Word Senses

- Words have multiple distinct meanings, or senses:
 - Plant: living plant, manufacturing plant, …
 - Title: name of a work, ownership document, form of address, material at the start of a film, …

- Many levels of sense distinctions
 - Homonymy: totally unrelated meanings (river bank, money bank)
 - Polysemy: related meanings (star in sky, star on tv)
 - Systematic polysemy: productive meaning extensions (organizations to their buildings) or metaphor
 - Sense distinctions can be extremely subtle (or not)

- Granularity of senses needed depends a lot on the task
- Why is it important to model word senses?
 - Translation, parsing, information retrieval?

Word Sense Disambiguation

- Example: living plant vs. manufacturing plant
- How do we tell these senses apart?
 - "context"
 - The manufacturing plant which had previously sustained the town’s economy shut down after an extended labor strike.
 - Maybe it’s just text categorization
 - Each word sense represents a topic
 - Run the naive-bayes classifier from last class?
 - Bag-of-words classification works ok for noun senses
 - 80% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns
 - 70% on senseval-1 verbs

Verb WSD

- Why are verbs harder?
 - Verbal senses less topical
 - More sensitive to structure, argument choice
- Verb Example: “Serve”
 - [function] The tree stump serves as a table
 - [enable] The scandal served to increase his popularity
 - [dish] We serve meals for the homeless
 - [enlist] He served his country
 - [jail] He served six years for embezzlement
 - [tennis] It was Agassi’s turn to serve
 - [legal] He was served by the sheriff

Various Approaches to WSD

- Unsupervised learning
 - Bootstrapping (Yarowsky 95)
 - Clustering

- Indirect supervision
 - From thesauri
 - From WordNet
 - From parallel corpora

- Supervised learning
 - Most systems do some kind of supervised learning
 - Many competing classification technologies perform about the same (it’s all about the knowledge sources you tap)
 - Problem: training data available for only a few words

Resources

- WordNet
 - Hand-build (but large) hierarchy of word senses
 - Basically a hierarchical thesaurus

- SensEval
 - A WSD competition, of which there have been 3 iterations
 - Training / test sets for a wide range of words, difficulties, and parts-of-speech
 - Bake-off where lots of labs tried lots of competing approaches

- SemCor
 - A big chunk of the Brown corpus annotated with WordNet senses

- OtherResources
 - The Open Mind Word Expert
 - Parallel texts
 - Flat thesauri
Knowledge Sources

- So what do we need to model to handle "serve"?
- There are distant topical cues
 - ... point ... court ... serve ... game ...

\[
P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i \mid c)
\]

Weighted Windows with NB

- Distance conditioning
 - Some words are important only when they are nearby
 - ... as ... point ... court ... serve ... game ...
 - ... serve ... as ...

\[
P(c, w_1, \ldots, w_{i-1}, w_i, w_{i+1}, \ldots, w_n) = P(c) \prod_{j=i}^{k} P(w_j \mid c, \text{bin}(j))
\]

- Distance weighting
 - Nearby words should get a larger vote
 - ... serve ... as ... game ...

\[
P(c, w_1, \ldots, w_{i-1}, w_i, w_{i+1}, \ldots, w_n) = P(c) \prod_{j=i}^{k} P(w_j \mid c)^{\text{boost}(i) + \text{relative position}(i)}
\]

Better Features

- There are smarter features:
 - Argument selectional preference:
 - serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
 - Subcategorization:
 - [function] serve PP[as]
 - [enable] serve VP[to]
 - [tennis] serve <intransitive>
 - [food] serve NP [PP[to]]
 - Can capture poorly (but robustly) with local windows
 - ... but we can also use a parser and get these features explicitly
 - Other constraints (Yarowsky 95)
 - One-sense-per-discourse (only true for broad topical distinctions)
 - One-sense-per-collocation (pretty reliable when it kicks in: manufacturing plant, flowering plant)

Complex Features with NB?

- Example: Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.

- So we have a decision to make based on a set of cues:
 - context: jail, context: county, context: feeding, ...
 - local-context: jail, local-context: meals
 - subcat: NP, direct-object: meals

- Not clear how build a generative derivation for these:
 - Choose topic, then decide on having a transitive usage, then pick "meals" to be the object’s head, then generate other words?
 - How about the words that appear in multiple features?
 - Hard to make this work (though maybe possible)
 - No real reason to try

A Discriminative Approach

- View WSD as a discrimination task (regression, really)

\[
P(\text{sense} \mid \text{context:jail}, \text{context:county}, \text{context:feeding}, \ldots, \text{local-context:jail}, \text{local-context:meals}, \ldots)
\]

- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / back-off problem

- Many feature-based classification techniques out there
- We tend to need ones that output distributions over classes (why?)

Feature Representations

- Features are indicator functions \(f_i \) which count the occurrences of certain patterns in the input
- We map each input to a vector of feature predicate counts

\[
\{f_i(d)\}
\]

\[
\text{context:jail} = 1
\]
\[
\text{context:county} = 1
\]
\[
\text{context:feeding} = 1
\]
\[
\text{context:game} = 0
\]
\[
\text{local-context:jail} = 1
\]
\[
\text{local-context:meals} = 1
\]
\[
\text{subcat:NP} = 1
\]
\[
\text{subcat:PP} = 0
\]
\[
\text{object-head:meals} = 1
\]
\[
\text{object-head:ball} = 0
\]
Linear Classifiers

- For a pair \((c, d)\), we take a weighted vote for each class:
 \[
 \text{vote}(c \mid d) = \exp \sum_i \lambda_i f_i(d)
 \]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Food</th>
</tr>
</thead>
<tbody>
<tr>
<td>context: jail</td>
<td>+0.1</td>
</tr>
<tr>
<td>context: jail</td>
<td>+0.2</td>
</tr>
<tr>
<td>context: jail</td>
<td>+0.8</td>
</tr>
<tr>
<td>object: head: meals</td>
<td>+2.0</td>
</tr>
<tr>
<td>object: head: meals</td>
<td>+1.5</td>
</tr>
<tr>
<td>object: head: meals</td>
<td>+1.6</td>
</tr>
<tr>
<td>object: head: years</td>
<td>+3.8</td>
</tr>
<tr>
<td>object: head: years</td>
<td>+2.1</td>
</tr>
<tr>
<td>object: head: years</td>
<td>+1.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>+3.5</td>
</tr>
</tbody>
</table>

- There are many ways to set these weights:
 - Perceptron: find a currently misclassified example, and nudge weights in the direction of a correct classification
 - Other discriminative methods usually work in the same way: try out various weights until you maximize some objective

Maximum-Entropy Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Turn the votes into a probability distribution:
 \[
 P(c \mid d, \lambda) = \sum_c \exp \sum_i \lambda_i f_i(d) \quad \text{normalizes votes.}
 \]
 - For any weight vector \(\lambda\), we get a conditional probability model \(P(c \mid d, \lambda)\).
 - We want to choose parameters that maximize the conditional (log) likelihood of the data:
 \[
 \log P(C \mid D, \lambda) = \log \prod_{i \in C, d} P(c \mid d, \lambda) = \sum_{i \in C, d} \log \sum_c \exp \sum_i \lambda_i f_i(d)
 \]

Building a Maxent Model

- How to define features:
 - Features are patterns in the input which we think the weighted vote should depend on
 - Usually features added incrementally to target errors
 - If we're careful, adding some mediocre features into the mix won't hurt (but won't help either)
 - How to learn model weights?
 - Maxent just one method
 - Use a numerical optimization package
 - Given a current weight vector, need to calculate (repeatedly):
 - Conditional likelihood of the data
 - Derivative of that likelihood wrt each feature weight

The Likelihood Value

- The (log) conditional likelihood is a function of the iid data \((C, D)\) and the parameters \(\lambda\):
 \[
 \log P(C \mid D, \lambda) = \log \prod_{i \in C, d} P(c \mid d, \lambda) = \sum_{i \in C, d} \log \sum_c \exp \sum_i \lambda_i f_i(d)
 \]
 - If there aren't many values of \(c\), it's easy to calculate:
 \[
 \log P(C \mid D, \lambda) = \sum_{i \in C, d} \log \exp \sum_c \lambda_i f_i(d) - \sum_{i \in C, d} \log \sum_c \exp \sum_i \lambda_i f_i(d)
 \]
 - We can separate this into two components:
 \[
 \log P(C \mid D, \lambda) = \sum_{i \in C, d} \log \exp \sum_c \lambda_i f_i(d) - \sum_{i \in C, d} \log \sum_c \exp \sum_i \lambda_i f_i(d)
 \]

The Derivative I: Numerator

- Derivative of the numerator is the empirical count\(f_i(d)\)

E.g.: we actually saw the word “dish” with the “food” sense 3 times (maybe twice in one example and once in another).

The Derivative II: Denominator

- Derivative of the denominator is the conditional (log) likelihood of the data:

\[
\frac{\partial M(\lambda)}{\partial \lambda_i(c)} = \sum_{i \in C, d} \sum_c \lambda_i f_i(d) \frac{\partial \sum_i \lambda_i f_i(d)}{\partial \lambda_i(c)} = \sum_{i \in C, d} f_i(d)
\]

\[
\text{predicted count}(f_i, \lambda) = \sum_c P(c \mid d_i, \lambda) f_i(d_i)
\]
The Derivative III

\[\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda(c)} = \frac{\text{actual count}(f_i, c) - \text{predicted count}(f_i, \lambda)}{C} \]

The optimum parameters are the ones for which each feature’s predicted expectation equals its empirical expectation. The optimum distribution is:
- Always unique (but parameters may not be unique)
- Always exists (if features counts are from actual data)

The context-word:jail) feature: actual = 1 empirical = 1.2

Smoothing: Issues of Scale

- Lots of features:
 - NLP maxent models can have over 1M features.
 - Even storing a single array of parameter values can have a substantial memory cost.
- Lots of sparsity:
 - Overfitting very easy – need smoothing!
 - Many features seen in training will never occur again at test time.
- Optimization problems:
 - Feature weights can be infinite, and iterative solvers can take a long time to get to those infinities.

Smoothing: Issues

Assume the following empirical distribution:

<table>
<thead>
<tr>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Features: (Heads), (Tails)

The data likelihood in this model is:

\[\log P(h, t \mid \lambda) = h \log P_{\text{HEADS}} + t \log P_{\text{TAILS}} \]

\[\log P(h, t \mid \lambda) = h \lambda - (t + h) \log(1 + e^\lambda) \]

Smoothing: Early Stopping

In the 4/0 case, there were two problems:
- The optimal value of \(\lambda \) was \(\infty \), which is a long trip for an optimization procedure.
- The learned distribution is just as spiked as the empirical one – no smoothing.

One way to solve both issues is to just stop the optimization early, after a few iterations.
- The value of \(\lambda \) will be finite (but presumably big).
- The optimization won’t take forever (clearly).
- Commonly used in early maxent work.
Smoothing: Priors (MAP)

- What if we had a prior expectation that parameter values wouldn’t be very large?
- We could then balance evidence suggesting large parameters (or infinite) against our prior.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite!).
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:

\[
\log P(C, \lambda | D) = \log P(\lambda) + \log P(C | D, \lambda) \\
\text{Posterior} \quad \quad \text{Prior} \quad \quad \text{Evidence}
\]

Smoothing: Priors

- If we use gaussian priors:
 - Trade off some expectation-matching for smaller parameters.
 - When multiple features can be recruited to explain a data point, the more common ones generally receive more weight.
 - Accuracy generally goes up!

\[
\log P(C, \lambda | D) = \log P(\lambda) - \frac{1}{\sigma^2} \sum_i (\lambda_i - \mu)^2 + k
\]

- Change the derivative:

\[
\frac{\partial \log P(C, \lambda | D)}{\partial \lambda_i} = \text{actual}(f_i, C) - \text{predicted}(\lambda_i, \lambda) - (\lambda_i - \mu_i)/\sigma^2
\]

Example: NER Smoothing

Because of smoothing, the more common prefixes have larger weights even though entire-word features are more specific.

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>PERs</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at</td>
<td>-0.73</td>
<td>0.94</td>
</tr>
<tr>
<td>Current word</td>
<td>Grace</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Beginning bigram</td>
<td><G</td>
<td>0.45</td>
<td>-0.04</td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP</td>
<td>0.41</td>
<td>0.48</td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN</td>
<td>-0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Previous state</td>
<td>Other</td>
<td>-0.76</td>
<td>-0.92</td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx</td>
<td>0.80</td>
<td>0.48</td>
</tr>
<tr>
<td>Prev state, cur sig</td>
<td>O-x</td>
<td>0.68</td>
<td>0.37</td>
</tr>
<tr>
<td>Previous next sig</td>
<td>x-O-x</td>
<td>-0.69</td>
<td>0.27</td>
</tr>
<tr>
<td>P. state - p-cur sig</td>
<td>O-x-x</td>
<td>-0.20</td>
<td>0.95</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>-0.58</td>
<td>2.68</td>
</tr>
</tbody>
</table>