
1

Statistical NLP
Spring 2007

Lecture 3: Language Models II
Dan Klein – UC Berkeley

Recap: Language Models
Why are language models useful?

Why did I show samples of generated
text?

What are the main challenges in building
n-gram language models?

Smoothing

We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!
We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Vocabulary Size

Key issue for language models: open or closed vocabulary?
When would you want an open vocabulary?
When would you want a closed vocabulary?

How to set the vocabulary size V?
By external factors (e.g. speech recognizers)
Using statistical estimates?
Difference between estimating unknown token rate and probability of a
given unknown word

For the homework:
OK to assume there is only one unknown word type UNK
UNK be quite common in new text!
UNK stands for all unknown word type

Smoothing: Add-One, Etc.

One class of smoothing functions:
Add-one / delta: assumes a uniform prior

Better to assume a unigram prior
δ

δ
δ +

+
=

−

−
−−)(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

δ
δ
+
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1 wc

wPwwcwwP PRIORUNI

number of word tokens in training datac

number of word types with count kNk

total vocabulary size (assumed known)V
count of word w following word w-1c(w,w-1)
count of word w in training datac(w)

Linear Interpolation

One way to ease the sparsity problem for n-
grams is to use less- sparse n- 1- gram estimates
General linear interpolation:

Having a single global mixing constant is generally
not ideal:

Solution: have different constant buckets
Buckets by count
Buckets by average count (better)

1 1 1 1
ˆ(|) [1 (,)] (|) [(,)] ()P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

2

Held-Out Data

Important tool for getting models to generalize:

When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

Can use any optimization technique (line search or EM usually easiest)

Examples:

Training Data Held-Out
Data

Test
Data

∑ −=
i

iiMkn wwPMwwLL
k

)|(log))...(|...(1)...(11 1 λλλλ

)(ˆ)|(ˆ)|(2111),(21
wPwwPwwPLIN λλλλ += −−

δ
δ

δ +
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1)(wc

wPwwcwwP PRIORUNI
δ

LL

Held-Out Reweighting

What’s wrong with unigram-prior smoothing?
Let’s look at some real bigram counts [Church and Gale 91]:

Big things to notice:
Add-one vastly overestimates the fraction of new bigrams
Add-0.0000027 still underestimates the ratio 2*/1*

One solution: use held-out data to predict the map of c to c*

6/7e- 10

5/7e- 10

4/7e- 10

3/7e- 10

2/7e- 10

Add- one’s c*

4.21

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

~55

~44

~33

~22

~11

Add- 0.0000027’s c*Count in 22M Words

1.5

~100%

2.8

9.2%

~2Ratio of 2/1

9.2%Mass on New

Good-Turing Reweighting I

We’d like to not need held-out data (why?)
Idea: leave-one-out validation

Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1
What fraction of held-out words are unseen in
training?

N1/c
What fraction of held-out words are seen k
times in training?

(k+1)Nk+1/c
So in the future we expect (k+1)Nk+1/c of the
words to be those with training count k
There are Nk words with training count k
Each should occur with probability:

(k+1)Nk+1/c/Nk

…or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

Good-Turing Reweighting II
Problem: what about “the”? (say c=4417)

For small k, Nk > Nk+1

For large k, too jumpy, zeros wreck estimates

Simple Good-Turing [Gale and Sampson]:
replace empirical Nk with a best-fit power law
once count counts get unreliable

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

N1
N2 N3

N1
N2

Good-Turing Reweighting III

Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

Katz Smoothing
Use GT discounted bigram counts (roughly – Katz left large counts alone)
Whatever mass is left goes to empirical unigram

)(ˆ)(
),(
),(*)|(1
1

1
1 wPw

wwc
wwcwwP

w

KATZ −
−

−
− +=

∑
α

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

9.2% 9.2%Mass on New

Kneser-Ney Smoothing I
Something’s been very broken all this time

Shannon game: There was an unexpected ____?
delay?
Francisco?

“Francisco” is more common than “delay”
… but “Francisco” always follows “San”

Solution: Kneser-Ney smoothing
In the back-off model, we don’t want the unigram probability of w
Instead, probability given that we are observing a novel continuation
Every bigram type was a novel continuation the first time it was seen

|0),(:),(|
|}0),(:{|)(

11

11

>
>

=
−−

−−

wwcww
wwcwwP ONCONTINUATI

3

Kneser-Ney Smoothing II
One more aspect to Kneser-Ney:

Look at the GT counts:

Absolute Discounting
Save ourselves some time and just subtract 0.75 (or some d)
Maybe have a separate value of d for very low counts

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

)()(
),'(

),()|(1

'
1

1
1 wPw

wwc
DwwcwwP ONCONTINUATI

w

KN −
−

−
− +

−
=
∑

α

What Actually Works?
Trigrams:

Unigrams, bigrams too little
context
Trigrams much better (when
there’s enough data)
4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

Good-Turing-like methods for
count adjustment

Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell

Kneser-Ney equalization for
lower-order models
See [Chen+Goodman]
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?

Having more data is always good…

… but so is picking a better smoothing mechanism!
N > 3 often not worth the cost (greater than you’d think)

5.5
6

6.5
7

7.5

8
8.5

9

9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

En
tr

op
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Beyond N-Gram LMs
Caching Models

Recent words more likely to appear again

Can be disastrous in practice for speech (why?)

Skipping Models

Clustering Models: condition on word classes when words are too
sparse
Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we’ll see these later)

||
)()1()|()|(21 history

historywcwwwPhistorywPCACHE
∈

−+= −− λλ

)__|(__)|()|(ˆ)|(231221121 −−−−−− ++= wwPwwPwwwPwwwPSKIP λλλ

Overview
So far: language models give P(s)

Help model fluency for various noisy-channel processes (MT,
ASR, etc.)
N-gram models don’t represent any deep variables involved in
language structure or meaning
Usually we want to know something about the input other than
how likely it is (syntax, semantics, topic, etc)

Next: Naïve-Bayes models
We introduce a single new global variable
Still a very simplistic model family
Lets us model hidden properties of text, but only very non-local
ones…

4

Text Categorization

Want to classify documents into broad semantic topics
(e.g. politics, sports, etc.)

Which one is the politics document? (And how much
deep processing did that decision take?)
One approach: bag-of-words and Naïve-Bayes models
Another approach next lecture…

Democratic vice presidential
candidate John Edwards on
Sunday accused President Bush
and Vice President Dick Cheney
of misleading Americans by
implying a link between deposed
Iraqi President Saddam Hussein
and the Sept. 11, 2001 terrorist
attacks.

While No. 1 Southern California
and No. 2 Oklahoma had no
problems holding on to the top
two spots with lopsided wins, four
teams fell out of the rankings —
Kansas State and Missouri from
the Big 12 and Clemson from the
Atlantic Coast Conference and
Oregon from the Pac-10.

Naïve-Bayes Models
Idea: pick a topic, then generate a document using a language
model for that topic.
Naïve-Bayes assumption: all words are independent given the topic.

Compare to a unigram language model:

c

w1 w2 wn. . .

∏=
i

in cwPcPwwwcP)|()(),,,(21 …

∏=
i

in wPwwwP)(),,(21 …

wn = STOP

We have to
smooth these!

Using NB for Classification

We have a joint model of topics and documents

Gives posterior likelihood of topic given a document

What about totally unknown words?
Can work shockingly well for textcat (especially in the wild)
How can unigram models be so terrible for language modeling, but class-
conditional unigram models work for textcat?
Numerical / speed issues
How about NB for spam detection?

∏=
i

in cwPcPwwwcP)|()(),,,(21 …

∑ ∏

∏

⎥
⎦

⎤
⎢
⎣

⎡
=

'

21

)'|()'(

)|()(
),,|(

c i
i

i
i

n

cwPcP

cwPcP
wwwcP …

Two NB Formulations

Two NB models for text categorization
The class-conditional unigram model, a.k.a. multinomial model

One node per word in the document
Driven by words which are present
Multiple occurrences, multiple evidence
Better overall – plus, know how to smooth

The binary model
One node for each word in the vocabulary

Incorporates explicit negative correlations
Know how to do feature selection (e.g. keep words with high
mutual information with the class variable)

c

v1 v2 v|V|.

c

w1 w2 wn. . .

vocabulary

ac
cu

ra
cy

Example: Barometers

NB FACTORS:
P(s) = 1/2
P(+|s) = 1/4
P(+|r) = 3/4

Raining Sunny

P(+,+,r) = 3/8 P(+,+,s) = 1/8

Reality

P(-,-,r) = 1/8 P(-,-,s) = 3/8

Raining?

M1 M2

NB Model PREDICTIONS:
P(r,+,+) = (½)(¾)(¾)
P(s,+,+) = (½)(¼)(¼)
P(r|+,+) = 9/10
P(s|+,+) = 1/10

Overconfidence!

Example: Stoplights

Lights Working Lights Broken

P(g,r,w) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7

Working?

NS EW

NB Model

Reality

NB FACTORS:
P(w) = 6/7
P(r|w) = 1/2
P(g|w) = 1/2

P(b) = 1/7
P(r|b) = 1
P(g|b) = 0

P(b|r,r) = 4/10 (what happened?)

5

(Non-)Independence Issues

Mild Non-Independence
Evidence all points in the right direction
Observations just not entirely independent
Results

Inflated Confidence
Deflated Priors

What to do? Boost priors or attenuate evidence

Severe Non-Independence
Words viewed independently are misleading
Interactions have to be modeled
What to do?

Change your model!

∏ <>=
i

boost
i

boost
n cwPcPwwwcP 11

21)|()(""),,,(…

Language Identification
How can we tell what language a document is in?

How to tell the French from the English?
Treat it as word-level textcat?

Overkill, and requires a lot of training data
You don’t actually need to know about words!

Option: build a character-level language model

The 38th Parliament will meet on
Monday, October 4, 2004, at 11:00 a.m.
The first item of business will be the
election of the Speaker of the House of
Commons. Her Excellency the Governor
General will open the First Session of
the 38th Parliament on October 5, 2004,
with a Speech from the Throne.

La 38e législature se réunira à 11 heures le
lundi 4 octobre 2004, et la première affaire
à l'ordre du jour sera l’élection du président
de la Chambre des communes. Son
Excellence la Gouverneure générale
ouvrira la première session de la 38e
législature avec un discours du Trône le
mardi 5 octobre 2004.

Σύµφωνο σταθερότητας και ανάπτυξης
Patto di stabilità e di crescita

Class-Conditional LMs

Can have a topic variable for other language models

Could be characters instead of words, used for language ID (HW2)
Could sum out the topic variable and use as a language model
How might a class-conditional n-gram language model behave
differently from a standard n-gram model?

∏ −=
i

iin cwwPcPwwwcP),|()(),,,(121 …

c

w1 w2 wn. . .START

