
BROOM: An Open-Source
Out-of-Order Processor With
Resilient Low-Voltage
Operation in 28-nm CMOS

Christopher Celio, Pi-Feng Chiu, Krste Asanovi�c,
Borivoje Nikoli�c, and David Patterson
University of California, Berkeley

Abstract—The Berkeley resilient out-of-order machine (BROOM) is a resilient,

wide-voltage-range implementation of an open-source out-of-order (OoO) RISC-V

processor implemented in an ASIC flow. A 28-nm test-chip contains a BOOMOoO core and

a 1-MiB level-2 (L2) cache, enhanced with architectural error tolerance for low-voltage

operation. It was implemented by using an agile designmethodology, where the initial

OoO architecture was transformed to performwell in a high-performance, low-leakage

CMOS process, informed by synthesis, place, and route data by using foundry-provided

standard-cell library andmemory compiler. The two-person-team productivity was

improved in part thanks to a number of open-source artifacts: The Chisel hardware

construction language, the RISC-V instruction set architecture, the rocket-chip SoC

generator, and the open-source BOOMcore. The resulting chip, taped out using TSMC’s 28-

nm HPM process, runs at 1.0 GHz at 0.9 V, and is able to operate down to 0.47 V.

& RISC-V IS AN open-source instruction set

architecture (ISA) that is gaining wide attention.

There are several open-source and commercial

in-order cores that implement the RISC-V ISA;

however, there is a need for high-performance

cores. BOOM is a synthesizable, parameterized,

superscalar out-of-order (OoO) RISC-V core,

that has been originally designed to serve as

the prototypical baseline processor for future

microarchitectural studies of OoO processors.

Its original goal was to provide a readable,

open-source implementation for use in educa-

tion, research, and industry, and had been

Digital Object Identifier 10.1109/MM.2019.2897782

Date of publication 5 February 2019; date of current version

15 March 2019.

Hot Chips 30

52
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

evaluated through educa-

tional standard-cell libraries.

The Berkeley Resilient OoO

Machine (BROOM) contains

an evolved version of BOOM:

the core has been trans-

formed to explore the design

space in a representative

process for high-perfor-

mance mobile applications.

It has been designed in an

ASIC flow, which enabled a

rapid evaluation of changes

to the RTL and physical

design to improve the per-

formance of the processor.

Figure 1 shows the block dia-

gram of the BROOM proces-

sor. BROOM consists of a

single BOOM core and a 1-

MiB L2 cache, each in their

own clock and voltage

domains.

The additional feature of

the test chip is the architec-

tural resiliency techniques for

operation of the cache in a

wide voltage range, enabling

the processor to operate with

a high efficiency at low

voltages.

BROOM was implemented using LVT-based

standard cells and a foundry-provided memory

compiler. The entire chip measures less than

2 mm × 3 mm and is composed of 72 million tran-

sistors. The chip is composed of 417 000 stan-

dard cells and 73 SRAM macros; the core and L1

caches make up 310 000 cells and 20 SRAM mac-

ros. The final sign-off in the slow-slow corner

was at 1.68 ns. Figure 1 shows the placed-and-

routed chip plot.

LEVERAGING OPEN-SOURCE
INFRASTRUCTURE

BOOM implements the open-source RISC-V

ISA, which was designed from the ground-up to

enable technology-driven computer architecture

research. The clean and simple design of RISC-

V allows for a focus on the processor without

getting weighed down with awkward instructions

that demand undue attention or spending extra

effortmanaging software ports.

BOOM is written in Chisel, an open-source

hardware construction language developed to

enable the advanced hardware design. Chisel

allowsdesigners to utilize concepts such as object

orientation, functional programming, parameter-

ized types, and type inference which makes it eas-

ier to implement highly parameterized hardware

generators. However, Chisel is not a high-level syn-

thesis language—the primitives provided by

Chisel are, for example, registers, wires, and mem-

ories. One of Chisel’s strengths is its focus on gen-

erating well formed, synthesizable Verilog. This

feature decreased design risk. Chisel also brings

software development-level productivity to the

RTL coding, and helps encourage focusing imple-

mentation efforts on writing generators, rather

Figure 1. BROOM chip block diagram, annotated place-and-routed chip plot, and

feature summary.

March/April 2019 53

than a single design instance. For example, the

open-source RISC-V Rocket-chip generator

presents a template for designing systems-on-a-

chip (SoCs). Rocket-chip supports coherent multi-

level caches and standard interconnects. BOOM

makes significant use of Rocket-chip as a library—

the caches, the uncore, and the functional units

all derive from Rocket. In total, over 11 500 lines of

code (LOC) are instantiated by BOOM from the

Rocket-chip repository.

BOOM CORE
The initial BOOM architecture is inspired by

the MIPS R10K and Alpha 21264 processors from

the 1990s, whose designs teams provided rela-

tively detailed insight into their processors’

microarchitectures.1,2 However, both process-

ors relied on custom, dynamic logic which

allowed them to achieve very high clock freq-

uencies despite their very short pipelines. The

seven-stage Alpha 21264 has 15 fanout-of-four

(FO4) inverter delays. As a comparison, the

synthesizable Tensilica’s Xtensa processor, fab-

ricated in a 0.25-mm ASIC process and contempo-

rary with the Alpha 21264, was estimated to

have roughly 44 FO4 delays.3

As BOOM is a synthesizable processor, we

must rely on microarchitecture-level techniques

to address critical paths and add more pipeline

stages to trade off instructions per cycle (IPC),

cycle time (frequency), and design complexity.

However, as process nodes have become

smaller, transistor leakage and variability has

increased, and power efficiency restrictive,

many of the more aggressive custom techniques

have become more difficult and expensive to

apply.4 Modern high-performance processors

have largely limited their custom design efforts

to more regular structures such as memories

and register files.

We began our design efforts with BOOMv1; a

version of BOOM whose implementation was

informed using educational technology libraries

and CACTI cache models. BOOMv1 follows the 6-

stage pipeline structure of the MIPS R10K—

fetch, decode/rename, issue/register-read, exe-

cute, memory, and writeback. For design simplic-

ity, all uops are placed into a single unified issue

window. Likewise, all physical registers (both

integer and floating-point registers) are located

in a single unified physical register file. BOOMv1

also utilized a short 2-stage front-end pipeline.

Conditional branch prediction occurs after the

branches have been decoded.

The design of BOOMv1 was partly informed

by using educational technology libraries in

conjunction with synthesis-only tools. BOOMv1

used Cacti5 to analytically model the character-

istics of memories, which is oriented toward

the single-port, cache-sized SRAMs. However,

BOOM makes use of a multitude of smaller,

irregular SRAMs for modules such as branch

predictor (BPD) tables, and address target buf-

fers. Figure 2 lists all of the SRAM macros used

within the BOOM core.

Upon analysis of the timing of BOOMv1 using

TSMC 28-nm HPM, the following critical paths

were identified:

1) issue window select;

2) register rename busy-table read;

3) conditional BPD redirect;

4) register file read.

The last path (register-read) only showed up

as critical during postplace-and-route analysis.

BOOMv2: IMPROVING BOOM’s
QUALITY-OF-RESULTS

BOOMv2 is an update to BOOMv1 based on

information collected through synthesis, place,

and route using a commercial TSMC 28 nm pro-

cess. We performed the design space explora-

tion by using standard single- and dual-ported

memory compilers provided by the foundry, and

by hand-crafting a standard-cell-based multi-

ported register file.

Migration to BOOMv2 included 4948 addi-

tions and 2377 deleted LOC out of the total

16 000 LOC code base. The following sections

describe some of the major changes that com-

prise the BOOMv2 update.

Frontend (Instruction Fetch)

Processor performance is best when the

frontend provides an uninterrupted stream of

instructions. This requires the frontend to utilize

branch prediction techniques to predict which

path it believes the instruction stream will take

Hot Chips 30

54 IEEE Micro

long before the branch can be properly resolved.

A number of different predictors are used, each

trading off accuracy, area, critical path cost, and

pipeline penalty when making a prediction.

The Branch Target Buffer (BTB) maintains a

set of tables mapping from instruction addresses

to branch targets. Some hysteresis bits are used to

help guide the taken/not-taken decision of the

BTB in the case of a tag hit. The BTB is a very

expensive structure—each BTB entry contains a

tag and a target. The BTB also contains a return

address stack for predicting the function returns.

To improve a critical path and increase the

capacity, we replaced BOOMv1’s fully tagged,

fully associative BTB design with a partially

tagged, set-associative BTB.We also implemented

the new BTB using single-ported SRAM macros,

instead of flip-flops.

The Conditional BPD maintains a set of pre-

diction and hysteresis tables to make taken/not-

taken predictions based on a look-up address.

The BPD only makes taken/not-taken

predictions—it therefore relies on some other

agent to provide information on what instruc-

tions are branches and what their targets are.

The BPD can either use the BTB for this informa-

tion or it can wait and decode the instructions

themselves. Because the BPD does not store the

branch targets, it can be much denser and more

accurate than the BTB.

BOOM uses a global history predictor, which

works by tracking the outcome of the last N

branches in the program and hashes this history

with the look-up address to compute an index into

the prediction tables. BOOM’s predictor tables are

implementedusing single-ported SRAMs. Although

many prediction tables are conceptually “tall and

skinny” matrices (thousands of 2- or 4-bit entries),

a generatorwritten in Chisel transforms the predic-

tor tables into a square memory structure to best

match the SRAMsprovidedby amemory compiler.

We found a critical path in BOOMv1 to be the

BPDmaking a prediction and redirecting the fetch

instruction address, as the BPD must first decode

Figure 2. Final BOOM core configuration used in the BROOM chip, as well as the configurations used for each of the

SRAM macros used within the BOOM core.

March/April 2019 55

the newly fetched instructions and compute

potential branch targets before it can redirect

fetch. For BOOMv2, we moved the BPD array

access back a stage to now operate in parallel with

decoding the instructions. The final prediction

and redirection are then performed at the begin-

ning of the following stage (see Figure 2). Moving

the BPD redirection back a cycle also gave us the

freedom to provide a full cycle for the hash index-

ing function, which removes the hashing off the

critical path of Next-PC selection. However, push-

ing back the BPD redirection a stage comes at the

cost of an extra bubble on BPD redirections.

Distributed Issue Windows

The issue window holds all inflight and un-

executed micro-ops (uops). For BOOM, the issue

window is implemented as a collapsing queue to

allow the oldest instructions to be compressed

toward the top. For issue-select, a cascading pri-

ority encoder selects the oldest instruction that

is ready to issue. This path is exacerbated either

by increasing the number of entries or by

increasing the number of issue ports. For

BOOMv1, our synthesizable implementation of a

20-entry issue window with three issue ports

was found to be too aggressive, so we switched

to three distributed issue windows with 16

entries each (separate windows for integer,

memory, and floating-point operations). This

removes issue-select from the critical path while

also increasing the total number of instructions

that can be scheduled. However, to maintain per-

formance of executing two integer ALU

instructions and one memory

instruction per cycle, a com-

mon configuration of BOOM

uses two issue-select ports on

the integer issue window.

Custom Bit-Array Register File

Design

One of the critical compo-

nents of an OoO processor,

and most challenging to syn-

thesize in a standard ASIC

flow, is the multiported regis-

ter file. BOOM’s register file

required both microarchitec-

tural adjustments and a semi-

custom physical design to

achieve the desired performance. The design of

a register file provides many challenges—read-

ing data out of the register file is a critical path,

and routing read data to functional units is a

routing challenge. Both the number of registers

and the number of ports further exacerbate the

challenges of synthesizing the register file.

The first path to improving the register file

design was purely microarchitectural. The issue-

select and register-read stages were split into two

separate stages—each now gets a full cycle to

themselves. The register count is lowered by

splitting up the unified physical register file into

separate floating-point and integer register files.

This split also allows for reducing the read-port

count by moving the three-operand fused-multi-

ply add floating-point unit to the smaller float-

ing-point register file.

The second path to improving the register file

involved physical design. A significant problem in

placing and routing a register file is the issue in

routing many wires to a relatively dense regfile

array. BOOMv2’s 70 entry integer register file of

six read ports and three write ports comes to 4480

bits, each needing 18 wires routed into and out of

it. There is a mismatch between the synthesized

array and the area needed to route all required

wires, resulting in routing congestion.

The register file in this design was imple-

mented by semicustom crafting a register file

bit out of foundry-provided standard cells

(see Figure 3). The Chisel register file was

blackboxed, and a lower level of hierarchy was

Figure 3. Register File Bit manually crafted out of foundry-provided standard cells.

Each read port provides a read-enable bit to signal a tri-state buffer to drive its port’s

read data line. The register file bits are laid out in an array for placement with guidance

to the place tools. The tools are then allowed to automatically route the 18 wires into and

out of each bit block.

Hot Chips 30

56 IEEE Micro

manually described in structural Verilog in

which standard cells were instantiated to con-

struct a bit-cell with its access ports. The bit-

cells were preplaced and the router automati-

cally routed wires correctly to complete the

register file.

Although the register file bits are imple-

mented in a structural Verilog, the decode logic

and peripheral circuitry are implemented in

Chisel. We also implemented a behavioral model

of the custom array in Chisel to verify the decode

logic through RTL simulation and then per-

formed additional verification of the custom bit-

array register file in gate-level simulation.

To support the target cycle time, the regis-

ter file is implemented by using hierarchical

bitlines; the bits are divided into clusters, tris-

tates drive the read ports inside of each clus-

ter, and muxes select the read data across

clusters. This prevents the tristate buffers

from having to drive each read wire across all

70 registers.

As a counterpoint, the smaller floating-point

register file (three read ports, two write ports) is

fully synthesized with no placement guidance.

Aside from the integer register file and the

SRAMs, no other logic in Chisel was implemented

via Verilog blackboxes.

MICROARCHITECTURAL ASSIST
TECHNIQUES

Low-voltage operation improves energy effi-

ciency. Unfortunately, SRAM-based memories

tend to fail first as voltage is lowered, suffering

as much as an order of magnitude (10×) increase

in bit errors for every 50 mV reduction in Vdd.

To enable low-voltage operation, we imple-

mented a number of features that allows the pro-

cessor to tolerate higher error rates. All of these

techniques were implemented at the RTL-level in

Chisel:

1) line disabling (LD);

2) line recycling (LR);

3) dynamic column redundancy (DCR);

4) bit bypass with SRAM (BB-S) for tag

protection.

A built-in self-test checks for erroneous bits

at boot-time after the voltage has been set.

SRAM-based cache lines with bad bits can be dis-

abled (LD). LD is a common technique, but it

reduces capacity. Some of the capacity can be

recovered by using line recycling—three dis-

abled lines can be aggregated via majority-vote

to regain 33% of the disabled line capacity, so

long as each line’s failing bit is in a different loca-

tion. LR was only used to protect the L2 cache

data arrays.

Dynamic column redundancy (DCR) adds an

extra bit to each cache set, and uses a multi-

plexer shift driven by a Redundancy Address to

dynamically avoid the erroneous bit. Finally, the

Bit Bypass with SRAM (BB-S) technique focuses

on protecting erroneous bits in the tag arrays.

Bit bypass uses flip-flops to store the necessary

repair bits to fix a limited number of bad entries.

Our BB-S scheme stores the repair error location

information in SRAM for every tag entry, saving

on area and reducing the BB tag search to find

potential matching entries.

The details of the resilient cache design,

including the measurement results, are dis-

cussed in more detail.6

AGILE DESIGN APPROACH
Figure 4 shows all chip builds and their criti-

cal path lengths performed over a four-month

period as part of the BROOM tapeout effort. This

involved the microarchitectural transformation

of BOOMv1 to BOOMv2, and physical design of

the chip. Data from postsynthesis (“syn”) and

post-place-and-route (“par”) are shown and

include builds performed at both the slow-slow
(SS) typical-typical (TT) corners. For our flow,

the SS corner was 0.81 V at 125 C and the TT cor-

ner was 0.9 V at 25 C. Early builds were only of a

BOOM core plus an L2 cache while later builds

add in the resiliency (“res”) hardware. One

should be careful of drawing conclusions from

this figure; most builds resulted in LVS and DRC

violations and many changes were made

between each build. For example, early builds

explored shrinking structure sizes to find the

most fundamental critical paths while later

builds sought to find the upper limits of struc-

ture sizing before the post-place-and-route criti-

cal path noticeably worsened.

March/April 2019 57

The BROOM tapeout effort started with a pre-

liminary analysis of the BOOM’s quality-of-result

(QoR). This effort was performed using RVT-

based cells and targeting the TT corner. By

changing BOOM’s configurations, we could build

an intuition of what critical paths were truly crit-

ical and arrive at a plan of action for addressing

these paths with a mixture of microarchitectural

changes and physical design effort. For example,

by removing an execution unit or shrinking the

issue window size, we could better understand

the benefits of design changes that would pro-

vide fewer issue ports per issue window. At this

stage, we had concluded that four critical paths

needed to be managed. As previously mentioned

in Section 3, these critical paths were as follows:

1) issue window select;

2) register rename busy-table read;

3) conditional BPD redirect;

4) register file read.

The microarchitectural changes to address

the first two items together took one month. We

also quickly prototyped a new frontend design

that approximated a critical path fix for item three

but was otherwise functionally incorrect. This

frontend prototype helped justify the necessary

design work before we committed to a full rede-

sign of the frontend. We began testing these new

changes in mid-May and labeled the new design

BOOMv2. Figure 4 shows the cluster of activity

that correspond to the BOOMv1 and early

BOOMv2 analysis. After the initial BOOMv2 analy-

sis was performed, anothermonth of design effort

went into BOOM to finish implementing the new

frontend design and to apply changes based on

the initial performance feedback.

Half-way through the design cycle (twomonths

into the effort), as the BOOMv2 RTL effort was

wrapping up, the implementation focus switched

to physical design. Parameters in BOOM, for exam-

ple, the ROB size or the BPD sizing, were reduced

to get a better feel for the fundamental critical

paths that still required work and to find which

modules had the greatest effect on DRC and LVS

errors. At this stage, the clock frequency improved

as the BOOM parameters were changed to instan-

tiate a smaller BOOMcore.

Once the BOOM microarchitecture was set-

tled, we added the resiliency hardware to the

design. Some of these resiliency structures are on

the critical paths of SRAM accesses. Thus, any

chip builds with resiliency hardware enabledmay

generate analysis reports that hide critical paths

Figure 4. All VLSI builds are shown by date. Both slow-slow (SS) and typical-typical (TT) corners are shown. RVT cells

were used initially, but replaced with LVT cells starting in July. In the last month of the implementation effort, we added in

the resiliency hardware (“res”) central to the research thesis of the chip which added to the critical path. While our design

efforts slowly improved the postsynthesis critical paths, post-place-and-route reports showed the clock frequency was less

amenable to our efforts. Not shown is the impact of our design efforts on removing any LVS and DRC errors. Thus, many of

the builds do not represent a manufacturable design.

Hot Chips 30

58 IEEE Micro

that still need attention in the BOOM RTL. To

allow improvements to both the resiliency struc-

tures and to the BOOM core to occur in parallel,

we continued to perform chip builds with and

without the resiliency hardware enabled.

As our attention shifted to physical design

issues, the major issue was the design of a 6-

read, 3-write register file. Semicustom design

was chosen over placement hints to the tools,

for better QoR and faster design convergence.

For the final stage of the implementation

effort, we focused on fixing LVS and DRC errors

while continuing to

make small

improvements to

the critical paths

that showed up in

the place and route

reports. We also

began to increase

structure sizes in

BOOM that were no

longer on the criti-

cal path in the postplace and route reports. For

example, we quadrupled the size of the BPD.

Over the course of our tape-out effort, the

syn results slowly improved. This was aided by

our RTL productivity and our 2–3-h synthesis

runs. However, par results proved more stub-

born and stayed mostly flat. Congested designs

took 16 h to route, giving us less time to iterate,

and changes in placements resulted in unintui-

tive changes in the resulting critical paths. Alas,

most par effort was focused on fixing DRC and

LVS issues and not on fixing timing.

The design was taped out after the four-month

design cycle. As the effort of this design project

was to explore the superscalar processor design

in an ASIC flow, we continued making changes to

the RTL to improve the QoR. Each additional build

continued to provide us new critical paths to

address. The final critical path of the place and

routed design was through the resiliency error

logging code. Our final sign-off at the SS corner

was 1.17 ns after synthesis and 1.68 ns after place-

and-route. The resulting chip was demonstrated

to run up 1.0 GHz at the nominal 0.9 V and down

to 0.47 V at 70 MHz with assist techniques. With-

out assistance, BROOM was able to operate down

to 0.6 V.

The design that has been fabricated is not the

ultimate BOOM design, as both its clock fre-

quency and the IPC performance can be

improved. The measured Coremark performance

was 3.77 CM/MHz with 1.11 IPC, limited by the

branch prediction accuracy and the long load-to-

use delay introduced while fixing timing paths.

While some issues have since been addressed,

such as the addition of load-cache-hit specula-

tion bypassing to improve load-to-use, other

improvements are ongoing. Future VLSI imple-

mentation efforts can continue from a known,

good design point and can build on the early

exploratory builds that were needed for the

BROOM tapeout.

CONCLUSION
BOOM is an open-source OoO superscalar

RISC-V processor that can be used for architec-

ture exploration, and education, but also in prac-

tical industrial designs. Modern OoO processors

rely on a number of memory macros and arrays

of different shapes and sizes, and many of them

appear in the critical path when designed in a

standard ASIC flow. The impact on the actual

critical path is hard to assess by using flip-flop-

based arrays and academic/educational model-

ing tools, because they may either yield physi-

cally unimplementable designs or generate

designs with poor performance and power char-

acteristics. Rearchitecting the design by relying

on a hand-crafted, yet synthesizable register file

array and leveraging hardware generators writ-

ten in Chisel helped us isolate real critical paths

from false ones. This methodology narrows

down the range of arrays that would eventually

have to be handcrafted for a serious production-

quality implementation. Describing hardware

using generators also helped us explore multiple

design points, with the final design choices being

committed to later in the design cycle.

Chisel is a highly expressive language. With a

proper software engineering of the code base,

radical changes to the data-paths can be made

very quickly. However, physical design is often a

stumbling block to agile hardware development.

Small changes could be reasoned about and exe-

cuted swiftly, but larger changes could change

the physical layout of the chip and dramatically

BOOM is an open-

source OoO supersca-

lar RISC-V processor

that can be used for

architecture explora-

tion, and education,

but also in practical

industrial designs.

March/April 2019 59

affect critical paths and the associated costs of

the new design point.

The BOOM core is still being developed and

we can expect further refinements.

& REFERENCES

[1] K. Yeager, “The MIPS R10000 superscalar

microprocessor,” IEEE Micro, vol. 39, no. 2, pp. 28–41,

Apr. 1996.

[2] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE

Micro, vol. 19, no. 2, pp. 24–36, Mar./Apr. 1999.

[3] D. G. Chinnery et al., “Closing the power gap between

asic and custom: An asic perspective,” in Proc. 42nd

Annu. Des. Autom. Conf., 2005, pp. 275–280.

[4] M. Anderson, “A more cerebral cortex,” IEEE

Spectrum, vol. 47, no. 1, pp. 58–63, Jan. 2010.

[5] S. J. Wilton et al., “CACTI: An enhanced cache access

and cycle time model,” IEEE J. Solid-State Circuits,

vol. 31, no. 5, pp. 677–688, May 1996.

[6] P.-F. Chiu et al., “Cache resiliency techniques for low-

voltage RISC-V out-of-order processor in 28 nm

CMOS,” submitted to IEEE Solid-State Circuits Letters,

2019, DOI: 10.1109/LSSC.2019.2900148.

Christopher Celio is a CPU architect at Esperanto

Technologies. He received the Ph.D. degree in

computer science from the University of California,

Berkeley, CA, USA, where he performed research for

this article. Contact him at celio@eecs.berkeley.edu.

Pi-Feng Chiu is a Technologist in Memory and

Networking Fabrics Research at Western Digital. She

received the Ph.D. degree in electrical engineering

from the University of California, Berkeley, CA, USA,

where she performed research for this article. Con-

tact her at pfchiu@eecs.berkeley.edu.

Krste Asanovi�c is a Professor in the Department

of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA, USA. He

received the Ph.D. degree in computer science from

the University of California, Berkeley. He is a Fellow of

IEEE. Contact him at krste@berkeley.edu.

Borivoje Nikoli�c is the National Semiconductor

Distinguished Professor of Engineering, University of

California, Berkeley, CA, USA. He received the Ph.D.

degree in electrical and computer engineering from

theUniversity of California, Davis, CA, USA.He is a Fel-

low of IEEE. Contact him at bora@eecs.berkeley.edu.

David Patterson is the Pardee Professor of Com-

puter Science, Emeritus at the University of California,

Berkeley, CA, USA. He received the Ph.D. degree in

computer science from the University of California, Los

Angeles, CA, USA. He is a Fellow of IEEE. Contact him

at pattrsn@eecs.berkeley.edu.

Hot Chips 30

60 IEEE Micro

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

