Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results
Forward Recurrence

\[\alpha_t(j) = \sum_l \alpha_{t+1}(l) a_j b_t(o_l) \]

Backward Recurrence

\[\beta_t(l) = \sum_j \beta_{t+1}(l) a_j b_t(o_{l+1}) \]
Fractional Transitions

EM for HMMs: Quantities

- Cache total path values:

 \[\alpha_i(s) = P(w_0 \ldots w_i, s_i) \]
 \[= \sum_{s_{i-1}} P(s_i|s_{i-1})P(w_i|s_i)\alpha_{i-1}(s_{i-1}) \]

 \[\beta_i(s) = P(w_i + 1 \ldots w_n|s_i) \]
 \[= \sum_{s_{i+1}} P(s_{i+1}|s_i)P(w_{i+1}|s_{i+1})\beta_{i+1}(s_{i+1}) \]

- Can calculate in \(O(s^2n)\) time (why?)
EM for HMMs: Process

- From these quantities, we can re-estimate transitions:

$$\text{count}(s \rightarrow s') = \frac{\sum_i \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(w)}$$

- And emissions:

$$\text{count}(w, s) = \frac{\sum_{i:w_i=w} \alpha_i(s) \beta_{i+1}(s)}{P(w)}$$

- If you don’t get these formulas immediately, just think about hard EM instead, where we re-estimate from the Viterbi sequences.

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]

- Setup:
 - You know the set of allowable tags for each word
 - Fix k training examples to their true labels
 - Learn $P(w|t)$ on these examples
 - Learn $P(t|t_1,t_2)$ on these examples
 - On n examples, re-estimate with EM

- Note: we know allowed tags but not frequencies
Meritaldo: Results

<table>
<thead>
<tr>
<th>Iter</th>
<th>Correct tags (% words) after ML on 1M words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>77.0</td>
</tr>
<tr>
<td>1</td>
<td>80.5</td>
</tr>
<tr>
<td>2</td>
<td>81.8</td>
</tr>
<tr>
<td>3</td>
<td>83.0</td>
</tr>
<tr>
<td>4</td>
<td>84.0</td>
</tr>
<tr>
<td>5</td>
<td>84.8</td>
</tr>
<tr>
<td>6</td>
<td>85.3</td>
</tr>
<tr>
<td>7</td>
<td>85.8</td>
</tr>
<tr>
<td>8</td>
<td>86.1</td>
</tr>
<tr>
<td>9</td>
<td>86.3</td>
</tr>
<tr>
<td>10</td>
<td>86.6</td>
</tr>
</tbody>
</table>

Distributional Clustering

- the president said that the downturn was over

president	the __ of
president	the __ said
governor	the __ of
governor	the __ appointed
said	sources __
said	president __ that
reported	sources __

[Finch and Chater 92, Shuetze 93, many others]
Distributional Clustering

- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuette 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

<table>
<thead>
<tr>
<th>word</th>
<th>nearest neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>accused</td>
<td>submitted banned financed developed unauthorized headed canceled awarded barred</td>
</tr>
<tr>
<td>causing</td>
<td>reflecting forcing providing creating producing becoming carrying particularly</td>
</tr>
<tr>
<td>classes</td>
<td>elections courses payments losses computers performances violations levels pictures</td>
</tr>
<tr>
<td>directors</td>
<td>professional investments materials competitors agreements papers transactions</td>
</tr>
<tr>
<td>goal</td>
<td>mood roof eye image tool song pool scene gap voice</td>
</tr>
<tr>
<td>japanese</td>
<td>chinese iraq american western arab foreign european federal soviet indian</td>
</tr>
<tr>
<td>represent</td>
<td>reveal attend deliver reflect choose contain impose manage establish retain</td>
</tr>
<tr>
<td>think</td>
<td>believe with know realize wonder assume feel say mean hit</td>
</tr>
<tr>
<td>york</td>
<td>angeles francisco sox song long digo zone vegas inning layer</td>
</tr>
<tr>
<td>on</td>
<td>through in at over into with from for by across</td>
</tr>
<tr>
<td>must</td>
<td>might would could cannot will should can may does helps</td>
</tr>
<tr>
<td>they</td>
<td>we you i be she nobody who it everybody there</td>
</tr>
</tbody>
</table>
Vector Space Version

- [Shuetze 93] clusters words as points in \mathbb{R}^n

 ![Diagram](image)

 Context counts

- Vectors too sparse, use SVD to reduce

 ![Diagram](image)

 Cluster these 50-200 dim vectors instead.

A Probabilistic Version?

$$P(S, C) = \prod_i P(c_i)P(w_i \mid c_i)P(w_{i-1}, w_{i+1} \mid c_i)$$

- the president said that the downturn was over

 ![Diagram](image)

 \bullet the president said that the downturn was over \bullet
What Else?

- Various newer ideas:
 - Context distributional clustering [Clark 00]
 - Morphology-driven models [Clark 03]
 - Contrastive estimation [Smith and Eisner 05]

- Also:
 - What about ambiguous words?
 - Using wider context signatures has been used for learning synonyms (what’s wrong with this approach?)
 - Can extend these ideas for grammar induction (later)

Sagittal section of the vocal tract (Techmer 1880)

- Nasal Cavity
- Pharynx
- Vocal Folds (within the Larynx)
- Trachea
- Lungs

Text copyright J. J. Ohala, Sept 2001, from Sharon Rose slide
Places of articulation

Labial place

Bilabial: p, b, m
Labiodental: f, v
Coronal place

- Dental: th/dh
- Alveolar: t/d/s/z/l
- Post: sh/zh/y

Dorsal Place

- Velar: k/g/ng
- Pharyngeal

Figure thanks to Jennifer Venditti
Manner of Articulation

- Stop: complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose.
 - m, n, ng

Oral vs. Nasal Sounds

Thanks to Jong-bok Kim for this figure!
Vowels

• Characterized by:
 • period: T
 • amplitude A
 • phase ϕ
• Fundamental frequency in cycles per second, or Hz
 • $F_0 = 1/T$

Simple Periodic Waves
Simple periodic waves of sound

- **Y axis**: Amplitude = amount of air pressure at that point in time
- Zero is normal air pressure, negative is rarefaction
- **X axis**: Time. Frequency = number of cycles per second.
- Frequency = 1/Period
- 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Complex waves: 100Hz+1000Hz
Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Spectrum of an actual soundwave
Waveforms for speech

- Waveform of the vowel [iy]

- Frequency: repetitions/second of a wave
 - Above vowel has 28 reps in .11 secs
 - So freq is 28/.11 = 255 Hz
 - This is speed that vocal folds move, hence voicing

- Amplitude: y axis: amount of air pressure at that point in time
 - Zero is normal air pressure, negative is rarefaction

She just had a baby

- Vowels are voiced, long, loud
 - Length in time = length in space in waveform picture
 - Voicing: regular peaks in amplitude
 - When stops closed: no peaks: silence.
 - Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
 - Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
 - Fricatives like [sh] intense irregular pattern; see .33 to .46
Examples from Ladefoged

Part of [ae] waveform from “had”

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves
Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.
- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Why these Peaks?

- Articulatory facts:
 - The vocal cord vibrations create harmonics
 - The mouth is an amplifier
 - Depending on shape of mouth, some harmonics are amplified more than others
Resonances of the vocal tract

- The human vocal tract as an open tube

 Closed end
 Open end

 Length 17.5 cm.

- Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

Figure from W. Barry Speech Science slides

From Sundberg
Computing the 3 Formants of Schwa

- Let the length of the tube be \(L \)
 - \(F_1 = \frac{c}{\lambda_1} = \frac{c}{4L} = \frac{35,000}{4 \times 17.5} = 500 \text{Hz} \)
 - \(F_2 = \frac{c}{\lambda_2} = \frac{c}{4/3L} = \frac{3c}{4L} = \frac{3 \times 35,000}{4 \times 17.5} = 1500 \text{Hz} \)
 - \(F_3 = \frac{c}{\lambda_3} = \frac{c}{4/5L} = \frac{5c}{4L} = \frac{5 \times 35,000}{4 \times 17.5} = 2500 \text{Hz} \)

- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz

- These vowel resonances are called formants

From Mark Liberman’s Web site
Seeing formants: the spectrogram

American English Vowel Space

Figure from Jennifer Venditti
Dialect Issues

- Speech varies from dialect to dialect (examples are American vs. British English)
 - Syntactic (“I could” vs. “I could do”)
 - Lexical (“elevator” vs. “lift”)
 - Phonological (butter: [əʊ] vs. [ɔː])
 - Phonetic

- Mismatch between training and testing dialects can cause a large increase in error rate

Vowel [i] sung at successively higher pitch.

Figures from Ratree Wayland slides from his website
How to read spectrograms

- bab: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- dad: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

She came back and started again

- lots of high-freq energy
- closure for k
- burst of aspiration for k
- ey vowel; faint 1100 Hz formant is nasalization
- bilabial nasal
- short b closure, voicing barely visible.
- ae; note upward transitions after bilabial stop at beginning
- note F2 and F3 coming together for "k"