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Custom systems-on-a-chip (SoCs), where the processors 
and caches are a small part of the chip, are becoming 
ubiquitous; it is rare today to find an electronics product 
at any scale that does not include an on-chip processor. 
Thus, many more companies are designing chips that 
include processors than in the past. Given that the 
industry has been revolutionized by open standards and 
open source software—with networking protocols like 
TCP/IP and operating systems (OS) like Linux—why is 
one of the most important interfaces proprietary?  
The Case for a Free, Open ISA 

While instruction set architectures (ISAs) may be 
proprietary for historical or business reasons, there is no 
good technical reason for the lack of free, open ISAs: 
• It’s not an error of omission. Companies with 

successful ISAs like ARM, IBM, and Intel have 
patents on quirks of their ISAs, which prevent others 
from using them without licenses.1 Negotiations take 
6-24 months and they can cost $1M-$10M, which 
rules out academia and others with small volumes.2 
An ARM license doesn’t even let you design an 
ARM core; you just get to use their designs. (Only 
≈15 big companies have licenses that allow new 
ARM cores.) Even “OpenPOWER” is an oxymoron; 
you must pay IBM to use its ISA. While business 
sound, licenses stifle competition and innovation by 
stopping many from designing and sharing their 
ISA-compatible cores.  

• Nor is it because the companies do most of the 
software development. Despite the value of the 
software ecosystems that grow around popular ISAs, 
outsiders build almost all of the software for them.  

• Neither do companies exclusively have the 
experience needed to design a competent ISA. While 
it’s a lot of work, many today can design ISAs. 

• Nor are the most popular ISAs wonderful ISAs. 
80x86 and ARM aren’t considered ISA exemplars. 

• Neither can only companies verify ISA compatibility. 
Open organizations developed mechanisms to ensure 
compatibility with hardware standards long ago, 
such as IEEE 754 floating point, Ethernet, and PCIe. 
If not, open IT standards would not be so popular. 

• Finally, proprietary ISAs are not guaranteed to last. 
If a company dies, it takes its ISAs with it; DEC’s 
demise also terminated the Alpha and VAX ISAs. 

Note that an ISA is really an interface specification, and 
not an implementation. There are three types of 
implementations of an ISA: 
1. Private closed source, analogous to Apple iOS. 
2. Licensed open source, like Wind River VxWorks. 
3. Free, open source that users can change and share, 

like Linux. 
Proprietary ISAs in practice allow the first two types of 
cores, but you need a free, open ISA to enable all three. 

We conclude that the industry would benefit from 
viable freely open ISAs just as it has benefited from free 

open source software. For example, it would enable a 
real free open market of processor designs, which 
patents on ISA quirks prevent. This could lead to: 
• Greater innovation via free-market competition from 

many more designers, including open vs. proprietary 
implementations of the ISA. 

• Shared open core designs, which would mean 
shorter time to market, lower cost from reuse, fewer 
errors given many more eyeballs3, and transparency 
that would make it hard, for example, for 
government agencies to add secret trap doors. 

• Processors becoming affordable for more devices, 
which helps expand the Internet of Things (IoTs), 
which could cost as little as $1. 

The Case for RISC as the Free, Open ISA Style 
For an ISA to be embraced by an open-source 

community, we believe it needs a proven commercial 
record. The first question, then, is which style of ISA has 
a history of success. There hasn’t been a successful stack 
ISA in 30 years. Except for parts of the DSP market, 
VLIWs have failed: Multiflow went belly up and Itanium 
was a bust despite billions of dollars invested by HP and 
Intel.  It’s been decades since any new CISC ISA has 
been successful. The surviving CISCs translate from 
complex ISAs to easier-to-execute ISAs, which makes 
great sense for executing a valuable legacy code-base.  A 
new ISA by definition won’t have any legacy code, so 
the extra hardware cost and energy cost of translation are 
hard to justify; why not just use an easy-to-execute ISA 
in the first place? RISC-style load-store ISAs date back 
at least 50 years to Seymour Cray’s CDC 6600. While 
the 80x86 won the PC wars, RISC dominates the tablets 
and smart phones of the PostPC Era; in 2013 more than 
10B ARMs were shipped, as compared to 0.3B 80x86s. 
Repeating what we said in 19804, we propose that RISC 
is the best choice for an (free, open) ISA.  

Moreover, a new RISC ISA can be better than its 
predecessors by learning from their mistakes: 
• Leaving out too much: No load/store byte or 

load/store half word in the initial Alpha ISA, and no 
floating-point load/store double in MIPS I. 

• Including too much: The shift option for ARM 
instructions and register windows in SPARC. 

• Allowing current microarchitectural designs to 
affect the ISA: Delayed branch in MIPS and SPARC, 
and floating-point trap barriers in Alpha. 

To match embedded market needs, RISCs even offered 
solutions to the code size issue: ARM Thumb and 
MIPS16 added 16-bit formats to offer code smaller than 
80x86. Thus, we believe there is widespread agreement 
on the general outline of a good RISC ISA.  
The Case for Using an Existing RISC Free, Open ISA  

The good news is that there are already three RISC 
free, open ISAs5: 
• SPARC V8 - To its credit, Sun Microsystems made 

SPARC V8 an IEEE standard in 1994.  
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• OpenRISC - This GNU open-source effort started in 
2000, with the 64-bit ISA being completed in 2011. 

• RISC-V - In 2010, partly inspired by ARM's IP res- 
trictions together with the lack of 64-bit addresses 
and overall baroqueness of ARM v7, we and our 
grad students Andrew Waterman and Yunsup Lee 
developed RISC-V6 (pronounced "RISC 5") for our 
research and classes, and made it BSD open source.  

As it takes years to get the details right—the gestation 
period for OpenRISC was 11 years and RISC-V was 4 
years—it seems wiser to start with an existing ISA than 
to form committees and start from scratch. RISC ISAs 
tend to be similar, so any one might be a good candidate. 

Given ISAs can live for decades, let’s first project 
the future IT landscape to see what features might be 
important to help rank the choices. Three platforms will 
likely dominate: 1) IoTs – billions of cheap devices with 
IP addresses and Internet access; 2) Personal mobile 
devices, such as smart phones and tablets today;  
3) Warehouse-Scale Computers (WSCs). While we 
could have distinct ISAs for each platform, life would be 
simpler if we could use a single ISA design everywhere. 

This landscape suggests four key requirements: 
1. Base-plus-extension ISA.7 To improve efficiency and 

to reduce costs, SoCs add custom application-specific 
accelerators. To match the needs of SoCs while 
maintaining a stable software base, a free, open ISA 
should have: i) a small core set of instructions that 
compilers and OS’s can depend upon; ii) standard  
but optional extensions for common ISA additions to 
help customize the SoC to the application; and  
iii) space for entirely new opcodes to invoke the 
application-specific accelerators.  

2. Compact instruction set encoding. Smaller code is 
desirable given the cost sensitivity of IoTs and the 
resulting desire for smaller memory. 

3. Quadruple-precision (QP) as well as SP and DP 
floating point. Some applications running in WSCs 
today process such large data sets that they already 
rely on software libraries for QP arithmetic.  

4. 128-bit addressing as well as 32-bit and 64-bit. The 
limited memory size of IoTs means 32-bit addressing 
will be important for decades to come, while 64-bit 
addressing is the de facto standard in anything larger. 
Although the WSC industry won’t need 2128 bytes, 
it’s plausible that within a decade WSCs might need 
more than 264 bytes (16 exabytes) to address all of 
their solid-state non-volatile storage. As address size 
is the one ISA mistake from which it is hard to 
recover8, it’s wise to plan for bigger addresses now. 

The table below scores the 3 free open ISAs using these 
4 criteria, plus a listing of critical compiler and OS ports. 
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SPARC V8     ✓ ✓     ✓ ✓ ✓ ✓ 

OpenRISC       ✓ ✓   ✓ ✓ ✓ ✓ 

RISC-V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
 

The Case for RISC-V as the RISC Free, Open ISA  
Our community should rally around a single ISA to 

test whether a free, open ISA can work.  Only RISC-V 
meets all four requirements. RISC-V is also 10 to 20 
years younger, so we had the chance to learn from and 
fix the mistakes of previous RISC ISAs—e.g., SPARC 
and OpenRISC have delayed branches—which is why 
RISC-V is so simple and clean (see Tables 4 and 5 and 
www.riscv.org). In addition to the other ISAs missing 
most requirements, a concern is that the 64-bit address 
version of SPARC (V9) is proprietary, and that 
OpenRISC may have lost momentum.  

RISC-V has plenty of momentum. Table 1 lists other 
groups designing RISC-V SoCs. Thanks in part to the 
highly productive, open-source hardware design system 
Chisel9, Berkeley has 8 silicon chips already and more in 
progress. Table 2 shows one 64-bit RISC-V core that is 
half the area, half the power, and faster than a 32-bit 
ARM core with a similar pipeline in the same process.  

Although it’s hard to set aside biases, we believe that 
RISC-V is the best and safest choice for a free, open 
RISC ISA. Thus, we will hold workshops and tutorials10 
to expand the RISC-V community and, inspired by 
Table 3, plan to start a non-profit foundation to certify 
implementations and to maintain and evolve the ISA. 
Conclusion 

The case is even clearer for an open ISA than for an 
open OS, as ISAs change very slowly, whereas 
algorithmic innovations and new application demands 
force continual OS evolution. It is also an interface 
standard like TCP/IP, thus simpler to maintain and 
evolve than an OS.  

Open ISAs have been tried before, but they never 
became popular due to the lack of demand. The low cost 
and power of IoTs, the desire for a WSC alternative to 
the 80x86, and the fact that cores are a small but 
ubiquitous fraction of all SoCs combine to supply that 
missing demand. RISC-V is aimed at SoCs, with a base 
that should never change given the longevity of the basic 
RISC ideas; a standard set of optional extensions that 
will evolve slowly; and unique instructions per SoC that 
never need to be reused. While the first RISC-V 
beachhead may be IoTs or perhaps WSCs, our goal is 
grander: just as Linux has become the standard OS for 
most computing devices, we envision RISC-V becoming 
the standard ISA for all computing devices. 
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Org Cores Description 

IIT 
Madras 6 

Development of a complete range of 
processors, ranging from micro-controllers 
to server/HPC grade processors. They 
began with the IBM Power ISA, but 
switched a year later to RISC-V for both 
technical and licensing reasons. The 6 
distinct Indian processors and associated 
SoC components are designed to offer 
viable, open source alternatives to 
proprietary commercial processors. All 
implementations will be provided as 
patent/royalty-free, BSD-licensed open 
source in keeping with the RISC-V 
philosophy (rise.cse.iitm.ac.in/shakti.html) 

Low-
RISC 1 

The lowRISC project (lowrisc.org) is 
based in Cambridge (UK) and led by one 
of the founders of Raspberry Pi, which is a 
popular $35 computer. Their goal is to 
produce open source RISC-V-based SoCs, 
and they have plans for volume silicon 
manufacture and low-cost development 
boards. 

Blue-
spec 1 

The EDA company Bluespec 
(bluespec.com) in the US has customers 
interested in an open ISA, so they are 
doing RISC-V designs in the Bluespec 
synthesis toolset and have ported the GDB 
debugger and the GNU soft-float ABI to 
RISC-V 

  	  
Table 1. RISC-V projects beyond UC Berkeley.  
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ARM 32 >1 1.57 0.27 0.53 3.0  <0.080 
RISC-V 64 >1 1.72 0.14 0.39 4.4  0.034 

R/A 2 1 1.1 0.5 0.7 1.5 ≥0.4 
 
Table 2. Comparison of a 32-bit ARM core (Cortex-A5) to a 
64-bit RISC-V core (Rocket) built in the same TSMC process 
(40GPLUS). Third row is ratio of RISC-V Rocket to ARM 
Cortex-A5. Both use single-instruction-issue, in-order 
pipelines, yet the RISC-V core is faster, smaller, and uses less 
power. This data is from the ARM website and the paper 
 “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W RISC-V 
Processor with Vector Accelerators” by Y. Lee  et al that will 
appear in the 40th European Solid-State Circuits Conference, 
September 22-24, 2014. 
 

Name Year Description 

Apache 
Software 
Foundation 

1999 

Provides support for the Apache 
community of open-source software 
projects, which provide software 
products for the public good. 

Free 
Software 
Foundation 

1985 

Works to secure freedom for 
computer users by promoting the 
development and use of free software 
and documentation — particularly the 
GNU operating system.  

Open 
Group 1996 

A vendor and technology-neutral 
industry consortium, currently with 
over 400 member organizations. It 
was formed in 1996 when X/Open 
merged with the Open Software 
Foundation. Services provided 
include strategy, management, 
innovation and research, standards, 
certification, and test development. 
The Open Group is most famous as 
the certifying body for UNIX 
trademark.  

    
Table 3. Example non-profit software foundations that 
maintain and evolve open source projects for decades. We 
presume to match the longevity of such software projects, we 
will need a similar organization to maintain and evolve a free, 
open ISA. 
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Category         Name Format RV32I Base  +RV128
Loads         Load Byte I LB    rd,rs1,imm

 Load Halfword I LH    rd,rs1,imm
Load Word I,Cx LW    rd,rs1,imm LQ    rd,rs2,imm

 Load Byte Unsigned I LBU   rd,rs1,imm
Load Half Unsigned I LHU   rd,rs1,imm LDU   rd,rs1,imm

Stores       Store Byte S SB    rs1,rs2,imm
Store Halfword S SH    rs1,rs2,imm

Store Word S,Cx SW    rs1,rs2,imm SQ    rs1,rs2,imm

Arithmetic         ADD R,Cx ADD   rd,rs1,rs2 ADDD  rd,rs1,rs2
 ADD Immediate I,Cx ADDI  rd,rs1,imm ADDID rd,rs1,imm

 SUBtract R,Cx SUB   rd,rs1,rs2 SUBD  rd,rs1,rs2
 Load Upper Imm U LUI   rd,imm

 Add Upper Imm to PC U AUIPC rd,imm
Logical              XOR R XOR   rd,rs1,rs2

 XOR Immediate I XORI  rd,rs1,imm
OR R,Cx OR    rd,rs1,rs2

OR Immediate I ORI   rd,rs1,imm
AND R,Cx AND   rd,rs1,rs2

AND Immediate I ANDI  rd,rs1,imm
Shifts          Shift Left R SLL   rd,rs1,rs2 SLLD  rd,rs1,rs2

 Shift Left Immediate I,Cx SLLI  rd,rs1,shamt SLLID rd,rs1,shamt
 Shift Right R SRL   rd,rs1,rs2 SRLD  rd,rs1,rs2

 Shift Right Immediate I SRLI  rd,rs1,shamt SRLID rd,rs1,shamt
 Shift Right Arithmetic R SRA   rd,rs1,rs2 SRAD  rd,rs1,rs2
 Shift Right Arith Imm I SRAI  rd,rs1,shamt SRAID rd,rs1,shamt

Compare            Set < R SLT   rd,rs1,rs2
 Set < Immediate I SLTI  rd,rs1,imm

 Set < Unsigned R SLTU  rd,rs1,rs2
 Set < Unsigned Imm I SLTIU rd,rs1,imm

Branches     Branch = SB,Cx BEQ   rs1,rs2,imm
 Branch ≠ SB,Cx BNE   rs1,rs2,imm
 Branch < SB BLT   rs1,rs2,imm
 Branch ≥ SB BGE   rs1,rs2,imm

 Branch < Unsigned SB BLTU  rs1,rs2,imm
 Branch ≥ Unsigned SB BGEU  rs1,rs2,imm

Jump & Link       J&L UJ,Cx JAL   rd,imm
 Jump & Link Register UJ,Cx JALR  rd,rs1,imm

Synch   Synch threads I FENCE 
 Synch Instr & Data I FENCE.I

System  System CALL I SCALL
 System BREAK I SBREAK 

Counters ReaD CYCLE I RDCYCLE    rd 
 ReaD CYCLE upper Half I RDCYCLEH   rd 

 ReaD TIME I RDTIME     rd 
 ReaD TIME upper Half I RDTIMEH    rd 
 ReaD INSTR RETired I RDINSTRET  rd 

 ReaD INSTR upper Half I RDINSTRETH rd 

R CI1
R4 CI2
I CJ
S CI3
SB CB
U CR
UJ

SRAIW rd,rs1,shamt

Table 4. RISC-V Integer Base Instructions (RV32I/64I/128I) and instruction formats. The base has 40 classic RISC 
integer instructions, plus 10 miscellaneous instructions for synchronization, system calls, and counters. All RISC-V 
implementations must include these base instructions, and we call the 32-bit version RV32I. The 64-bit and 128-bit 
versions (RV64I and RV128I) expand all the registers to those widths and add 10 instructions for new data transfer 
and shift instructions of the wider formats. It also shows the optional compressed instruction extension: those 12 
instructions with Cx formats, which are 16 bits long. There are other optional instruction extensions defined so far:  
Multiply-Divide, SP/DP/QP Floating Point, and Atomic. To learn more, see www.riscv.org

32-bit Formats 16-bit Formats

 +RV64

LD    rd,rs1,imm

LWU   rd,rs1,imm

SD    rs1,rs2,imm

ADDW  rd,rs1,rs2
ADDIW rd,rs1,imm
SUBW  rd,rs1,rs2

SLLW  rd,rs1,rs2
SLLIW rd,rs1,shamt
SRLW  rd,rs1,rs2
SRLIW rd,rs1,shamt
SRAW  rd,rs1,rs2
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Category                Name Format RV32M (Multiply-Divide)  +RV64  +RV128
Multiply                  MULtiply R MUL    rd,rs1,rs2 MULW  rd,rs1,rs2 MULD  rd,rs1,rs2

MULtiply upper Half R MULH   rd,rs1,rs2
MULtiply Half Sign/Uns R MULHSU rd,rs1,rs2

MULtiply upper Half Uns R MULHU  rd,rs1,rs2
Divide                       DIVide R DIV    rd,rs1,rs2 DIVW  rd,rs1,rs2 DIVD  rd,rs1,rs2

DIVide Unsigned R DIVU   rd,rs1,rs2
Remainder          REMainder R REM    rd,rs1,rs2 REMW  rd,rs1,rs2 REMD  rd,rs1,rs2

REMainder Unsigned R REMU   rd,rs1,rs2 REMUW rd,rs1,rs2 REMUD rd,rs1,rs2

Category                Name Format RV32{F,D,Q} (SP,DP,QP Fl. Pt.)  +RV64  +RV128
Load                             Load I FL{W,D,Q}       rd,rs1,imm
Store                           Store S FS{W,D,Q}       rs1,rs2,imm
Arithmetic                    ADD R FADD.{S,D,Q}    rd,rs1,rs2

SUBtract R FSUB.{S,D,Q}    rd,rs1,rs2
MULtiply R FMUL.{S,D,Q}    rd,rs1,rs2

DIVide R FDIV.{S,D,Q}    rd,rs1,rs2
SQuare RooT R FSQRT.{S,D,Q}   rd,rs1

Mul-Add             Multiply-ADD R4 FMADD.{S,D,Q}   rd,rs1,rs2,rs3
Multiply-SUBtract R4 FMSUB.{S,D,Q}   rd,rs1,rs2,rs3

Negative Multiply-SUBtract R4 FNMSUB.{S,D,Q}  rd,rs1,rs2,rs3
Negative Multiply-ADD R4 FNMADD.{S,D,Q}  rd,rs1,rs2,rs3

Move           Move from Integer R FMV.X.S         rd,rs1 FMV.X.D         rd,rs1 FMV.X.Q         rd,rs1
Move to Integer R FMV.S.X         rd,rs1 FMV.D.X         rd,rs1 FMV.Q.X         rd,rs1

Sign Inject         SiGN source R FSGNJ.{S,D,Q}   rd,rs1,rs2
Negative SiGN source R FSGNJN.{S,D,Q}  rd,rs1,rs2

Xor SiGN source R FSGNJX.{S,D,Q}  rd,rs1,rs2
Min/Max                   MINimum R FMIN.{S,D,Q}    rd,rs1,rs2

MAXimum R FMAX.{S,D,Q}    rd,rs1,rs2
Compare      Compare Float = R FEQ.{S,D,Q}     rd,rs1,rs2

Compare Float < R FLT.{S,D,Q}     rd,rs1,rs2
Compare Float ≤ R FLE.{S,D,Q}     rd,rs1,rs2

Convert        Convert from Int R FCVT.W.{S,D,Q}  rd,rs1 FCVT.L.{S,D,Q}  rd,rs1 FCVT.T.{S,D,Q}  rd,rs1
Convert from Int Unsigned R FCVT.WU.{S,D,Q} rd,rs1 FCVT.LU.{S,D,Q} rd,rs1 FCVT.TU.{S,D,Q} rd,rs1

Convert to Int R FCVT.{S,D,Q}.W  rd,rs1 FCVT.{S,D,Q}.L  rd,rs1 FCVT.{S,D,Q}.T  rd,rs1
Convert to Int Unsigned R FCVT.{S,D,Q}.WU rd,rs1 FCVT.{S,D,Q}.LU rd,rs1 FCVT.{S,D,Q}.TU rd,rs1

Categorization  Classify Type R FCLASS.{S,D,Q}  rd,rs1
Configuration     Read Status R FRCSR           rd

Read Rounding Mode R FRRM            rd
Read Flags R FRFLAGS         rd

Swap Status Reg R FSCSR           rd,rs1
Swap Rounding Mode R FSRM            rd,rs1

Swap Flags R FSFLAGS         rd,rs1
Swap Rounding Mode Imm I FSRMI           rd,imm

Swap Flags Imm I FSFLAGSI        rd,imm

Category                Name Format RV32A (Atomic)  +RV64  +RV128
Load               Load Reserved R LR.W            rd,rs1 LR.D      rd,rs1 LR.Q      rd,rs1
Store           Store Conditional R SC.W            rd,rs1,rs2 SC.D      rd,rs1,rs2 SC.Q      rd,rs1,rs2
Swap                          SWAP R AMOSWAP.W       rd,rs1,rs2 AMOSWAP.D rd,rs1,rs2 AMOSWAP.Q rd,rs1,rs2
Add                                  ADD R AMOADD.W        rd,rs1,rs2 AMOADD.D  rd,rs1,rs2 AMOADD.Q  rd,rs1,rs2
Logical                          XOR R AMOXOR.W        rd,rs1,rs2 AMOXOR.D  rd,rs1,rs2 AMOXOR.Q  rd,rs1,rs2

 AND R AMOAND.W        rd,rs1,rs2 AMOAND.D  rd,rs1,rs2 AMOAND.Q  rd,rs1,rs2
OR R AMOOR.W         rd,rs1,rs2 AMOOR.D   rd,rs1,rs2 AMOOR.Q   rd,rs1,rs2

Min/Max                 MINimum R AMOMIN.W        rd,rs1,rs2 AMOMIN.D  rd,rs1,rs2 AMOMIN.Q  rd,rs1,rs2
MAXimum R AMOMAX.W        rd,rs1,rs2 AMOMAX.D  rd,rs1,rs2 AMOMAX.Q  rd,rs1,rs2

MINimum Unsigned R AMOMINU.W       rd,rs1,rs2 AMOMINU.D rd,rs1,rs2 AMOMINU.Q rd,rs1,rs2
MAXimum Unsigned R AMOMAXU.W       rd,rs1,rs2 AMOMAXU.D rd,rs1,rs2 AMOMAXU.Q rd,rs1,rs2

Table 5. RISC-V  Optional Extensions: Multiply-Divide, SP/DP/QP Fl. Pt., and Atomic. It further demonstrates the 
base-plus-extension nature of RISC-V, which has optional extensions of: 10 multiply-divide instructions (RV32M); 25 
floating-point instructions each for SP, DP, or QP (RV32S, RV32D, RV32Q); and 11 optional atomic instructions 
(RV32A). Just as when expanding from RV32I to RV64I and RV128I, for each address-size option we need to add a 
few more instructions for the wider data: 4 wider multiples and divides; 6 moves and converts for floating point; and 
11 wider versions of the atomic instructions. To learn more, see www.riscv.org.


