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Abstract 2 The “Interested Reader” Model

We propose a Markov chain model similar in spirit to the
“random surfer” model ofPageet al, 1994.1 This descrip-

tion is motivated in the context of text categorization, the
model depends only on notions of pairwise data similarity
and is completely general. In the model, there is a collactio

of documents, each of which has some (possibly unknown)
topic. A reader begins with some document of interest and
continues to read successive documents. When she chooses
the next documentto read, she tries to read another document
on the same topic, and hence will prefer other documents
which are similar to her current document. Some mapping
between similarities and transition probabilities musthe-

sen; we describe a specific choice in Section 3.

These transition probabilities define a Markov chain
among the documents in the collection. If there exist dis-
tinct topic areas in the document set (or, generally, ifgher
are clusters in the data), this Markov chain will be composed
of subsets that have high intra-set transition probagdjtand
1 Introduction low inter-se_t transition probabil_ities. We will refer toebe _

subsets asliques Each of the cliques corresponds to a topic
Spectral algorithms use information contained in the eigenin the text clustering problem.
vectors of a data affinity (i.e., item-item similarity) miatr Of course, the natural clusters in the data need not be per-
to detect structure. Such an approach has proven effectifectly compatible with document labels, and we have said
on many tasks, including information retrief@eerwester nothing about the use of supervision information. In Sec-
etal, 1994, web searciiPageet al, 1998; Kleinberg, 1998  tion 4, we use supervision to override the similarity-based
image segmentatidiMeila and Shi, 2000 word class detec-  transition probilities. For example, we will disallow trition
tion [Brew and Schulte im Walde, 20pand data clustering between two documents which are known to be differently-
[Ng et al, 2004. But while spectral algorithms have been labeled, regardless of their pairwise similarity.
very useful in unsupervised learning (clustering), littlerk
has been done in developing spectral algorithms for super3 Spectral Clustering Algorithms
vised learning (classification). ) ) ) ] o

In this work, we consider the adaptation of spectral cluster!n this section, we discuss the process of turningiimity
ing methods to classification. We first present a method fofatrix Aof pairwise document similarities into a normalized
combining item similarities with supervision informatiom ~ Markov transition procesN. The eigenvectors dfl are then
produce a Markov transition process between data items. Wesed to detect blocks or or near-blocksNpwhich will cor-
call this Markov process the “interested reader” model by ap'eSPond to clusters of the data.
peal to the special case of text clustering/classificatoor ——
?"go”t.hm mcqrpora_ltes supervisory !nfqrmatlon Whenet/er two models are used; the random surfer model is used for tbte fir
is available, either in the _f(_)rm of pa'rw'se. ConStra.'nt.Saw | left eigenvector of the transition matrix, which indicatbs relative
beled data (or both). Empirically, our algorithm achieviggh  3mount of time the process spends at each data item. On te oth
accuracy when supplied either small amounts of labeled datgand, we are interested in right eigenvectors of our tramsinatrix,
(Section 4) or small numbers of pairwise constraints (Secwhich more straightforwardly relate to (near-)block stue in the
tion 5). transition matrix.

We present a simple, easily implemented spectral
learning algorithm which applies equally whether
we have no supervisory information, pairwise link
constraints, or labeled examples. In the unsuper-
vised case, it performs consistently with other spec-
tral clustering algorithms. In the supervised case,
our approach achieves high accuracy on the cate-
gorization of thousands of documents given only
a few dozen labeled training documents for the 20
Newsgroups data set. Furthermore, its classifica-
tion accuracy increases with the addition of unla-
beled documents, demonstrating effective use of
unlabeled data. By using normalized affinity ma-
trices which are both symmetric and stochastic, we
also obtain both a probabilistic interpretation of our
method and certain guarantees of performance.

INote that there is an important difference between the waseth



Form spectral representation:

1. Given dateB, form the affinity matrixA € R™" = f(B).

2. DefineD to be the diagonal matrix witDj; = Zj Ajj .

3. Normalize:N = (A+ dmaxl — D)/dmax-

4. Findxq, ..., X, thek largest eigenvectors df and form the
matrix X = [xq, . .., Xc] € RMk-1,

5. Normalize the rows oK to be unit length.

For clustering:

6. Treating each row oX as a point iMRK, cluster intok clusters
using k-means or any other sensible clustering algorithm.

7. Assign the original poink; to clusterj if and only if rowi of
X was assigned to clustér

For classification:

6. Represent each data poirtiy the rowX; of X.
7. Classify these rows as pointsm‘f using any reasonable clas-
sifier, trained on the labeled points.
8. Assign the data poirntthe class that X; was assigned.
Figure 1: Spectral Learning Algorithm.
Algorithm  Normalization v(A, D)
MNCuUT  Divisive N=D"1A
NJW Symmetric Divisive N = D~Y2AD~1/2
LSA None N=A
SL Normalized Additive N = (A+ dmaxl — D)/dmax

Table 1: Normalizations used by spectral methods.

3.1 Calculating the Transition Matrix

In order to fully specify the data-to-data Markov transitio
matrix, we must map document similarities to transitioripro
abilities. LetA be the affinity matrix over documents whose
elementsA;j are the similarities between documentand

j- When we are given documentsas pointsx; and a
distance functiord(x;, xj), a common definition isA;j

e~d0i.x)/20% \whereo is a free scale parameter. In LSA
[Deerwesteret al, 1994, we are given a row-normalized
term-document matrixB, and A is defined to beBT B (the
cosine similarity matrifSalton, 1989.

We may map document similarities to transition probabili-
ties in several of ways. We can defiNe= D1 A [Meila and
Shi, 2001, whereD is the diagonal matrix whose elements
Dii = Zj Djj . This corresponds to transitioning with proba-
bility proportional to relative similarity values. Alteatively,
we can defineN = (A 4 dmaxl — D)/dmax [Fiedler, 1975;
Chung, 1997, wheredmax is the maximum rowsum oA.
Here, transition probabilities are sensitive to the alteadim-
ilarity values. For example, if a given document is similar t

very few others, the interested reader may keep reading that
document repeatedly, rather than move on to another docu-

ment. While either of these normalizations are plausibke, w
chose the latter, since it had slight empirical performdmere
efits for our data.

In [Meila and Shi, 200}, it is shown that a probability
transition matrixN for a Markov chain withk strong cliques

Spectral Learning  k-means

3 NEwS 0.84 0.20
20 NEws 0.36 0.07
LYMPHOMA 0.50 0.10
SOYBEAN 0.41 0.34

Table 2: A comparison of Spectral Learning and k-means.

well, but some of the details differ; our algorithm is shown
in Figure 1. This algorithm is most similar to the algorithm
presented ifiNg et al., 2004, which we call NJW after its au-
thors. In fact, the only difference is the type of normaliizat
used. There are two differences between our algorithm and
MNCuT from [Meila and Shi, 200Jt the normalization of
Ais again different, and, additionally, MNG does not row
normalizeX (step 5). Table 1 describes the different types of
normalizations and mentions some algorithms that use them.
It should be noted that for data sets where there are distant
outliers, additive normalization can lead to very poor perf
mance. This is because, with additive normalization, the ou
liers become their own clique. Therefore, the clusters will
represent outliers rather than true clusters. In a datasetev
there are distant outliers, divisive normalization is hke
lead to better performance.

3.2 Parameter Selection

The importance of parameter selection is often overlooked
in the presentation of standard spectral clustering method
With different values obr, the results of spectral clustering
can be vastly different. I1fNg et al, 2004, the parametes

is chosen based on that valuesathat gives the least distorted
clusters.

In our text experiments, the daBawas a term-document
matrix, and the similarity functior gave the pairwise cosine
similarities, with an entryA;j set to zero if neither was one
of the topk nearest-neighbors ¢fnor the reverse. Threshold-
ing the affinity matrix in this manner is very useful, as spaict
methods empirically work much better when there are zeros
in the affinity matrix for pairs of items that are not in the sam
class. For our experiments, we chdse- 20; however, one
may learn the optimak in the same manner thiiig et al,,
2007 learn the optimal scale facter.

3.3 Empirical Results

We compared the spectral learning algorithm in Figure 1 to
k-means on 4 data sets:

» 20 NEwsGRouPsa collection of approximately 1000
postings from each of 20 usenet newsgrofips.

* 3 NEWSGROUPS3 of the 20 newsgroups: sci.crypt,
talk.politics.mideast, and soc.religion.christian.

* LYMPHOMA gene expression profiles of 96 normal and
malignant lymphocyte samples. There are 2 classes:
Diffuse Large B-Cell Lymphoma (42 samples), and
Non-DLCBL (54 samples)Alizadeh, 2000.

2From http://www.ai.mit.edu/~jrennie/20Newsgroups/; a total of

will havek piecewise constant eigenvectors, and they suggegigg2s documents. Documents were stripped of headers, stdgw

clustering by finding approximately equal segments in tipe to

and converted to lowercase. All numbers were discardedwvédtis

k eigenvectors. Our algorithm uses this general method athat occur in more than 150 or less than 2 documents were mov



* SOYBEAN is the SOYBEAN-LARGE data set from the 1. Define the affinity matrixA as in the previous algo-

UCI repository. 15 classes. rithms.
The results are shown in Table 2. The numbers reported are2- First, for each pair of point§, j) that are in the same
adjusted Rand Index valu¢slubert and Arabie, 1985or class, assign the valudg; = Aji = 1.

the clusters output by the algorithms. The Rand Index is fre- 3. Likewise, for each pair of poinis, j) that are in differ-
quently used for evaluating clusters, and is based on whethe  ent classes, assign the valulg = Ajj = 0.

pgirs_ are placed in_ the same or different clusters in two par- 4 NormalizeN = dL(A—i- dmax! — D).

titionings. The Adjusted Rand Index ranges frem to 1, o max _ .

and its key property is that the expected value for a random This gives us a symmetric Markov matrix describing the
clustering is 0. The result that spectral methods genepally ~ “interested reader” process which uses supervisory infor-
form better than k-means is consistent with the resulfsl;pn ~ mation when present, and data similarities otherwise. A
et al, 2002; Brew and Schulte im Walde, 2d02in some  strength of this model lies in the fact that it incorporatetel
cases, the poor performance of k-means reflects its inabiPeled data, whereas the majority of classification modeds de
ity to cope with noise dimensions (especially in the case oftrictly with the labeled data. A benefit of additive normal-
the text data) and highly non-spherical clusters (in the casization is that, after the affinities are adjusted, sameild

of the composite negative cluster formpHomA).* How-  pairs will always have a higher (or equal) mutual transition
ever, spectral learning outperforms k-means orsthesean  Probability than unlabeled pairs. This will not necesyetoi
dataset as well, which is a low-dimensional, multi-classda the case with other normalization schemes.

set. 4.2 A Spectral Classification Algorithm

ot Again, if natural classes occur in the data, the Markov
4 Spectral Classification cr?ain described above should have cliques. Furthermage, th
In the previous section, we describeldsteringa data setby cliques will become stronger as the number of labeled doc-
creating a Markov chain based on the similarities of the datgyments increases. Given this model, we wish to categorize
items with one another, and analyzing the dominant eigenveocuments by assigning them to the appropriate clique in the
tors of the resulting Markov matrix. In this section, we show Markov chain. The spectral clustering methods given in Sec-
how toclassifya data set by making two changes. First, wetion 3 can be adapted to do classification by replacing thé fina
modify the Markov chain itself by using class labels, whentfew steps (clustering in spectral space) with the steps show
known, to override the underlying similarities. Second, wein Figure 1 (which classify in spectral space).
use a classification algorithm in the spectral space rati@rt  The key differences between the spectral classifier and the
a clustering algorithm. clustering algorithm are (a) that our transition mathiincor-
s y ” orates labeling information, and (b) we use a classifidnén t

4.1 Modifying the “Interested Reader” Model gpectral spacegrather than a cIustEer?ng method. What id nove
The model described in Section 2 can be modified to incorhere is that this algorithm is able to classify documents by
porate labeled data in the following simple manner. If thethe similarity of their transition probabilities to knownis
interested reader happens to be at a labeled document, thets ofB. Because the model incorporates both labeled and
probability that she will choose another labeled documént ounlabeled data, it should improve not only with the addition
the same category is high, while the probability that shé wil of labeled data, but also with the addition of unlabeled data
choose a labeled document of a different category is low (0We observe this empirically in Section 4.3.
zero). Transition probabilities to unlabeled documents ar .
still proportional to their similarity to the current soerdoc- 4.3  Empirical Results
ument, whether the current document is labeled or not. Cliques

We wish to create a Markov matrix that reflects this mod-It was suggested in Section 4.2 that the Markov chain de-
ified model. We propose doing this in the following manner,scribed above will have cliques, that is, subsets of nodes in
using the normalization introduced in Section 3. For mosthe graph that are internally fast-mixing, but are not mutu-
similarity functions, the maximum pairwise similarity v&  ally fast-mixing. Figure 4 shows the thresholded sparsity p
is 1, and the minimum similarity is 0. Therefore, we would tern for the affinity matrices for the 3 Newgroups data set, as
like to say that two points in the same class are maximallyabeled data is added. The left matrix is the affinity matrix
similar, and two points in different classes are minimaiig-s  for 1% labeled data. Even the underlying similarities show
ilar: block-like behavior, if weakly. To the extent that the unla-
T beled data gives a block-like affinity matrix, clusters Ratu
'?hlly exist in the data; this is the basis for spectral cltiste
The subsequent matrices have increasing fractions of @ata |
is partially illusory, due to the zeroed expectation of tluated beled. The effect of addlng labeled de}ta is to sharpen and
Rand index, and partially a real consequence of the spagte hi CO€rce the natural clusters into the desired classes. As mor
dimensionality of the text data. Bettermeans results on text typ- |abels are added, the blocks become clearer, the cliques be-
ically require some kind of aggressive dimensionality wiw, ~ COme stronger, and, in the limit of 100% labeled data, the
(usually LSA, another spectral method) or careful featelection  interested reader will never accidently jump from a documen
(or both). of one topic to one of another.

3There are has 562 instances, 35 features, and 15 differe
classes. It is nominal; Hamming distance was used.
4For some of these sets, tlemeans numbers are low. This



1 1 — documents to incorporate.

/ S Figure 2(b) shows the effect of supplying increasingly

o8 / large fractions of the 3 BwsGRouPsdata set as labeled

0.9

06 08l training instances, and using the remainder of the data set
i as test instances. The spectral classifier outperformseNaiv
04l o schal Classier O —ecral Claseier Bayes, more substantially so when there is little labeled.da
— . Naive Bayes Classifi —Naive Bayes Classii Figures 3(a) and (b) show the same graphs for the 2/
%20 200 a0 600 80 %0 o0z 04 06 o8 1 GROUPs data set. Again, spectral classification performs

(a) Adding Unlabeled Data (b) Adding Labeled Data Well, especially when less than 10% of the data is labeled.
It should be noticed that, for this data set, Naive Bayes out-

Figure 2: Categorization accuracy on the BWsGRouprstask as  performs the spectral classifier in the strongly supervisee
the number of (a) unlabeled and (b) labeled points incredsds),  (>15% labeled data). The strength of Spectral Learning lies

12 labeled documents and the given number of unlabeled dusme in incorporating unlabeled data, and, for the Strong'y supe
were used as a training set. In (b), the training set is all HE3vS- vised case. this is of less value.

GROUPS with the given fraction labeled. In both cases, the test set
for a given run consisted of all documents in BIMSGROUPWhose
labels were not known during training for that run. Spectral Space

To further investigate the behavior of the spectral classi-

o o8 - fier, we performed the following experiment. We took the
0.35 0.6 - 3 NEwsGRouPsdata and labeled various fractions of each
03 | T NDecta e ST of the 3 classes. We then plotted each document’s position
yes . . . .
04" 7 in the resulting 3-dimensional spectral space (the space of
025 o / the rows of the matrixX as defined by our spectral learn-
som T T T T 0.2}

02f « . " [— Specual Classifier ‘ ing algorithm). Figure 4 shows dimensions 2 and 3 of these
015 oL L——Naive Bayes Classifi plots. With no labels, the data does not tightly cluster. As
0 500 1000 1500 2000 o o1 02 03 04 we add labels (circled points), two things happen. Firs, th
(a) Adding Unlabeled Data (b) Adding Labeled Data labeled points move close to same-labeled points, away from
. o different-labeled points, and generally towards the olatsi
Figure 3: Categorization accuracy on the ZQVNS(_SROUPS:aSk as  gince they are “hubs” of the Markov process. Second, they
itrr]‘sréz)s::m”m of unlabeled data and (b) fraction of label@ d 1, || the unlabeled points out radially along with them. Tisis
' effective in that it seems to pull the classes apart, evemgho
the classes were not naturally very strong clusters in the un
labeled data.

Accuracies
To validate the utility of spectral classification, we penfeed
the following experiments on the 20BWSGRoOUPata set.
We built two batch classifiers. The first was a standard-4 Related Work
multinomial Naive Bayes (NB) classifier with standard add-
one smoothing. The second was a spectral classifier as d
scribed above, which used a single-nearest neighborfidassi
to perform the final classification in the spectral space. Th
affinity matrix A was the thresholded cosine similarity be-

tween documents.We note here that the thresholding is im- cut values of any two nodes that are preassigned to the same
portant, since it weakens the effect of outliers. Furtheemid y P 9
.class should be the same.

saves space and computation time, since the resultingtgffini ) ; ) )
matrix is sparse. The main drawback with the algorithm {u and Shi,
We split the data into a labeled training set and an unla2001 is that it only constrains same-labeled data points. The

beled test set. For classification, the spectral classifier p l90rithm we present here benefits from the zeros in the spar-

cessed both the training and test set, but was evaluateeon tRity pattern introduced by differently-labeled pairs. ther-

test set only. more, it should be noted that, in the multi-class case, ébel
Figure 2(a) shows the effect of using a sample of 12 docusets combinatorialy tend to _embody more differently-label

ments from the 3 NwsGRoupPsdata as a labeled training Pairs than same-labeled pairs. The other drawback to not us-

set, with an increasing number of unlabeled documents a'%g the information given by differently-labeled pointsigat

a test set. The accuracy of the NB classifier is, of courseN€ trivial partition (all points in one cluster) will safysthe

constant up to sampling variation, since it discards unéabe constraints, even when many points are labeled. In factnwhe

data. The spectral classifier is more accurate than the NB!I the data is labeled, it is likely that the partition fouby

classifier when given sufficiently many additional unladele the Grouping with Bias algorithm will be the trivial paron.
Figure 6(a) shows that our Spectral Classifier outperfohas t

5For each document, we take the most similar 20 documents, ang@rouping with Bias algorithm for the 3 BfwsGRouPsdata

put those similarities in the appropriate row and columnl.other ~ Set. In fact, Grouping with Bias started performing slightl
entries are 0. worse when a large fraction of the data was labeled.

1 [Yu and Shi, 200], a spectral grouping method, which
ey call “Grouping with Bias”, is presented that allows for
éop-level bias, as in labeled data. They formulate the gmbl
as a constrained optimization problem, where the optinmal pa
tition is sought, subject to the constraint that the norneali



1% Labeled 50% Labeled 100% Labeled

Figure 4: Three classes of the 2EINSGRoUPgata set in spectral space with increasing mountatm¥leddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.religitiristian (squares). The labeled points are circled.bbtm graphs show the sparsity
patterns of the associated affinity matrices.
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Figure 5: Three classes of the 2@WNsGRouPSlata set in spectral space with increasing amountslabeleddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.refigibristian (squares). There are 12 labeled documentie@)r

5 Constrained Spectral Clustering 1. Must-links two items are known to be in the same class.
2. Cannot-links two items are in different classes.
Recently, there has been interestdonstrained clustering Constrained clustering allows one to do exploratory data

[Wagstaff and Cardie, 2000; Kleiet al, 2004, which in-  analysis when one has some prior knowledge, but not class la-
volves clustering with two types of pairwise constraints: bels. The classifier presented in section 4 can be easily-modi



0.98 o — Spectral Constrained Clustering R efe re n Ces
\/\/\/ [Alizadeh, 2000 A.A. Alizadeh. Distinct types of diffuse large b-
0-96 _ cell lymphoma identified by gene expression profilifgature
0oal . R 07 403(6769):503-11, 2000.
i oss _ [Brew and Schulte im Walde, 20DZC. Brew and S. Schulte im
.. \ 7/ Walde. Spectral clustering for german verbs. Proceedings
054/77\/ of EMNLP-20022002.
09 ___GroupingWithBias | % I [Chung, 1997 F. Chung. Spectral Graph Theory AMS, Provi-
o1 02 03 04 dence, RI, 1997.
€) (b) [Deerwesteet al, 1990 Scott C. Deerwester, Susan T. Dumais,
Thomas K. Landauer, George W. Furnas, and Richard A. Harsh-
Figure 6: (a) Classification accuracy vs. fraction of pagsstrained man. Indexing by latent semantic analyslsurnal of the Amer-
for spectral classifier vs. grouping with bias. (b) Rand noespec- ican Society of Information Scienc#l(6):391-407, 1990.
tral constrained clustering vs. fraction of pairs conseedi (shown  [Fiedler, 1975 M. Fiedler. A property of eigenvectors of non-
up to 0.1% constrained). Both are on ENsGRouPglata. negative symmetric matrices and its application to graglorh

Czeckoslovak Mathematical Journab:619-672, 1975.
fied for this kind of prior knowledge: we have been reducing[Huber.t.and Arabie, 1995L. J. Hubert and P. Arabie. Comparing
labeling information to pairwise information during aftii partitions. Journal of Classification2:193-218, 1985.
modification all along. [Klein et al, 2004 Dan Klein, Sepandar D. Kamvar, and Christo-

Specifically, the affinity matrix is now defined as follows: ~ Pher D. Manning. From instance-level constraints to speeet
constraints: Making the most of prior knowledge in data <lus

1. Define the affinity matrixA as before. tering. InThe Nineteenth International Conference on Machine
2. For each pair of must-linked poingis j) assign the val- Learning 2002.
uesAjj = Aji = 1. [Kleinberg, 1998 J. Kleinberg. Authoritive sources in a hyper-

linked environment. IfProceedings of the 9th ACM-SIAM Sym-
posium on Discrete Algorithm4998.
[Meila and Shi, 200D Marina Meila and Jianbo Shi. Learning seg-
4. NormalizeN = ﬁ(A + dmax! — D). mentation by random walks. Wdvances in Neural Information

. . . . . . . Processing Systen es 873-879, 2000.
This is equivalent to thiznposing constraintstep in[Klein [Meila and Sﬁi, goollnl\?gﬂna Meila and Jianbo Shi. A random

e_t a_l" 2003. In this step, m_USt'"nk?d p?‘“ts are made more walks view of spectral segmentation. At and Statistics (AIS-
similar than any other pair of points in the data set, and TaTs)2001.
cannot-linked points are made more dissimilar than any paifNg et al, 2003 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
of points in the data set. On spectral clustering: Analysis and an algorithm. Hro-
The spectral constrained clustering algorithm proceests ju  ceedings of Advances in Neural Information ProcessingeByst
as the other spectral clustering algorithms presented there (NIPS 14) 2002. _ _ _
only difference is that it uses the modified normalized affini [Pageetal, 1999 Lawrence Page, Sergey Brin, Rajeev Motwani,
matrix presented in this section. and Terry Winograd. The pagerank citation ranking: Briggin
Figure 6(b) shows a plot of accuracy vs. number of con- order to the web. Technical report, Stanford Digital Lilyrdech-

straints for the NEWSGRoUPSdata set using spectral con- . "0logies Project, 1998,

- - - Salton, 1989 G. Salton. Automatic Text Processing: the trans-
strained clustering. The accuracy is measured by the COT{- fomation, analysis, and retrieval of information by congut

strained Rand indepKlein et al,, 2002; Wagstaff and Cardie, Addison-Wesley, 1989.

2000. The accuracy increases with number of constraintspyagstaff and Cardie, 2000Kiri Wagstaff and Claire Cardie. Clus-
showing that the spectral constrained clustering can €ffec  tering with instance-level constraints. Tine Seventeenth Inter-

3. For each pair of cannot-linked poinis j) that are in
different classes, assign the valulg = Ajj = 0.

tively use constraints to better cluster data. national Conference on Machine Learnjngages 1103-1110,
2000.
6 Conclusion [Yu and Shi, 2001 Stella Yu and Jianbo Shi. Grouping with

bias. Technical Report CMU-RI-TR-01-22, Robotics Inggtu

We present here a probabilistic model and an associated spec Carnegie Mellon University, Pittsburgh, PA, July 2001.

tral learning algorithm that is able to work for the unsuper-
vised, semi-supervised, and fully-supervised learnirappr
lems. We show that this algorithm is able to cluster well, and
further is able to effectively utilize prior knowledge, ledr
given by pairwise constraints or by labeled examples.
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