long look at how ARM licenses
chips: Part 1 of 2,” semiaccurate.com/2013/08/07/a-long-look-
at-how-arm-licenses-chips/.
3 Raymond, E. (1999). The Cathedral and the Bazaar.
Knowledge, Technology & Policy, 12(3), 23-49.
4 Patterson, D. & D. Ditzel. (1980) "The Case for the Reduced
Instruction Set Computer." SIGARCH Computer Architecture
News 8.6, 25-33.
5 We recently learned about the new Open Core Foundation,
which is planning a 64-bit open core for 2016 based on SH-4.
6 Waterman, A. et al. (2014). The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Version 2.0. EECS
Technical Report No. UCB/EECS-2014-54, UC Berkeley.
7 Estrin, G. (1960) “Organization of computer systems: the
fixed plus variable structure computer.” Western Joint IRE-
AIEE-ACM Computer Conference, 33-40.
8 Bell, G., & W. Strecker. (1976) "Computer structures: What
have we learned from the PDP-11?," 3rd ISCA, 1-14.
10 Bachrach, J., et al. (2012) "Chisel: constructing hardware in
a Scala embedded language." Proc. 49th DAC, 1216-1225.
8 The first RISC-V workshop will be held January 14-15, 2015
in Monterey, CA. https://www.regonline.com/riscvworkshop.
	

Org Cores Description

IIT
Madras 6

Development of a complete range of
processors, ranging from micro-controllers
to server/HPC grade processors. They
began with the IBM Power ISA, but
switched a year later to RISC-V for both
technical and licensing reasons. The 6
distinct Indian processors and associated
SoC components are designed to offer
viable, open source alternatives to
proprietary commercial processors. All
implementations will be provided as
patent/royalty-free, BSD-licensed open
source in keeping with the RISC-V
philosophy (rise.cse.iitm.ac.in/shakti.html)

Low-
RISC 1

The lowRISC project (lowrisc.org) is
based in Cambridge (UK) and led by one
of the founders of Raspberry Pi, which is a
popular $35 computer. Their goal is to
produce open source RISC-V-based SoCs,
and they have plans for volume silicon
manufacture and low-cost development
boards.

Blue-
spec 1

The EDA company Bluespec
(bluespec.com) in the US has customers
interested in an open ISA, so they are
doing RISC-V designs in the Bluespec
synthesis toolset and have ported the GDB
debugger and the GNU soft-float ABI to
RISC-V

 	
Table 1. RISC-V projects beyond UC Berkeley.

	

IS
A

W
id

th
 (b

its
)

Fr
eq

ue
nc

y
(G

H
z)

D
hr

ys
to

ne
 P

er
fo

rm
an

ce

(D
M

IP
S/

M
H

z)

A
re

a
m

m
2

(n

o
ca

ch
es

)

A
re

a
m

m
2

(1

6
K

B
 c

ac
he

s)

A
re

a
Ef

fic
ie

nc
y

(D
M

IP
S/

M
H

z/
m

m
2)

D
yn

am
ic

 P
ow

er

(m
W

/M
H

z)

ARM 32 >1 1.57 0.27 0.53 3.0 <0.080
RISC-V 64 >1 1.72 0.14 0.39 4.4 0.034

R/A 2 1 1.1 0.5 0.7 1.5 ≥0.4

Table 2. Comparison of a 32-bit ARM core (Cortex-A5) to a
64-bit RISC-V core (Rocket) built in the same TSMC process
(40GPLUS). Third row is ratio of RISC-V Rocket to ARM
Cortex-A5. Both use single-instruction-issue, in-order
pipelines, yet the RISC-V core is faster, smaller, and uses less
power. This data is from the ARM website and the paper
 “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W RISC-V
Processor with Vector Accelerators” by Y. Lee et al that will
appear in the 40th European Solid-State Circuits Conference,
September 22-24, 2014.

Name Year Description

Apache
Software
Foundation

1999

Provides support for the Apache
community of open-source software
projects, which provide software
products for the public good.

Free
Software
Foundation

1985

Works to secure freedom for
computer users by promoting the
development and use of free software
and documentation — particularly the
GNU operating system.

Open
Group 1996

A vendor and technology-neutral
industry consortium, currently with
over 400 member organizations. It
was formed in 1996 when X/Open
merged with the Open Software
Foundation. Services provided
include strategy, management,
innovation and research, standards,
certification, and test development.
The Open Group is most famous as
the certifying body for UNIX
trademark.

Table 3. Example non-profit software foundations that
maintain and evolve open source projects for decades. We
presume to match the longevity of such software projects, we
will need a similar organization to maintain and evolve a free,
open ISA.

	

 4	

Category Name Format RV32I Base +RV128
Loads Load Byte I LB rd,rs1,imm

 Load Halfword I LH rd,rs1,imm
Load Word I,Cx LW rd,rs1,imm LQ rd,rs2,imm

 Load Byte Unsigned I LBU rd,rs1,imm
Load Half Unsigned I LHU rd,rs1,imm LDU rd,rs1,imm

Stores Store Byte S SB rs1,rs2,imm
Store Halfword S SH rs1,rs2,imm

Store Word S,Cx SW rs1,rs2,imm SQ rs1,rs2,imm

Arithmetic ADD R,Cx ADD rd,rs1,rs2 ADDD rd,rs1,rs2
 ADD Immediate I,Cx ADDI rd,rs1,imm ADDID rd,rs1,imm

 SUBtract R,Cx SUB rd,rs1,rs2 SUBD rd,rs1,rs2
 Load Upper Imm U LUI rd,imm

 Add Upper Imm to PC U AUIPC rd,imm
Logical XOR R XOR rd,rs1,rs2

 XOR Immediate I XORI rd,rs1,imm
OR R,Cx OR rd,rs1,rs2

OR Immediate I ORI rd,rs1,imm
AND R,Cx AND rd,rs1,rs2

AND Immediate I ANDI rd,rs1,imm
Shifts Shift Left R SLL rd,rs1,rs2 SLLD rd,rs1,rs2

 Shift Left Immediate I,Cx SLLI rd,rs1,shamt SLLID rd,rs1,shamt
 Shift Right R SRL rd,rs1,rs2 SRLD rd,rs1,rs2

 Shift Right Immediate I SRLI rd,rs1,shamt SRLID rd,rs1,shamt
 Shift Right Arithmetic R SRA rd,rs1,rs2 SRAD rd,rs1,rs2
 Shift Right Arith Imm I SRAI rd,rs1,shamt SRAID rd,rs1,shamt

Compare Set < R SLT rd,rs1,rs2
 Set < Immediate I SLTI rd,rs1,imm

 Set < Unsigned R SLTU rd,rs1,rs2
 Set < Unsigned Imm I SLTIU rd,rs1,imm

Branches Branch = SB,Cx BEQ rs1,rs2,imm
 Branch ≠ SB,Cx BNE rs1,rs2,imm
 Branch < SB BLT rs1,rs2,imm
 Branch ≥ SB BGE rs1,rs2,imm

 Branch < Unsigned SB BLTU rs1,rs2,imm
 Branch ≥ Unsigned SB BGEU rs1,rs2,imm

Jump & Link J&L UJ,Cx JAL rd,imm
 Jump & Link Register UJ,Cx JALR rd,rs1,imm

Synch Synch threads I FENCE
 Synch Instr & Data I FENCE.I

System System CALL I SCALL
 System BREAK I SBREAK

Counters ReaD CYCLE I RDCYCLE rd
 ReaD CYCLE upper Half I RDCYCLEH rd

 ReaD TIME I RDTIME rd
 ReaD TIME upper Half I RDTIMEH rd
 ReaD INSTR RETired I RDINSTRET rd

 ReaD INSTR upper Half I RDINSTRETH rd

R CI1
R4 CI2
I CJ
S CI3
SB CB
U CR
UJ

SRAIW rd,rs1,shamt

Table 4. RISC-V Integer Base Instructions (RV32I/64I/128I) and instruction formats. The base has 40 classic RISC
integer instructions, plus 10 miscellaneous instructions for synchronization, system calls, and counters. All RISC-V
implementations must include these base instructions, and we call the 32-bit version RV32I. The 64-bit and 128-bit
versions (RV64I and RV128I) expand all the registers to those widths and add 10 instructions for new data transfer
and shift instructions of the wider formats. It also shows the optional compressed instruction extension: those 12
instructions with Cx formats, which are 16 bits long. There are other optional instruction extensions defined so far:
Multiply-Divide, SP/DP/QP Floating Point, and Atomic. To learn more, see www.riscv.org

32-bit Formats 16-bit Formats

 +RV64

LD rd,rs1,imm

LWU rd,rs1,imm

SD rs1,rs2,imm

ADDW rd,rs1,rs2
ADDIW rd,rs1,imm
SUBW rd,rs1,rs2

SLLW rd,rs1,rs2
SLLIW rd,rs1,shamt
SRLW rd,rs1,rs2
SRLIW rd,rs1,shamt
SRAW rd,rs1,rs2

 5	

Category Name Format RV32M (Multiply-Divide) +RV64 +RV128
Multiply MULtiply R MUL rd,rs1,rs2 MULW rd,rs1,rs2 MULD rd,rs1,rs2

MULtiply upper Half R MULH rd,rs1,rs2
MULtiply Half Sign/Uns R MULHSU rd,rs1,rs2

MULtiply upper Half Uns R MULHU rd,rs1,rs2
Divide DIVide R DIV rd,rs1,rs2 DIVW rd,rs1,rs2 DIVD rd,rs1,rs2

DIVide Unsigned R DIVU rd,rs1,rs2
Remainder REMainder R REM rd,rs1,rs2 REMW rd,rs1,rs2 REMD rd,rs1,rs2

REMainder Unsigned R REMU rd,rs1,rs2 REMUW rd,rs1,rs2 REMUD rd,rs1,rs2

Category Name Format RV32{F,D,Q} (SP,DP,QP Fl. Pt.) +RV64 +RV128
Load Load I FL{W,D,Q} rd,rs1,imm
Store Store S FS{W,D,Q} rs1,rs2,imm
Arithmetic ADD R FADD.{S,D,Q} rd,rs1,rs2

SUBtract R FSUB.{S,D,Q} rd,rs1,rs2
MULtiply R FMUL.{S,D,Q} rd,rs1,rs2

DIVide R FDIV.{S,D,Q} rd,rs1,rs2
SQuare RooT R FSQRT.{S,D,Q} rd,rs1

Mul-Add Multiply-ADD R4 FMADD.{S,D,Q} rd,rs1,rs2,rs3
Multiply-SUBtract R4 FMSUB.{S,D,Q} rd,rs1,rs2,rs3

Negative Multiply-SUBtract R4 FNMSUB.{S,D,Q} rd,rs1,rs2,rs3
Negative Multiply-ADD R4 FNMADD.{S,D,Q} rd,rs1,rs2,rs3

Move Move from Integer R FMV.X.S rd,rs1 FMV.X.D rd,rs1 FMV.X.Q rd,rs1
Move to Integer R FMV.S.X rd,rs1 FMV.D.X rd,rs1 FMV.Q.X rd,rs1

Sign Inject SiGN source R FSGNJ.{S,D,Q} rd,rs1,rs2
Negative SiGN source R FSGNJN.{S,D,Q} rd,rs1,rs2

Xor SiGN source R FSGNJX.{S,D,Q} rd,rs1,rs2
Min/Max MINimum R FMIN.{S,D,Q} rd,rs1,rs2

MAXimum R FMAX.{S,D,Q} rd,rs1,rs2
Compare Compare Float = R FEQ.{S,D,Q} rd,rs1,rs2

Compare Float < R FLT.{S,D,Q} rd,rs1,rs2
Compare Float ≤ R FLE.{S,D,Q} rd,rs1,rs2

Convert Convert from Int R FCVT.W.{S,D,Q} rd,rs1 FCVT.L.{S,D,Q} rd,rs1 FCVT.T.{S,D,Q} rd,rs1
Convert from Int Unsigned R FCVT.WU.{S,D,Q} rd,rs1 FCVT.LU.{S,D,Q} rd,rs1 FCVT.TU.{S,D,Q} rd,rs1

Convert to Int R FCVT.{S,D,Q}.W rd,rs1 FCVT.{S,D,Q}.L rd,rs1 FCVT.{S,D,Q}.T rd,rs1
Convert to Int Unsigned R FCVT.{S,D,Q}.WU rd,rs1 FCVT.{S,D,Q}.LU rd,rs1 FCVT.{S,D,Q}.TU rd,rs1

Categorization Classify Type R FCLASS.{S,D,Q} rd,rs1
Configuration Read Status R FRCSR rd

Read Rounding Mode R FRRM rd
Read Flags R FRFLAGS rd

Swap Status Reg R FSCSR rd,rs1
Swap Rounding Mode R FSRM rd,rs1

Swap Flags R FSFLAGS rd,rs1
Swap Rounding Mode Imm I FSRMI rd,imm

Swap Flags Imm I FSFLAGSI rd,imm

Category Name Format RV32A (Atomic) +RV64 +RV128
Load Load Reserved R LR.W rd,rs1 LR.D rd,rs1 LR.Q rd,rs1
Store Store Conditional R SC.W rd,rs1,rs2 SC.D rd,rs1,rs2 SC.Q rd,rs1,rs2
Swap SWAP R AMOSWAP.W rd,rs1,rs2 AMOSWAP.D rd,rs1,rs2 AMOSWAP.Q rd,rs1,rs2
Add ADD R AMOADD.W rd,rs1,rs2 AMOADD.D rd,rs1,rs2 AMOADD.Q rd,rs1,rs2
Logical XOR R AMOXOR.W rd,rs1,rs2 AMOXOR.D rd,rs1,rs2 AMOXOR.Q rd,rs1,rs2

 AND R AMOAND.W rd,rs1,rs2 AMOAND.D rd,rs1,rs2 AMOAND.Q rd,rs1,rs2
OR R AMOOR.W rd,rs1,rs2 AMOOR.D rd,rs1,rs2 AMOOR.Q rd,rs1,rs2

Min/Max MINimum R AMOMIN.W rd,rs1,rs2 AMOMIN.D rd,rs1,rs2 AMOMIN.Q rd,rs1,rs2
MAXimum R AMOMAX.W rd,rs1,rs2 AMOMAX.D rd,rs1,rs2 AMOMAX.Q rd,rs1,rs2

MINimum Unsigned R AMOMINU.W rd,rs1,rs2 AMOMINU.D rd,rs1,rs2 AMOMINU.Q rd,rs1,rs2
MAXimum Unsigned R AMOMAXU.W rd,rs1,rs2 AMOMAXU.D rd,rs1,rs2 AMOMAXU.Q rd,rs1,rs2

Table 5. RISC-V Optional Extensions: Multiply-Divide, SP/DP/QP Fl. Pt., and Atomic. It further demonstrates the
base-plus-extension nature of RISC-V, which has optional extensions of: 10 multiply-divide instructions (RV32M); 25
floating-point instructions each for SP, DP, or QP (RV32S, RV32D, RV32Q); and 11 optional atomic instructions
(RV32A). Just as when expanding from RV32I to RV64I and RV128I, for each address-size option we need to add a
few more instructions for the wider data: 4 wider multiples and divides; 6 moves and converts for floating point; and
11 wider versions of the atomic instructions. To learn more, see www.riscv.org.

