Recap: Language Models

- Why are language models useful?
- Why did I show samples of generated text?
- What are the main challenges in building n-gram language models?

Smoothing: Add-One, Etc.

One class of smoothing functions:
- Add-one / delta: assumes a uniform prior

\[
P_{\text{ADD}-\delta}(w | w_{-1}) = \frac{\hat{c}(w, w_{-1}) + \delta (1/V)}{\hat{c}(w_{-1}) + \delta}
\]

Better to assume a unigram prior

\[
P_{\text{UNI}-\delta}(w | w_{-1}) = \frac{\hat{c}(w, w_{-1}) + \delta \hat{P}(w)}{\hat{c}(w_{-1}) + \delta}
\]

Linear Interpolation

One way to ease the sparsity problem for n-grams is to use less sparse n-1 gram estimates

General linear interpolation:

\[
P(w | w_{-1}) = (1 - \lambda(w, w_{-1}))\hat{P}(w | w_{-1}) + \lambda \hat{P}(w)
\]

Having a single global mixing constant is generally not ideal:

\[
P(w | w_{-1}) = (1 - \lambda)\hat{P}(w | w_{-1}) + \lambda P(w)
\]

Solution: have different constant buckets
- Buckets by count
- Buckets by average count (better)
Held-Out Data

- Important tool for getting models to generalize:

 ![Training Data](Image)
 ![Held-Out Data](Image)
 ![Test Data](Image)

- When we have a small number of parameters that control the degree of smoothing, we set them to maximize the log-likelihood of held-out data

$$\mathcal{L}(w_1 \ldots w_n \mid M(\lambda_1 \ldots \lambda_k)) = \sum \log P_{M(\lambda_1 \ldots \lambda_k)}(w_i \mid w_{i-1})$$

- Can use any optimization technique (line search or EM usually easiest)

Examples:

$$P_{M(\lambda_1 \ldots \lambda_k)}(w \mid w_{i-1}) = \lambda \hat{P}(w \mid w_{i-1}) + \lambda \hat{P}(w)$$

$$P_{\text{UN-PERFORMED}}(w \mid w_i) = \frac{c(w, w_i)}{c(w, w_i) + \delta}$$

Held-Out Reweighting

- What’s wrong with unigram-prior smoothing?

 - Let’s look at some real bigram counts [Church and Gale 91]:

 - Big things to notice:
 - Add-one vastly overestimates the fraction of new bigrams
 - Add-0.0000027 still underestimates the ratio $2^*/1^*$

 - One solution: use held-out data to predict the map of c to c^*

- Big things to notice:
 - Add-one vastly overestimates the fraction of new bigrams
 - Add-0.0000027 still underestimates the ratio $2^*/1^*$

- One solution: use held-out data to predict the map of c to c^*

Good-Turing Reweighting I

- We’d like to not need held-out data (why?)

 - Idea: leave-one-out validation
 - Take each of the c training words out in turn
 - c training sets of size c-1, held-out of size 1
 - What fraction of held-out words are unseen in training?
 - N_{c-1}/c
 - What fraction of held-out words are seen k times in training?
 - $(k+1)N_{k+1}/c$
 - In the future we expect $(k+1)N_{k+1}/c$ of the words to be those with training count k
 - There are N_k words with training count k
 - Each should occur with probability:
 - $(k+1)N_{k+1}/c$
 - …or expected count $(k+1)N_{k+1}/c$

Good-Turing Reweighting II

- Problem: what about “the”? (say $c=4417$)

 - For small k, $N_k > N_{c-1}$
 - For large k, too jumpy, zeros wreck estimates

- Simple Good-Turing [Gale and Sampson]: replace empirical N_k with a best-fit power law once count counts get unreliable

Good-Turing Reweighting III

- Hypothesis: counts of k should be $k^* = (k+1)N_{k+1}/N_k$

Kneser-Ney Smoothing I

- Something’s been very broken all this time

 - Shannon game: There was an unexpected _____?
 - delay?
 - Francisco?
 - “Francisco” is more common than “delay”
 - … but “Francisco” always follows “San”

- Solution: Kneser-Ney smoothing

 - In the back-off model, we don’t want the unigram probability of w
 - Instead, probability given that we are observing a novel continuation
 - Every bigram type was a novel continuation the first time it was seen

$$P_{kreat}(w \mid w_i) = \frac{c^*(w, w_i)}{\sum_v c(w, v) + \alpha(w)\hat{P}(w)}$$
Kneser-Ney Smoothing II

- One more aspect to Kneser-Ney:
 - Look at the GT counts:
 - Absolute Discounting
 - Save ourselves some time and just subtract 0.75 (or some d)
 - Maybe have a separate value of d for very low counts

 $P_{nk}(w_i | w_{i-1}) = \frac{c(w_i, w_{i-1}) - D}{\sum c(w_j, w_{j-1}) + \alpha(w_{i-1}) P_{CONTINUATION}(w_i)}$

- Beyond N-Gram LMs

 - Caching Models
 - Recent words more likely to appear again

 $P_{caching}(w_i | \text{history}) = \lambda P(w_i | w_{i-1}) + (1 - \lambda) P(w_i | \text{history})$
 - Can be disastrous in practice for speech (why?)

 - Skipping Models
 - $P_{skipping}(w_i | w_{i-1}, \text{history}) = \lambda P(w_i | w_{i-1}) + \lambda P(w_i | \text{history})$
 - Clustering Models: condition on word classes when words are too sparse
 - Trigger Models: condition on bag of history words (e.g., maxent)
 - Structured Models: use parse structure (we’ll see these later)

What Actually Works?

- Trigrams:
 - Unigrams, bigrams too little context
 - Trigrams much better (when there’s enough data)
 - 4-, 5-grams usually not worth the cost (which is more than it seems, due to how speech recognizers are constructed)

- Good-Turing-like methods for count adjustment
 - Absolute discounting, Good-Turing, held-out estimation, Witten-Bell

- Kneser-Ney equalization for lower-order models
 - See [Chen+Goodman]
 - Reading for tons of graphs!

[Graphs from Joshua Goodman]

Data >> Method?

- Having more data is always good...
- ... but so is picking a better smoothing mechanism!
- $N > 3$ often not worth the cost (greater than you’d think)

Overview

- So far: language models give $P(s)$
 - Help model fluency for various noisy-channel processes (MT, ASR, etc.)
 - N-gram models don’t represent any deep variables involved in language structure or meaning
 - Usually we want to know something about the input other than how likely it is (syntax, semantics, topic, etc)

- Next: Naive-Bayes models
 - We introduce a single new global variable
 - Still a very simplistic model family
 - Lets us model hidden properties of text, but only very non-local ones...
Text Categorization

- Want to classify documents into broad semantic topics (e.g., politics, sports, etc.)
- Democratic vice presidential candidate John Edwards on Sunday accused President Bush and Vice President Dick Cheney of misleading Americans by implying a link between deposed Iraqi President Saddam Hussein and the Sept. 11, 2001 terrorist attacks.
- Which one is the politics document? (And how much deep processing did that decision take?)
- One approach: bag-of-words and Naïve-Bayes models
- Another approach next lecture...

Two NB Formulations

- Two NB models for text categorization
 - The class-conditional unigram model, a.k.a. multinomial model
 - One node per word in the document
 - Driven by words which are present
 - Multiple occurrences, multiple evidence
 - Better overall — plus, know how to smooth
 - The binary model
 - One node for each word in the vocabulary

Naïve-Bayes Models

- Idea: pick a topic, then generate a document using a language model for that topic.
- Naïve-Bayes assumption: all words are independent given the topic.

\[
P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i | c)
\]

We have to smooth these!

\[
P(w_1, w_2, \ldots, w_n) = \prod_i P(w_i)
\]

Naïve-Bayes assumptions: all words are independent given the topic.

Using NB for Classification

- We have a joint model of topics and documents

\[
P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i | c)
\]

Gives posterior likelihood of topic given a document

\[
P(c | w_1, w_2, \ldots, w_n) = \frac{P(c) \prod_i P(w_i | c)}{\sum \left[P(c') \prod_i P(w_i | c') \right]}
\]

Example: Barometers

- NB FACTORS:
 - \(P(s) = 1/2 \)
 - \(P(+) | s) = 1/4 \)
 - \(P(+) | r) = 3/4 \)

\[
\begin{align*}
P(+,+,r) &= 3/8 \\
P(+,+,s) &= 1/8 \\
P(-,-,r) &= 1/8 \\
P(-,-,s) &= 3/8
\end{align*}
\]

- Reality:
 - Raining Sunny
 - P(r,+,+) = 9/10
 - P(s,+,+) = 1/10

- NB Model:
 - M1
 - M2

Example: Stoplights

- NB FACTORS:
 - \(P(w) = 6/7 \)
 - \(P(r | w) = 1/2 \)
 - \(P(g | w) = 1/2 \)
 - \(P(b) = 1/7 \)
 - \(P(r | b) = 1 \)
 - \(P(g | b) = 0 \)

\[
\begin{align*}
P(b|r,r) &= 4/10 \ (\text{what happened?})
\end{align*}
\]

- Reality:
 - Lights Working
 - Lights Broken

Example: Text Classification

- Whether the document is politics or not?”
- Which one is the politics document? (And how much deep processing did that decision take?)
- One approach: bag-of-words and Naïve-Bayes models
- Another approach next lecture...

Democratic vice presidential candidate John Edwards on Sunday accused President Bush and Vice President Dick Cheney of misleading Americans by implying a link between deposed Iraqi President Saddam Hussein and the Sept. 11, 2001 terrorist attacks.

While No. 1 Southern California and No. 2 Oklahoma had no problems holding on to the top two spots with lopsided wins, four teams fell out of the rankings — Kansas State and Missouri from the Big 12 and Clemson from the Atlantic Coast Conference and Oregon from the Pac-10.
(Non-)Independence Issues

- **Mild Non-Independence**
 - Evidence all points in the right direction
 - Observations just not entirely independent
 - Results
 - Inflated Confidence
 - Deflated Prior
 - What to do? Boost priors or attenuate evidence
 \[P(c, w_1, w_2, \ldots, w_n) = \prod_i P(w_i \mid c)^{\text{boost}_i} \]

- **Severe Non-Independence**
 - Words viewed independently are misleading
 - Interactions have to be modeled
 - What to do?
 - Change your model!

Language Identification

- How can we tell what language a document is in?

 The 38th Parliament will meet on Monday, October 4, 2004, at 11:00 a.m. The first item of business will be the election of the Speaker of the House of Commons. Her Excellency the Governor General will open the First Session of the 38th Parliament on October 5, 2004, with a Speech from the Throne.

 How to tell the French from the English?
 - Treat it as word-level textcat?
 - Overkill, and requires a lot of training data
 - Σύμφωνο σταθερότητας και ανάπτυξης
 - Patto di stabilità e di crescita
 - Option: build a character-level language model

Class-Conditional LMs

- Can have a topic variable for other language models
 \[P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i \mid w_{i-1}, c) \]

- Could be characters instead of words, used for language ID (HW2)
- Could sum out the topic variable and use as a language model
- How might a class-conditional n-gram language model behave differently from a standard n-gram model?