Parts-of-Speech (English)

- One basic kind of linguistic structure: syntactic word classes

<table>
<thead>
<tr>
<th>Open class (lexical) words</th>
<th>Nouns</th>
<th>Verbs</th>
<th>Adjectives</th>
<th>Adverbs</th>
<th>Numbers</th>
<th>Prepositions</th>
<th>Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper</td>
<td>IBM</td>
<td>Common</td>
<td>Main</td>
<td>Adverbs</td>
<td>Numbers</td>
<td>Prepositions</td>
<td>Particles</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
<td>cat / cats</td>
<td>see</td>
<td>slowly</td>
<td>122,312</td>
<td>to with</td>
<td>off up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>snow</td>
<td>registered</td>
<td></td>
<td>one</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Closed class (functional)</th>
<th>Determiners</th>
<th>Conjunctions</th>
<th>Modals</th>
<th>... more</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the some</td>
<td>and or</td>
<td>can</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>had</td>
<td></td>
</tr>
</tbody>
</table>

- ... more
Part-of-Speech Ambiguity

Example

<table>
<thead>
<tr>
<th>VBD</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBN</td>
<td>VBZ</td>
</tr>
<tr>
<td>VBP</td>
<td>VBZ</td>
</tr>
<tr>
<td>NNP</td>
<td>NNS</td>
</tr>
<tr>
<td>NN</td>
<td>NNS</td>
</tr>
<tr>
<td>CD</td>
<td>NN</td>
</tr>
</tbody>
</table>

Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
Chateau/NNP Peters/NNP costs/VBN around/RB 250/CD

Two basic sources of constraint:
- Grammatical environment
- Identity of the current word

Many more possible features:
- … but we won’t be able to use them for a while

CC	conjunction, coordinating	and both but either or
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one
DT	determiner	a all an every no that the
EX	existential there	there
FW	foreign word	gemeinschaft hund ich jeux
IN	preposition or conjunction, subordinating	among whether out on by if
JJ	adjective or numeral, ordinal	third 3rd-mannered respectable
JJR	adjective, comparative	braver cheaper taller
JJPS	adjective, superlative	bravest cheapest tallest
MO	modal auxiliary	can may might will would
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool
NNPBS	noun, proper, plural	Americans Materials States
NNS	noun, common, plural	undergraduates bric-a-brac averages
POS	genitive marker	’s
PRP	pronoun, personal	hers himself it us them
PRPS	pronoun, possessive	her his mine my our ours their thy your
RB	adverb	occasionally maddeningly adventurously
RBR	adverb, comparative	further gloomier heavier less-perfectly
RBS	adverb, superlative	best biggest nearest worst
RP	particle	aboard away back by on open through
TO	“to” as preposition or infinitive marker	to
UH	interjection	huh howdy uh whammo shucks heck
VB	verb, base form	ask bring fire see take
VBD	verb, past tense	pleased swiped registered saw
VBG	verb, present participle or gerund	soaring focusing approaching erasing
VBN	verb, past participle	diapason imitated runneled unsettled
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses
WDT	WH-determiner	that what whatever which whichever
WP	WH-pronoun	that what whatever which who whom
WPS	WH-pronoun, possessive	whose
WRB	WH-adverb	however whenever wherever why
Why POS Tagging?

- Useful in and of itself
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[n] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

- Useful as a pre-processing step for parsing
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

```
IN  DT  NNP    NN  VBD  VBN  RP  NN  NNS
The Georgia branch had taken on loan commitments …
```

```
VDN
DT  NN  IN  NN  VBD  NNS  VBD
The average of interbank offered rates plummeted …
```

HMMs

- We want a model of sequences s and observations w

```
s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_n
W_1 \quad W_2 \quad W_n
```

\[
P(s, w) = \prod_{i} P(s_i|s_{i-1})P(w_i|s_i)
\]

- Assumptions:
 - States are tag n-grams
 - Usually a dedicated start and end state / word
 - Tag/state sequence is generated by a markov model
 - Words are chosen independently, conditioned only on the tag/state
 - These are totally broken assumptions: why?
Transitions and Emissions

Transitions $P(s|s')$ encode well-formed tag sequences
- In a bigram tagger, states = tags

In a trigram tagger, states = tag pairs

Transitions
Estimating Transitions

- Use standard smoothing methods to estimate transitions:
 \[P(t_i \mid t_{i-1}, t_{i-2}) = \lambda_2 \hat{P}(t_i \mid t_{i-1}, t_{i-2}) + \lambda_1 \hat{P}(t_i \mid t_{i-1}) + (1 - \lambda_1 - \lambda_2) \hat{P}(t_i) \]
- Can get a lot fancier (e.g. KN smoothing), but in this case it doesn’t buy much
- One option: encode more into the state, e.g. whether the previous word was capitalized (Brants 00)

Estimating Emissions

- Emissions are trickier:
 - Words we’ve never seen before
 - Words which occur with tags we’ve never seen
 - One option: break out the Good-Turning smoothing
 - Issue: words aren’t black boxes:
 - 343,127.23 11-year Minteria reintroducibly
 - Unknown words usually broken into word classes
 - D*, D±, D+
 - D*±, x†, Xx†, x†“ly”
 - Another option: decompose words into features and use a maxent model along with Bayes’ rule
 \[P(w \mid t) = P_{\text{MAXENT}}(t \mid w) P(w) / P(t) \]
Better Features

- Can do surprisingly well just looking at a word by itself:
 - Word: the → DT
 - Lowercased word: Importantly → RB
 - Prefixes: unfathomable → JJ
 - Suffixes: Importantly → RB
 - Capitalization: Meridian: CAP → NNP
 - Word shapes: 35-year: d-x → JJ

- Then build a maxent (or whatever) model to predict tag
- Maxent $P(t|w)$: 93.7% / 82.6%

Disambiguation

- Given these two multinomials, we can score any word / tag sequence pair

Fed raises interest rates 0.5 percent .

$P(NNP|\langle\bullet,\bullet\rangle)$ $P(Fed|NNP)$ $P(VBZ|\langle NNP,\bullet\rangle)$ $P(raises|VBZ)$ $P(NN|VBZ,NNP)$…..

- In principle, we’re done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

```
NNP VBZ NN NNS CD NN logP = -23
NNP NNS NN NNS CD NN logP = -29
NNP VBZ VB NNS CD NN logP = -27
```
Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search

A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
 - Consider all continuations of previous hypotheses
 - Discard most, keep top k, or those within a factor of the best, (or some combination)

Beam search works relatively well in practice
- ... but sometimes you want the optimal answer
- ... and you need optimal answers to validate your beam search

HMM Trellis
The Viterbi Algorithm

- Dynamic program for computing
 \[\delta_i(s) = \max_{s_0 \cdots s_{i-1} \leq s} P(s_0 \cdots s_{i-1} s, w_i \cdots w_{i-1}) \]
 - The score of a best path up to position \(i \) ending in state \(s \)
 \[\delta_0(s) = \begin{cases} 1 & \text{if } s = \langle \bullet, \bullet \rangle \\ 0 & \text{otherwise} \end{cases} \]
 \[\delta_i(s) = \max_{s'} P(s \mid s') P(w \mid s') \delta_{i-1}(s') \]
 - Also store a backtrace
 \[\psi_i(s) = \arg \max_{s'} P(s \mid s') P(w \mid s') \delta_{i-1}(s') \]
- Memoized solution
- Iterative solution

So How Well Does It Work?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one

- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text (SOA is ~97.2%)

- Noise in the data
 - Many errors in the training and test corpora

 DT NN IN NN VBD NNS VBD
 The average of interbank offered rates plummeted ...
 - Probably about 2% guaranteed error from noise (on this data)
Overview: Accuracies

- **Roadmap of (known / unknown) accuracies:**
 - Most freq tag: ~90% / ~50%
 - Trigram HMM: ~95% / ~55%
 - Maxent P(t|w): 93.7% / 82.6%
 - TnT (HMM++): 96.2% / 86.0%
 - MEMM tagger: 96.9% / 86.9%
 - Cyclic tagger: 97.2% / 89.0%
 - Upper bound: ~98%

What’s Next for POS Tagging

- **Better features!**
 - We could fix this with a feature that looked at the next word
 - We could fix this by linking capitalized words to their lowercase versions
- **Solution:** maximum entropy sequence models (next class)
 - Taggers are already pretty good on WSJ journal text…
 - What the world needs is taggers that work on other text!
Common Errors

- Common errors [from Toutanova & Manning 00]

```
<table>
<thead>
<tr>
<th></th>
<th>JJ</th>
<th>NN</th>
<th>NNP</th>
<th>NNPS</th>
<th>RB</th>
<th>RP</th>
<th>IN</th>
<th>VB</th>
<th>VBD</th>
<th>VBN</th>
<th>VBP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>0</td>
<td>177</td>
<td>56</td>
<td>0</td>
<td>61</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>108</td>
<td>0</td>
<td>488</td>
</tr>
<tr>
<td>NN</td>
<td>244</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>5</td>
<td>6</td>
<td>19</td>
<td>525</td>
</tr>
<tr>
<td>NNP</td>
<td>107</td>
<td>106</td>
<td>0</td>
<td>132</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>NNPS</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>RB</td>
<td>72</td>
<td>21</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>138</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>298</td>
</tr>
<tr>
<td>RP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>IN</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>323</td>
</tr>
<tr>
<td>VB</td>
<td>17</td>
<td>64</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>85</td>
<td>189</td>
</tr>
<tr>
<td>VBD</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>143</td>
<td>2</td>
<td>166</td>
</tr>
<tr>
<td>VBN</td>
<td>101</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>108</td>
<td>0</td>
<td>1</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>VBP</td>
<td>5</td>
<td>34</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>49</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>626</td>
<td>536</td>
<td>348</td>
<td>144</td>
<td>317</td>
<td>122</td>
<td>279</td>
<td>102</td>
<td>140</td>
<td>269</td>
<td>108</td>
<td>3651</td>
</tr>
</tbody>
</table>
```

- Official knowledge
- Made up the story
- Recently sold shares

Sequence-Free Tagging?

- What about looking at a word and its environment, but no sequence information?
 - Add in previous / next word: the __
 - Previous / next word shapes: X __ X
 - Occurrence pattern features: [X: x X occurs]
 - Crude entity detection: __ (Inc.|Co.)
 - Phrasal verb in sentence: put __
 - Conjunctions of these things

- All features except sequence: 96.6% / 86.8%
- Uses lots of features: > 200K
- Why isn’t this the standard approach?
Maxent Taggers

- One step up: also condition on previous tags

\[P(t|w) = \prod_i P_{ME}(t_i|w, t_{i-1}, t_{i-2}) \]

- Train up \(P(t|w, t_{i-1}, t_{i-2}) \) as a normal maxent problem, then use to score sequences
- This is referred to as a maxent tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What’s the advantage of beam size 1?

Feature Templates

- We’ve been sloppy:
 - Features: \(<w_0=\text{future}, t_0=\text{JJ}>\)
 - Feature templates: \(<w_0, t_0>\)

- In maxent taggers:
 - Can now add edge feature templates:
 - \(<t_1, t_0>\)
 - \(<t_2, t_1, t_0>\)
 - Also, mixed feature templates:
 - \(<t_1, w_0, t_0>\)
Decoding

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):
 \[\delta_i(s) = \arg \max_{s'} P(s|s')P(w_{i-1}|s')\delta_{i-1}(s') \]
- Viterbi algorithm (Maxent):
 \[\delta_i(s) = \arg \max_{s', w} P(s|s', w)\delta_{i-1}(s') \]

TBL Tagger

- [Brill 95] presents a transformation-based tagger
 - Label the training set with most frequent tags

 DT MD VBD VBD .
 The can was rusted .

 - Add transformation rules which reduce training mistakes

 MD \rightarrow NN : DT _
 VBD \rightarrow VBN : VBD _

 - Stop when no transformations do sufficient good
 - Does this remind anyone of anything?

- Probably the most widely used tagger (esp. outside NLP)
- … but not the most accurate: 96.6% / 82.0 %
TBL Tagger II

- **What gets learned?** [from Brill 95]

<table>
<thead>
<tr>
<th>Change Tag</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NN VB</td>
<td>Previous tag is TO</td>
</tr>
<tr>
<td>2 VBP VB</td>
<td>One of the previous three tags is MDP</td>
</tr>
<tr>
<td>3 NN VB</td>
<td>One of the previous two tags is MDP</td>
</tr>
<tr>
<td>4 VB NN</td>
<td>One of the previous two tags is DT</td>
</tr>
<tr>
<td>5 VBD VBN</td>
<td>One of the previous three tags is VBD</td>
</tr>
<tr>
<td>6 VBN VBD</td>
<td>Previous tag is PRP</td>
</tr>
<tr>
<td>7 VBN VBD</td>
<td>Previous tag is NNP</td>
</tr>
<tr>
<td>8 VBD VBN</td>
<td>Previous tag is VBD</td>
</tr>
<tr>
<td>9 VBP VB</td>
<td>Previous tag is TO</td>
</tr>
<tr>
<td>10 POS VBZ</td>
<td>Previous tag is PRP</td>
</tr>
<tr>
<td>11 VB VBP</td>
<td>Previous tag is NNS</td>
</tr>
<tr>
<td>12 VBD VBN</td>
<td>One of the previous three tags is VBP</td>
</tr>
<tr>
<td>13 IN WDT</td>
<td>One of the next two tags is VB</td>
</tr>
<tr>
<td>14 VBD VBN</td>
<td>One of the previous two tags is VB</td>
</tr>
<tr>
<td>15 VB VBP</td>
<td>Previous tag is PRP</td>
</tr>
<tr>
<td>16 IN WDT</td>
<td>Next tag is VBZ</td>
</tr>
<tr>
<td>17 IN DT</td>
<td>Next tag is NN</td>
</tr>
<tr>
<td>18 JJ NNP</td>
<td>Next tag is NNP</td>
</tr>
<tr>
<td>19 IN WDT</td>
<td>Next tag is VBD</td>
</tr>
<tr>
<td>20 JJR RBR</td>
<td>Next tag is JJ</td>
</tr>
</tbody>
</table>

EngCG Tagger

- **English constraint grammar tagger**
 - [Tapanainen and Voutilainen 94]
 - Something else you should know about
 - Hand-written and knowledge driven
 - “Don’t guess if you know” (general point about modeling more structure!)
 - Tag set doesn’t make all of the hard distinctions as the standard tag set (e.g. JJ/NN)
 - They get stellar accuracies: 98.5% on their tag set
 - Linguistic representation matters…
 - … but it’s easier to win when you make up the rules
CRF Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also voted perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train – require repeated inference on training set
- Differences tend not to be too important for POS tagging
- However: one issue worth knowing about in local models
 - “Label bias” and other explaining away effects
 - Maxent taggers’ local scores can be near one without having both good “transitions” and “emissions”
 - This means that often evidence doesn’t flow properly
 - Why isn’t this a big deal for POS tagging?

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)