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1 Introduction

The primary goal is to minimize regret to a policu class

max
π∈Π

∑
x,r

rπ(x) − r(a)

Is there a reasonable lower bound to the complexity of the learning problem?
COnsider the exponentially large tree, one rewarding leaf such that the algorithm must try all
leaves to find reward. This gives is AH sample complexity. Here the exponential case is slightly
different, in the sense that per-episode we only get to improve the policy that took the action.
Consequence: Reinforcement Learning is a family of problems with core set of challenges but varying
assumptions/settings.
Ex: Consider the two different horizons

� success after H steps

� success γt discounted t steps into the future. (interpretation of discount γ: termination with
probability 1− γ and no discount giving us an approximate H ∼ 1

1−γ

1.1 Challenges

� Credit Assignment

� Exploration

How do you collect the right data you need to learn?

� Generalization

How to generalize from past examples?

� Exploration + Generalization = Contextual Bandits

Repeatedly : See features x, Choose actions a, See reward r

Minimize regret over IID sequence of (x, r)

max
π∈Π

∑
x,r

rπ(x) − ra

– Thompson Sampling (Tho33) : First ”bandit” style algorithms

– EXP4 (ACBFS02): Considers the adversarial settings.

– Epoch Greedy (LZ07) : Polytime given an oracle

– Deployment (LCLS10) : Web recommendation application

� Credit Assignment + Exploration = MDP Learning

– Observe state s, action a, next state s’ transitions

– Build an imperfect model of the world T̂ (s′|s, a), R̂(r|s, a)

– Plan with imperfect model to reach unobserved transitions and maximize rewards.

– Result : Poly(S, A) time complexity
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1.2 Tabular MDP Learning

� E3 (KS02), Rmax (BT02) : Polynomial time learning is possible

� Delayed-Q : (SLW+06), linear in states is possible

� UCRL : (JOA10) near-optimal regret is possible

� UCB-B : (JAZBJ18) model-free near-optimal regret

2 Information Theory

Consider finite-horizon episodic MDP, with horizon H.

� x1 ∼ P1

� for h = 1, ..., H

� observe xh ∈ X

� take action ahinA

� observe reward rh ∈ [0, 1]

� transition to xh+1 ∼ T (·|xh, ah)

Goal: Find the policy π : X → A maximizing the value of a policy V (π) = Eπ[
∑H

h=1 rh]
PAC Learning : Output π̂ with V (π̂) ≥ maxπ V (π) − ε. Minimize number of episodes required.
Denote by V ∗, π∗ the optimal value function and the optimal policy.
Regret: Minimize T · V ∗ - (Learner Reward)

2.1 Solution Concepts

With large state-space, our search space X → A is huge. To generalize, we restrict the space in
which we search for solutions by one of the following:

� Policy Search : Restricting the set of possible solution candidates to Π ⊂ {X → A}.
multiclass linear classifiers : x 7→ arg maxa θ

T
a x

� Value-based: Approximate action-value Q ∈ Q ⊂ {X ×A → R}
every Q-function encodes a policy, πQ : x 7→ arg maxaQ(x, a)

Q∗h(x, a) := E
[ H∑
h′=h

rh′ |xh = x, ah = a, ah+1:H ∼ π∗
]

:= E
[
rh + max

a′
Q′h+1(x′, a′)|xh = x, ah = a

]
︸ ︷︷ ︸

Bellman’s Update

� Model based: Approximate model M in M.
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2.2 Statistical goal

We want to design algorithms which recover π̂, where V (π̂) ≥ maxπ∈Π V (π) − ε while minimizing
number of episodes required. Here Π is the restricted class of induced policies.

Goal : poly(|A|, H, comp(F), 1/ε), where

� comp(F) : statistical complexity of policy class (as in supervised learning)

comp(F) : log |F| if finite classes

comp(F) : d for d-dimensional linear predictors

�
1
ε is the accuracy parameter.

Note : The bounds are independent of |X | =⇒ suggests generalization across states

2.3 RL is not like supervised learning

Consider the problem : repeat n samples (s, a) ∼ D, which reveals y = Q∗(s, a) (as in contextual
bandits) . Given a function class F , we consider searching for the best approximation of the optimal
Q-function under MSE loss.

solveQ̂ = arg min
Q∈F

∑
s,a

(Q(si, ai)− yi)2

From standard supervised learning bounds, we know

ED
[
(Q̂(s, a)−Q∗(s, a))2

]
≤ comp(F)

n

What about policy performance?
Particularly, the greedy encoded policy π̂ : s 7→ arg maxa Q̂(s, a). We cannot comment much on
the quality of the policy without additional knowledege. Particularly, if ∃π̂(x) ∈ A, not supported
by D =⇒ we might have Q̂(x, π̂(x)) >> Q∗(x, π̂(x))

2.4 ”Distribution Shift”

States where we evaluate π̂ would be different from the distribution we train the Q function. This
requires out of distribution generalization. Conceptual ways to address this

� Assumptions about environment : not many data-distributions available. so we collect data
from all these candidates, we shouldn’t have support issues.

� Assumption about F : OOD generalization by ”extrapolation”

� combination of both.
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Figure 1: The landscape of tracatability for reinforcement learning algorithms.(AKL20)

2.4.1 Contextual Bandits

Unit time horizon, with finite actions A , reward function ∈ F such that f∗(x, a) = E[r|x, a] Collect
n samples, (x, a, r) with a ∼ Unif [A]. We try to recover the reward function by solving the least
squares problem

f̂ = arg min
f∈F

(f(xi, ai)− ri)2

define π̂(x) = arg maxa f̂(x, a)

Proposition 1. V (π∗)− V (π̂) ≤
√

comp(F)
n · |A|.

Notes : Here |A| is the effective number of distributions in the problem. Each policy induces
different state-action distributions, but all these distributions are covered upto multiplicative factor
|A| by a uniform distribution over actions. In the multi-step reinforcement learning, this implies
|A|H which is exponential in H (not good enough).

2.4.2 Linear Bandits

Assume time horizon is 1, fixed starting state, well-specified linear reward < θ∗, φ(a) >= E[r|a]
Solution : Collect n samples on an approximate basis (related : (AK08; HKM14))

Proposition 2. V (π∗)− V (π̂) ≤
√

poly(d)
n , where comp(F) = d and independent of A.

Intuition : Linear function class allows extrapolating predictions from basis to entire space.

2.5 The Landscape of tractability in RL

2.5.1 RL with Linear functions

Value based RL where F is linear functions of known feature map φ(x, a). We note that well
specified linear function class direcly support extrapolation.

Question 1. Is Q∗ ∈ F sufficient for multi-step reinforcement learning?

� Evidence no: insufficient in batch setting(WFK20), insufficient with many actions(WAS20)
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� lesson : error amplification might be troubleson, linear extrapolation isn’t the only issue.

Low rank MDP (or linear MDP)

� Rewards and transitions are linear in features. T (x′|x, a) = φ(x, a)µ(x′)

� already implies that Q∗ ∈ F and enables credit assignment.

Algorithm 1 LSVI-UCB

Optimistic dynamic programming

θ̂h = arg min
θ

∑(
〈θ, φ(xh, ah)〉︸ ︷︷ ︸
linear predictor

− rh −max
a′

Q̂h+1(xh+1, a
′)︸ ︷︷ ︸

regression target

)2

Define Q̂h(x, a) = 〈θ̂, φ(x, a)〉+ bonush(x, a)
Collect data with greedy policy with Q1, ..., QH

Theorem 1. (JYWJ20) Õ(
√
d3H3T ) regret in T rounds in the low-rank MDP

LSVI-UCB Analysis

� Optimistic regret decomposition : If Q̂ ≥ Q∗ pointwise (i.e optimistic) then

Q∗h(x, π∗(x))−Q∗h(x, π̂(x))︸ ︷︷ ︸
true value - optimal lookahead

≤ Q̂h(x, π̂(x))−Q∗h(x, π̂(x))︸ ︷︷ ︸
depends only on π̂

≤ bh(x, π̂(x)) + eh(x, π̂(x)) + E[Q̂h+1(x′, π̂(x′))−Q∗h+1(x′, π∗(x′))|x, π̂(x)]

� if eh ≤ bh pointwise then

Regret ≤ 2 ·
∑
h

bonush(xh, π̂(xh))

� Ensuring optimism : standard well-specified linear least-squares analysis (almost)

� Potential function : bonuses cannot be large forever

bonus2 = φTΣ−1φ,Σ← Σ + φφT

Open Problem : Computationally efficient approach to get optimal rate in this setting?

2.5.2 Eluder dimension

Combinatorial parameter that captures worst-case extrapolation
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Definition 1 (Eluder dimension): Point z in ε-dependent on z1, ..., zn if predictions on z1, ..., zn
constrain prediciont on z:

∀f, f ′ :

√√√√ n∑
i=1

(f(zi)− f ′(zi))2 ≤ ε =⇒ |f(z)− f ′(z)| ≤

Eluder dimension dim(F , ε) is the length of the longest independent sequence.

� Potential function : If bonus is large the point must be dependent on few disjoint subse-
quences.

� Can give
√
T regret rates for bandits (RVR13)

� RL requires more assumptions (WSY20)

Discussion

� When is the eluder dimension small?

Linear function : O(d)

Generalized linear functions : f(x) 7→ σ(〈θ, x〉), smooth σ : O(d)

ReLU : f(x) 7→ max(0, 〈θ, x〉) : exp(d) (Li, Kamath)

Open Problem : What non-linear settings admit small Eluder dimension?

2.5.3 Bellman Rank in MDPs

In the ”low-rank” setting, we assume that dynamics T (s′|s, a) admits a low-rank factorization in
terms of functions φ, µ. In such settings, for any π and any g : X 7→ R

Eπg(xh) = Eπ
∫
T (xh|xh−1, π(xh−1)g(xh)d(xh)

= 〈Eπφ(xh−1, π(xh−1)),

∫
µ(xh)g(xh)d(xh)〉

All expectations live in a d-dimensional space =⇒ ”a few” distributions

Definition 2 (Average Bellman error): Expected value of residual between f’s prediction at
h,, h+ 1 on data distribution of π.

Eh(π, f) := E
[
f(xh, ah)− rh − f(xh+1, ah+1)|xh ∼p i, ah ∼ πf

]
where πf is the greedy policy encoded by value function f.

In low rank MDP Eh(π, f) = 〈α(π), β(f)〉
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Definition 3 (Bellman rank): maxh rank(Eh) where Eh is a matrix using π ∈ Π, f ∈ F

Sufficiency of Bellman Rank

� Assune that Q∗ ∈ F (realizability), Bellman rank ≤M .

Theorem 2. (JKA+17) OLIVE learns an ε sub-optimal policy with sample complexity

Õ(M2|A|H3comp(F)/ε2)

� with alternative definition, we can eliminate dependence on |A|

�

√
T -regret rate is achievable (DPWZ19)

Algorithm 2 OLIVE

Optimistic V ∗ : Pick surviving f̂ ∈ F to maximize E
[
f(x1, πf (x1))

]
= V f (πf )

Actual Value : Collect trajectories with πf̂ , estimate V (πf̂ )

Check guess : Output πf̂ if V (πf̂ ) ∼ V f̂ (πf̂ )

Eliminate all f for which Eh(πf̂ , f) 6= 0 at some h

� First observation : Each iteration requires poly(|A|, H, comp(F)/ε) samples

Key issue : How many iterations?

OLIVE Analysis

Recall Eh(π, f) := E
[
f(xh, ah)− rh − f(xh+1, ah+1)|xh ∼p i, ah ∼ πf

]
� Claim 1: Q∗ is never eliminated, since E(π,Q∗) = 0

Q∗ satisfies Bellman optimality equation : Q∗(x, a) = E
[
r +Q∗(x′, π(x′))|x, a

]
Claim 1 + Optimism =⇒ near-optimality upon termation

� Claim 2: Telescoping performance decomposition V f (πf )− V (πf ) =
∑H

h=1 Eh(πf , f)

=⇒ f̂ eliminated

� Claim 3 : Iterations ≤MH

Examples

� block MDP

Discrete hidden state space

Observations from emission distributions

Roll-in policy induces distribution over hidden state

Eh(π, f) :=
∑
s

P π(s)
[
f(x, a)− r − f(x′, πf (x′))|x ∼ s, a ∼ πf

]
Bellman rank = # of hidden states, for any function class F
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� low rank MDP

Eh(π, f) = 〈Eπφ(xh−1, π(xh−1)),
∫
µ(xh)g(xh)d(xh)〉

Bellman rank = rank of transiiton operator, for any function class F
=⇒ low rank MDP with ”feature selection” or unknown φ is statistically tractable

� Linear Completeness

Assumption : Bellman backup of linear function is linear in current features

For any θ,∃w such that

(T θ)(x, a)︸ ︷︷ ︸
Bellman backup operator

:= E[r + max
a′
〈θ, φ(x′, a′)〉|x, a] = 〈w, φ(x, a)〉

Standard assumption in analysis of dynamic programming algorithms

Eh(π, θ) = Eπ
[
〈θ, φ(x, a)〉 − r −max

a′
〈θ, φ(x′, a′)〉

]
= Eπ

[
〈θ − w, φ(x, a)〉

]
= 〈θ − w,Eπ〈phi(x, a)〉〉 (Uses alternative definition)

Exploits structure of function class F , not environment dynamics

More like extrapolation argument for linear classes (ZLKB20)

Summary : Bellman rank captures structure of environment and F
Summary of value-based methods

� Linear methods

Positive results require more than realizability, e.g completeness conditions

Current thinking is that realizability alone insufficient

� Nonlinear methods require some dynamics assumptions for low Bellman rank

� Two conceptual approaches for handling distribution shift

Do neural networks (or other nonlinear classes) enable extrapolation?

Optimal rates for extrapolation approaches?

2.5.4 Factored MDP

� State is a d-dimensional discrete vector. Transition operator factorizes

T (x′|x, a) = Πd
i=1Ti(x

′[i]|x[pa(i)], a)

� Binary state vars : unfactored 22d|A| parameters, factored 2L+1d|A| parameters, L = maxi |pa(i)|

� Statistics : Õ(
√

#{params} · T ) regret with known parent structure. Can also learn struc-
ture.
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� Computation

Planning with a known model is computationally hard (what combinatorial models are
computationally tractable?)

Optimal policy cannot be represented by a poly-sized circuit

� Statistical separation:

(SJK+19) For value-based methods, realizability alone is insufficient

A complexity measure

� For model based RL, assume calss M of candidate duynamics model, and T ∈M

� Witness rank = maxh rank(Wh)

Wh(π,M) = E[||M(·|xh, ah)− T (·|xh, ah)||TV |xh ∼ π, ah ∼ πM ]

� Witness rank ≤ Bellman rank (for F = plan(M))

Theorem 3. (SJK+19) Sample complexity poly(witness rank, |A|, H, comp(M)) achievable

� Factored MDP : witness rank ≤ #params

Model-based needs strong realizability conditions, but can succeed where valu-based fails.

3 Optimization

3.1 RL as optimization

Consider the discounted MDP (X ,A, R, T, γ), where this is infinite-horizon MDP. Since we care
about near-term actions more, γ ∈ (0, 1), we get that effective horizon H = 1

1−γ . Setting up the
optimization objective, we consider the PAC goal for some policy πθ

max
θ
V (πθ) = Eπθ

[ ∞∑
t

γtr(xt, at)
]

We want πθ which gives large-expected discounted reward. We consider key questions:

� What is the optimization landscape?

� Role of eplorationa and parameterization?

� Convergence and sample complexity of (stochastic) gradient methods?
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3.1.1 Stochastic policies

We consider policies πθ : X 7→ ∆(A), which are usually smooth in the parameters and hence
amenable to gradient based optimization. For example, consider softmax form : πθ(a|x) ∝ efθ(x,a)

where fθ is some function of the state, action. Based on the choice of f we get

� tabular MDP : with small A,S, we consider fθ(x, a) : θx,a which is single parameter per (x,
a). This is fully expressible class of policies (i.e any policy can be represented using this
parametrization).

� Linear : fθ(x, a) = θTφ(x, a)

� Neural : fθ(x, a) = NN(x, a; θ)

� Gaussian : fθ(x, a) = ||φ(x, a)− gθ(x, a)||2 (often for control settings)

3.1.2 State distributions and value functions

Define the state distribution induced by a policy π to get

dπx0(x) = (1− γ)
∞∑
t=0

γtPrπ(xt = x|x0)

where x0 is some initial state. We use notation dπµ when x0 ∼ µ. Similarly we define dπx0,a0(x, a)
with dπx0(x, a) when a0 ∼ π(·|a0)
The value function of π is the cumulative reward when actions are drawn according to π:

V π(x0) =
1

1− γ
Ex,a∼dπx0 [r(x, a)]

Qπ(x, a) = E[r(x, a) + γV π(x′)|x, a]

3.2 Policy gradient methods

We have the optimization objective for RL as maxθ V
πθ(x0). We want to use ∇θV (t)(x0) for first-

order updates on value of policy as

θt+1 = θt + η∇θV (t)(x0) (where V t = V π|π = πθt)

Theorem 4. ((Wil92; SMSM99)) The gradient of value function w.r.t policy parameters

∇θV πθ(x0) = E(x,a)∼dπθx0

[
∇θlogπθ(a|x)︸ ︷︷ ︸

closed form

Qπθ(x, a)︸ ︷︷ ︸
unbiased estimator Q̂

]

Here Q̂(xi, ai) =
∑∞

t=i r(si, ai) is unbiased and estimated using trajectories from πθ. This estimate
can be used to run stochastic gradient ascent (REINFORCE, (Wil92)).
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3.2.1 History

� First algorithm: REINFORCE(Wil92), actor-critic (KT00), function approx (SMSM99)

� Empirical progress : improvement from optimization (i) trust region (SLA+15; SWD+17) (ii)
variance reduction (iii) entropy regularized SAC (HZAL18)

� Theoretical basis : convergence to stationary points under smoothness (SMSM99; RM51)

� policy improvement : we want a policy π ∈ Π which is close/better than π0 without constraints
like global optimality (KL02)

� global optimality : Conversative policy iteration (CPI) (KL02) describes an algorithm which
under certain conditions of (i) exploration (ii) parameterization, we get global optima.

3.2.2 Optimization Landscape

We know there exists MDP such that V πθ(x0) is non-concave in θ (i.e we’re not guaranteed unique
global optimum.).

Theorem 5. (AKLM19) There is an MDP where O(H)-order gradients have norm at most e−H

and where the corresponding policy gets e−H expected reward.

The result suggests that for such MDPs, there are policies which reach the final state with expo-
nentially small probability. If we look at the gradients, they are small (irrespective of the order).
This implies, that any gradient method which minimized first/higher order derivative, it will not
necessarily find good policies. This is not a statistical problem, since the exact gradients here are
extremely small and we cannot fix this with data.

3.2.3 Optimization challenges in RL

� Supervised learning : gradient descent ”generally works?” in practice, not sensitive to initial-
ization. saddle points not necessarily a problem

� Reinforcement learning : Many RL problems have ”very flat” regions. Small gradients can
necessarily be due to poor exploration.

How to fix?

� Favorable state distributions (given, or can we construct?)

� Favorable reward structures : bring the reward closer to the agent (imitaion learning, reward
shaping?)

3.2.4 The initial distribution

The objective is to understand what constitutes favorable state distributions, how to construct
them. Optimization problem maxθ V

πθ(x0). For algorithm, se assume state x0 ∼ µ, e.g. uniform
over states in chain. This allows us to write (i) gradients (ii) expectations, state distributions of
policy as a function of µ
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� COnvergence and asample complexity of (stochastic) gradient methods?

� Role of exploration and parameterization?

� How to construct favorable initial distributions algorithmically?

3.2.5 Convergence properties in tabular setting

Primarily to understand in a simpler setting. Here we consider πθ(a|x) ∝ eθx,a , with the vanilla
policy gradient algorithm : θt+1 = θt + η∇θV (t)(µ).

Theorem 6. (AKLM19) Suppose µ(x) ≥ 0∀x ∈ X and stepsize η ≤ (1−γ)3

8 , for all x, V (t)(x)→ V ∗

as t→∞ (under stronger assumptions we can give rates (MJTS20))

Intuition : We start with some non-zero distribution over all states, actions (x, a). So we try out
everything, and hopefully find something globally optimum. We are converging to a dertrministic
policy, which means several action probabilities become 0. Sice several entries being 0, we get a
competition between optimization and exploration. As we get closer to an optimum, the exploration
becomes worse and worse. Conjecture : Convergence is exponentially slow S,Ain the worst case.
Intuitively, we are in this ill-conditioned case, parameters near optimal solution where the landscape
is flat, gradient is very small.

3.2.6 Natural Policy Gradient

Introduce preconditioning for improving the optimization landscape. (use a preconditioning ma-
trix) (Kak01) introduced Natural Policy Gradient. Uses a Fisher information based preconditioner.
Inspiration for practical approaches like TRPO/PPO. Simple form for tabular softmax parameter-
ization

θt+1 = θt +
η

1− γ
Q(t), and πt+1(a|x) ∝ πt(a|x)eηQ

(t)

This looks like multiplicative weights, which has good theory in TCS. (we have non-concave maxi-
mization objective)

Theorem 7. (AKLM19) The initial state distribution doesn’t have to be exploratory in the tabular
setting. Using µ = δx0 , θ0 = 0, setting η = (1− γ)2log|A|, for all t we have

V ∗(x0)− V (t)(x0) ≤ 2

(1− γ)2t

� dimension free convergence, no dependence on |X |, |A|

� no reliance on state coverage under µ

� some related work : (EDKM09; NJG17; GSP19; SEM20; AYBB+19)

� assumes exact gradient (no sampling), or know Q

� still require exploratory µ for sample complexity (if we have samples, the noise does interact
with how exploratory µ)
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Proof ideas

� Performance difference lemma (KL02)

V π(x0)− V π′(x0) =
1

1− γ
Ex∼dπx0Ea∼π(·|x)

[
Qπ
′
(x, a)− V π′(x)

]
Consider π = π∗, and π′ = π(t), we get something like regret. The multiplicative updates are
akin to fixing π∗, and updating π(t+1)

� Linearize regret using above lemma, instead of concavity

� Yields 1√
t

rate almost immediately by multiplicative weight update

� Lower bound per-step improvement based on smoothness of objective for fast rate (regret 1
t )

3.2.7 Linear parameterization

Consider features φ(x, a), with linear softmax policies πθ(a|x) ∝ eθ
Tφ(x,a). Can we compete with

the best linear policy, asssume ||θ|| ≤ 1, ||φ(x, a) ≤ 1||?

θ∗ = arg max
θ

V πθ(x0)

NPG with linear parametrization, where the updates become

θt+1 = θt + ηwt

πt+1(a|x) ∝ πt(a|x)eηw
t·φ(x,a)

The ideal w that NPG prefers, is solution to least squares problem defined as

wt∗ = arg min
w

E(x,a)∼d(t)
[
(Q(t)(x, a)− w · φ(x, a))2

]
︸ ︷︷ ︸

L(w;θt,d(t))

Using wt∗ is akin to running NPG. If we use some other wt, we get some errror.
NPG with general parameterization

θt+1 = θt + ηwt

πθ(a|x) ∝ efθ(x,a)

wt∗ = arg min
w

E(x,a)∼d(t)
[
(Q(t)(x, a)− w · ∇θfθt(x, a))2

]
where the gradients of logπθ provides features for approximating values.
Convergence in linear case

� Estimation error: How well does wt approximate wt∗

E
[
L(wt; θt, d(t))− L(wt∗; θ

t, d(t))
]
≤ εstat
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� Transfer error under d*

E
[
L(wt∗; θ

t, d∗)
]
≤ εbias

� Relative condition number : This condition holds if µ has full-rank covariance.

wTΣd∗w

wTΣµw
≤ κ ≤ ∞ where, Σd = Ex,a∼d

[
φ(x, a)φ(x, a)T

]
Theorem 8. (AKLM19) with θ0 = 0 and η =

√
2log|A|/T we have

V ∗(x0)−max
t
V (t)(x0) ≤

√
2log|A|

(1− γ)2T︸ ︷︷ ︸
(i)

+

√
4|A|κεstat
(1− γ)3︸ ︷︷ ︸

(ii)

+

√
4|A|εbias
(1− γ)2︸ ︷︷ ︸

(iii)

� (i) we get a slower 1√
T

rate as compared to tabular case (getting 1
T needs much stronger

assumption)

� (ii) when εstat > 0, depends on the initial exploration distribution through κ. show that
irrespective of state, action size, as long as we embed in Rd, ∃µ s.t κ ≤ d. Finally, to fit wt

with N samples, we can achieve εstat = O( 1√
N

)

� (iii) note εbias is 0 if Q(t) = wt∗ · φ(x, a)∀x, a (as in tabular, low-rank MDP).

Observations :

� with exact gradients, good representaitons, setting (ii) and (iii) to 0, we recover bounds√
2logA

(1−γ)2T
which are similar to the tabular bounds.

� εbias gives a measure for quality of representations in capturing value of policy. this becomes
increasingly involved in non-linear cases e.g NNs

3.2.8 Understanding the transfer errors

For relating error across two fitting distributions in regression like problems, one notion can be
point-wise likelihood ratio reweighting. Especially in the batch setting with distribution µ(x, a)

L(wt∗; θt, d
∗) ≤ max

x,a

d∗(x, a)

d(t)(x, a)
L(wt∗; θt, d

(t))

≤ max
x,a

d∗(x, a)

(1− γ)µ(x, a)
L(wt∗; θt, d

(t))

Weakest conditions for RL with fixed µ (Sch14). The type dependence on density ratios in pol-
icy gradient methods is the nicest among other algorithms. First order optimization with small
step sizies, updates the policy incrementally which seems to make it robust to modelling errors.
Whenever the policy changes, we collect data which gives a good idea of the current state action
distribution.

Question 2. Conditions or assumptions to control the transfer error?

15



3.3 Adding exploration

Under policies with linear parameterizations, we wan t to find exploratory distributions which have
well conditioned feature covariance matrices with low relative condition number.
Key Idea : Find policies exploring different and use their mixture (say uniformly). How to identify
such policies?

3.3.1 PC-PG

Algorithm 3 Policy-Cover Policy-Gradient

Policy cover : Set of exploratory policies discovered so far
for i do = 1, 2, ...

Πi ← current policy cover, ρi ← Unif [Πi]
compute Σρi , if φ(x, a) : φTΣ−1φ ≤ κ (it has good coverage)

mark x, a as known
Define bonus bi(x, a) = 1((x, a) is known)
πi+1 = NPG(ρi, r + bi)
Update cover : Πi+1 = Πi ∪ πi+1

end for

Theory for Low-Rank MDPs

� Let π∗ = arg maxπ∈Πlinear
V π(s0)

� Let d̃ be the intrinsic dimension of the low-rank MDP (O(d) for finite dim)

Theorem 9. (AHKS20) For all low-rank MDPs in φ, PC-PG uses samples, computation
poly(d̃, 1

ε ),
1

1−γ ,W, ln
1
δ ) and w.p ≥ 1− δ outputs policy π satisfying

V π(s0) ≥ V π∗(s0)− ε

� Extends beyond the low-rank MDPs under transfer error conditions (CYJW19; ESRM20)

� Practically the algorithm is fairly modular. replace NPG with PPO, linear with neural
policies.

Comparison with LSVI-UCB

� PC-PG handles infinite dimension.

� LSVI-UCB better data reuse, better sample complexity

Ex∼d∗ max
a

εmisspec(x, a) versus max
x,a

εmisspec(x, a)

3.4 Open questions

3.4.1 Better algorithms

� Can we quantify the benefits of optimization tricks? (includes variance reduction, accelera-
tion, adaptive learnign rates, ...)

� Connections with online learing. Better potential functions?
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3.4.2 Misspecified settings

� PG methods seem most stable to modeling assumption failures. (e.g transfer error)

� Isolated examples :

� Limits? Alternate notions of misspecification? (e.g. Q∗ preserving aggregations)

� Is there fundamental tradeoff between robustness-efficiency? (e.g. with data reuse, stepsizes)

3.4.3 Exploration and Improvement

Always compete with a reference policy π0, globally opt under assumptions. Suppose you need f(ε)
samples to find globally ε-optimal policy when φ(x, a) induces a linear MDP. How to find a policy
π using f(ε) samples, such that:

� either MDP is linear in φ and π is globally optimal, or

� V (π) ≥ V (π0)− ε∗ (assuming π0 ∈ Π, or we need other approximation terms)

4 Latent State Discovery

Consider MDP Learning + Generalization. Discover latent states to solve reinforcement learning.
How do we use an oracle to efficiently solve an MDP?

4.1 The Block MDP Problem (DKJ+19)

Definition 4 (Block Markov Decision Process): States S, Actions A , Initial States P (s),
Transition Matrix T (s′|s, a), reward R(r|s, a), Horizon H, Observations q(x|s) with x disjoint
over s (i.e the observation can decode the state through some unknown function f)

� Assumption : Realizable supervised policy oracle

For each cost sensitive classification learning problem D(x,−→c ) a policy class Π contains
the optimal solutoin, and an oracle returns in unit time (−→c is cost for all actions (so we’re in
SL regime, not RL))

arg min
π∈Π

∑
(x,−→c )∈S

cπ(x)

4.1.1 Somethings that don’t work in general

� Bottleneck autoencoder and declare the bottleneck a state (THF+16)

Encoding ”quality” is maximized by predicting pure noise bit.

� Inverse Kinematics : Predict previous action through bottleneck from previous and current
observation (PAED17)

Yet there exists a policy which can reach always

� Bisimulation (GDG03; LWL06): Alias ”states” with same dynamics and rewards. Statistically
intractable to learn (MJTS20)
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4.2 HOMER (MHKL19)

Algorithm 4 Homer

for e doach horizon h = 1 to H
Explore : Several times, fr wach latent state s reachable with h− 1 steps, Use homing policy

πs to find observation x generated by latent state s. Use random action a, make next observation
x′

Abstract : Lern to predict whether x′ swapped

(p, φ) = arg min
p,φ

Ê(x,a,x′),y

(
p(φ(x), a, φ(x′))− y

)2

Home : For each value of bottleneck s = φ(x′), learn homing policy πs maximizing chance of
s given homing policies
end for
return Homing Policies

� Homer results

Theorem 10. ∀ Block MDPs where every state can be visited with high probability, if learning
oracles for Π, (p, φ) work with probability 1− δ can learn ε optimal policy with
poly(|A|, |S|, log|F|, log|Pi|, log 1

δ , log
1
ε , H) samples.

Rich observations + deep learning =⇒ covering set of policies

covering set of policies =⇒ efficiently learn to optimize any reward function

� Why does Homer work?

Lemma 1. If x′1, x
′
2 Backwards Kinematic Inseparable then ∀π1, π2

Pπ1 (x′1)

Pπ2 (x′1)
=

Pπ1 (x′2)

Pπ2 (x′2)

Definition 5 (Backward Kinematic Inseparability): x′1, x
′
2 are backwards KI if ∀u

T (x′1|x,a)u(x,a)∑
x̃,ã T (x′1|x̃,ã)u(x̃,ã)

=
T (x′2|x,a)u(x,a)∑
x̃,ã T (x′2|x̃,ã)u(x̃,ã)

4.3 Latent State Decoding

Algorithm 5 general algorithm for latent state decoding

for episodes do
Explore : easily explored things
Abstract : latent state space
Cover : set of hard-to-reach things

end for
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4.3.1 Learning latent low rank MDP? (AKKS20)

Algorithm 6 FLAMBE

for each horizon h=1 to H do
Explore : Several times, for each covering policy π execute for h-1 steps to observe x, then

act randomly for a and observe x′

Abstract : maximize
∑

x,a,x′ logφ(x, a)µ(x′)
Cover : maximize range of φ(x, a) when finding new covering policies

end for

Theorem 11. ∀ latent low rank MDPs, if learning oracles work, exploration succeeds
after poly(|A|, d, log|φ|, log|M |, log 1

δ
1
εH) samples.

4.3.2 Learning linear dynamics? (MFS+20)

If it’s possible to actually learn with liocal linear dynamics. Consider the cartpole problme wher
the dynamics is s′ = As+Ba+ ε. We want to solve this task based only the rich observations like
images. So what should we do? In (MFS+20) the authors study recovering linear dynamics from
non-linear observations.

Algorithm 7 RichID-CE

Explore Many times, act k times a ∼ N(0, 1) and observe x
Abstract find ĥ = arg minh

∑
a(h(x)− a)2, f̂(x) = Êĥ(−→a ĥ(−→a T ĥ(x))

SystemID :Â, B̂, . . .
Improve optimal policy decoder

Theorem 12. ∀ rich observation linear dynamics MDPs, if learning oracles work, exploration
succeeds after poly(ds, da, log|F|, log 1

δ ,
1
ε , H) samples

5 Open Problems

5.1 Structural P1: Best definiton of latent state

Desirable properties

� Tractable to learn

� Parsimonius : The state abstraction should be as small as possible for tractability

� Sufficient for reward-optimizing policy

5.2 Structural P2: Other state-making prediction problems

� Low rank outcomes >general contrastive
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� Inverse Kinematics?

Works for linear dynamics, not MDPs.

� Is there a canonical way to make state from prediction problems?

5.3 Representational P1 : Tractably discover latent states

� Vast gap : tractable-in-theory and tractable-in-practice

5.4 Representational P2 : Other settings

� Linear dynamics + piecewise linear boundary conditions?

� Local linear dynamics?

� More general combinatorial state?

References

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The non-
stochastic multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[AHKS20] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover
directed exploration for provable policy gradient learning. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[AK08] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive
routing. Journal of Computer and System Sciences, 74(1):97–114, 2008.

[AKKS20] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Struc-
tural complexity and representation learning of low rank mdps. Advances in Neural
Information Processing Systems, 33, 2020.

[AKL20] Alekh Agarwal, Akshay Krishnamurthy, and John Langford. Tutorial on theoretical
foundations of reinforcement learning. Foundations of Computer Science, 2020.

[AKLM19] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory
of policy gradient methods: Optimality, approximation, and distribution shift. arXiv
preprint arXiv:1908.00261, 2019.

[AYBB+19] Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari,
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