
cs294: Statistical Natural Language Processing 
Assignment 4: Word Alignment Models 

 
Due: March 21st 

 
In this assignment, you will explore the problem of word alignment, one of the critical 
steps in machine translation shared by all current statistical machine translation systems. 
 
Setup:  The data for this assignment is available on the web page as usual, and consists 
of sentence-aligned French-English transcripts of the Canadian parliamentary 
proceedings.   
 
The assignment harness is in the Java class: 
 
 edu.berkeley.nlp.assignments.WordAlignmentTester 
 
Make sure you can run the main method of the WordAlignmentTester class.  There are a 
few more options to start out with, specified using command line flags.  Start out running 
 

java –server –mx500m edu.berkeley.nlp.assignments.WordAlignmentTester 
–path DATA –model baseline –data miniTest -verbose 

 
You should see a few toy sentence pairs fly by, with baseline (diagonal) alignments.  The 
verbose flag controls whether the alignment matrices are printed.  For the miniTest, the 
baseline isn’t so bad.  Look in the data directory to see the source miniTest sentences.  
They are: 
 
“English” 
<s snum=1> A B C </s> 
<s snum=2> A B </s> 
<s snum=3> B C </s> 
<s snum=4> D F </s> 

“French” 
<s snum=1> X Y Z </s> 
<s snum=2> X Y </s> 
<s snum=3> Y W Z </s> 
<s snum=4> U V W </s> 

Alignments (snum, e, f, 
sure/possible) 
1 1 1 S 
1 2 2 S 
1 3 3 S 
2 1 1 S 
2 2 2 S 
3 1 1 S 
3 2 3 S 
4 1 1 S 
4 2 2 S 

 
The intuitive alignment is X=A, Y=B, Z=C, U=D, V=F, and W=null (convince yourself 
of this).  The baseline will get most of this set right, missing only the mid-sentence null 
alignment: 
 
[#]   | Y 
    # | W 
   [ ]| Z 
------' 
 B  C 



 
The hashes in the output indicate the proposed alignment pairs, while the brackets 
indicate reference pairs (parentheses for possible alignment positions).  Note that at the 
end of the test output you get an overall precision (with respect to possible alignments), 
recall (with respect to sure alignments), and alignment error rate (AER). 
 
You should then try running the code with –data validate and –data test, which will 
load the real validation set and test set respectively, and run the baseline on these 
sentences.  Baseline AER on the test set should be 68.7 (lower is better).  If you want to 
learn alignments on more than the test set, as will be necessary to get reasonable 
performance, you can get an additional k training sentences with the flag –sentences k.  
Maximum values of k usable by your code will probably be between 10000 and 100000, 
depending on how much memory you have, and how you encode things.  (There are over 
a million sentence pairs there if you want them – to use anywhere near that much, you’ll 
have to change some of the harness code.) 
 
You’ll notice that the code is hardwired to English-French, just as the examples in class 
were presented.  If you don’t speak any French, this assignment may be a little less fun 
(or more fun?), but French has enough English cognates that you should still be able to 
sift usefully through the data.  For example, if you see the matrix 
 
[#]                  | ils 
   [ ]( )    #       | connaissent 
             #       | très 
             #       | bien 
         [#]         | le 
               [#]   | problème 
       #    ( )      | de 
            [#]      | surproduction 
                  [#]| . 
---------------------' 
 t  k  a  t  o  p  .  
 h  n  b  h  v  r     
 e  o  o  e  e  o     
 y  w  u     r  b     
       t     p  l     
             r  e     
             o  m     
             d        
             u        
             c        
             t        
             i        
             o        
             n 
 
you should be able to tell that “problem” got handled correctly, as did “overproduction,” 
but something went very wrong with the “know about” region. 
 
Description:  In this assignment, you will build several word-level alignment systems.  
As a first step, and to get used to the data and support classes, you should build a 



heuristic replacement for BaselineWordAligner.  Your first model should not be a 
probabilistic translation model, but rather should match up words on the basis of some 
statistical measure of association, using simple statistics taken directly from the training 
corpora.  One common heuristic is to pair each French word f with the English word w 
for which the ratio 
 
 
 
is greatest.  Another is the Dice coefficient, described in several of the readings.  We also 
discussed competitive linking and bipartite matching in class.  Many possibilities exist; 
play a little and see if you can find reasonable alignments in a heuristic way. 
 
Once you’ve gotten a handle on the data and code, the first probabilistic model to 
implement is IBM model 1.  Recall that in models 1 and 2, the probability of an 
alignment a for a sentence pair (f,e) is 
 
 
 
where the null English word is at position 0 (or -1, or whatever is convenient in your 
code).  The simplifying assumption in model 1 is that  
 
 
 
That is, all positions are equally likely.  In practice, the null position is often given a 
different likelihood, say 0.2, which doesn’t vary with the length of the sentence, and the 
remaining 0.8 is split evenly amongst the other locations. 
 
The iterative EM update for this model is very simple and intuitive.  For every English 
word type e you count up the French words f which are fractionally aligned with tokens 
of e and normalize.  That will give you a new estimate of the translation probabilities 
P(f|e), which leads to new alignment posteriors, and so on.  For the miniTest, your model 
1 should learn most of the correct translations, including aligning W with null.  However, 
it will be confused by the DF / UV block, putting each of U and V with each of D and F 
with equal likelihood (probably resulting in a single error, depending on how ties are 
resolved). 
 
Look at the alignments produced on the real validation or test sets with your model 1.  
You can improve performance by training on additional sentences as mentioned above.  
However, even if you do, you will still see many alignments which have errors sprayed 
all over the matrices, errors which would be largely fixed by concentrating guesses near 
the diagonals.  To address this trend, you should now implement IBM model 2, which 
changes only a single term from model 1: P(ai|i,lenf, lene) is no longer independent of i.  
A common choice is to have 
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Here, P(ai|i,lenf, lene) is parameterized by a rough displacement from the diagonal.  
Again, to make this work well, one generally needs to treat the null alignment as a special 
case, giving a constant chance for a null alignment (independent of position), and leaving 
the other positions distributed as above.  How you bucket those displacements is up to 
you; there are many choices and most will give broadly similar behavior.  If you run your 
model 2 on the miniTest, it should get them all right (you may need to fiddle with your 
null probabilities).  Whether or not you learn the parameters d is up to you. 
 
Everyone should now have at least three systems, a non-iterative surface-statistics 
method, an implementation of model 1, and an implementation of model 2.  At this point, 
you should do another piece of investigation, but the field is wide open.  Some options: 
 

• Implement the HMM alignment model from Vogel, Ney and Tillmann, “HMM-
based word alignment in statistical translation”, Proceedings of COLING 1996 

http://acl.ldc.upenn.edu/C/C96/C96-2141.pdf 
 This may require you to make your HMM code from assignment 3. 

• Implement the competitive linking algorithm from I. Dan Melamed, “Models of 
Translational Equivalence among Words”, Computational Linguistics, 2000. 

http://www.cs.nyu.edu/~melamed/ftp/papers/clmote.pdf 
• Invent a probabilistic phrase-based alignment heuristic to model multi-word 

trends in some way 
• Scale your system up to a large amount of data (defined as, say, running on at 

least 100K training sentences) 
• Substantial data analysis about the error trends (you should do some basic 

discussion of errors in any case) 
 
Using some extra sentences and model 2 or better, you should be able to get your best 
AER down below 40% very easily and below 30% fairly easily, but getting it much 
below 20% will likely require some work.  Note: 5% is possible! 


