Recap: Language Models

- Why are language models useful?
- Why did I show samples of generated text?
- What are the main challenges in building n-gram language models?
Smoothing

- We often want to make estimates from sparse statistics:

\[
P(w \mid \text{denied the})
\]

- 3 allegations
- 2 reports
- 1 claims
- 1 request
- 7 total

- Smoothing flattens spiky distributions so they generalize better

\[
P(w \mid \text{denied the})
\]

- 2.5 allegations
- 1.5 reports
- 0.5 claims
- 0.5 request
- 2 other
- 7 total

- Very important all over NLP, but easy to do badly!
- We'll illustrate with bigrams today (\(h = \) previous word, could be anything).

Vocabulary Size

- Key issue for language models: open or closed vocabulary?
 - When would you want an open vocabulary?
 - When would you want a closed vocabulary?

- How to set the vocabulary size \(V\)?
 - By external factors (e.g. speech recognizers)
 - Using statistical estimates?
 - Difference between estimating unknown token rate and probability of a given unknown word

- For the homework:
 - OK to assume there is only one unknown word type UNK
 - UNK be quite common in new text!
 - UNK stands for all unknown word type
Smoothing: Add-One, Etc.

One class of smoothing functions:
- Add-one / delta: assumes a uniform prior

\[
P_{ADD-\delta}(w \mid w_{-1}) = \frac{c(w, w_{-1}) + \delta(1/V)}{c(w_{-1}) + \delta}
\]

- Better to assume a unigram prior

\[
P_{UNI-PRIOR}(w \mid w_{-1}) = \frac{c(w, w_{-1}) + \delta \hat{P}(w)}{c(w_{-1}) + \delta}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>number of word tokens in training data</td>
</tr>
<tr>
<td>(c(w))</td>
<td>count of word (w) in training data</td>
</tr>
<tr>
<td>(c(w, w_{-1}))</td>
<td>count of word (w) following word (w_{-1})</td>
</tr>
<tr>
<td>(V)</td>
<td>total vocabulary size (assumed known)</td>
</tr>
<tr>
<td>(N_k)</td>
<td>number of word types with count (k)</td>
</tr>
</tbody>
</table>

Linear Interpolation

One way to ease the sparsity problem for n-grams is to use less-sparse n-1-gram estimates

General linear interpolation:

\[
P(w \mid w_{-1}) = [1 - \lambda(w, w_{-1})] \hat{P}(w \mid w_{-1}) + [\lambda(w, w_{-1})] P(w)
\]

- Having a single global mixing constant is generally not ideal:

\[
P(w \mid w_{-1}) = [1 - \lambda] \hat{P}(w \mid w_{-1}) + [\lambda] P(w)
\]

- Solution: have different constant buckets
 - Buckets by count
 - Buckets by average count (better)
Held-Out Data

- Important tool for getting models to generalize:

```
| Training Data | Held-Out Data | Test Data |
```

- When we have a small number of parameters that control the degree of smoothing, we set them to maximize the (log-)likelihood of held-out data

\[
LL(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum \log P_{M(\lambda_1...\lambda_k)}(w_i \mid w_{i-1})
\]

- Can use any optimization technique (line search or EM usually easiest)

- Examples:

\[
P_{\text{LIN}(\lambda_1, \lambda_2)}(w \mid w_{-1}) = \lambda_1 \hat{P}(w \mid w_{-1}) + \lambda_2 \hat{P}(w)
\]

\[
P_{\text{UNI-PRIOR}(\delta)}(w \mid w_{-1}) = \frac{c(w, w_{-1}) + \delta \hat{P}(w)}{c(w_{-1}) + \delta}
\]

Held-Out Reweighting

- What's wrong with unigram-prior smoothing?
- Let’s look at some real bigram counts [Church and Gale 91]:

<table>
<thead>
<tr>
<th>Count in 22M Words</th>
<th>Actual c* (Next 22M)</th>
<th>Add-one’s c*</th>
<th>Add-0.0000027’s c*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.448</td>
<td>2/7e-10</td>
<td>~1</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>3/7e-10</td>
<td>~2</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>4/7e-10</td>
<td>~3</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
<td>5/7e-10</td>
<td>~4</td>
</tr>
<tr>
<td>5</td>
<td>4.21</td>
<td>6/7e-10</td>
<td>~5</td>
</tr>
</tbody>
</table>

| Mass on New | 9.2% | ~100% | 9.2% |
| Ratio of 2/1 | 2.8 | 1.5 | ~2 |

- Big things to notice:
 - Add-one vastly overestimates the fraction of new bigrams
 - Add-0.0000027 still underestimates the ratio 2*/1*
- One solution: use held-out data to predict the map of c to c*
Good-Turing Reweighting I

- We’d like to not need held-out data (why?)
- Idea: leave-one-out validation
 - Take each of the c training words out in turn
 - c training sets of size $c-1$, held-out of size 1
 - What fraction of held-out words are unseen in training?
 - N_0/c
 - What fraction of held-out words are seen k times in training?
 - $(k+1)N_{k+1}/c$
 - So in the future we expect $(k+1)N_{k+1}/c$ of the words to be those with training count k
 - There are N_k words with training count k
 - Each should occur with probability:
 - $(k+1)N_{k+1}/cN_k$
 - …or expected count $(k+1)N_{k+1}/N_k$

Good-Turing Reweighting II

- Problem: what about “the”? (say $c=4417$)
 - For small k, $N_k > N_{k+1}$
 - For large k, too jumpy, zeros wreck estimates
 - Simple Good-Turing [Gale and Sampson]: replace empirical N_k with a best-fit power law once count counts get unreliable
Good-Turing Reweighting III

- Hypothesis: counts of k should be $k^* = (k+1)N_{k+1}/N_k$

<table>
<thead>
<tr>
<th>Count in 22M Words</th>
<th>Actual c^* (Next 22M)</th>
<th>GT’s c^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.448</td>
<td>0.446</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.26</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
<td>3.24</td>
</tr>
<tr>
<td>Mass on New</td>
<td>9.2%</td>
<td>9.2%</td>
</tr>
</tbody>
</table>

- Katz Smoothing
 - Use GT discounted bigram counts (roughly – Katz left large counts alone)
 - Whatever mass is left goes to empirical unigram

$$P_{KATZ}(w \mid w_{-1}) = \frac{c^*(w, w_{-1})}{\sum_{w} c(w, w_{-1})} + \alpha(w_{-1}) \hat{P}(w)$$

Kneser-Ney Smoothing I

- Something’s been very broken all this time
 - Shannon game: There was an unexpected ____?
 - delay?
 - Francisco?
 - “Francisco” is more common than “delay”
 - … but “Francisco” always follows “San”

- Solution: Kneser-Ney smoothing
 - In the back-off model, we don’t want the unigram probability of w
 - Instead, probability given that we are observing a novel continuation
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) = \frac{|\{w_{-1} : c(w, w_{-1}) > 0\}|}{|(w, w_{-1}) : c(w, w_{-1}) > 0|}$$
Kneser-Ney Smoothing II

- One more aspect to Kneser-Ney:
 - Look at the GT counts:

<table>
<thead>
<tr>
<th>Count in 22M Words</th>
<th>Actual c^* (Next 22M)</th>
<th>GT’s c^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.448</td>
<td>0.446</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.26</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
<td>3.24</td>
</tr>
</tbody>
</table>

- Absolute Discounting
 - Save ourselves some time and just subtract 0.75 (or some d)
 - Maybe have a separate value of d for very low counts

$$P_{KN}(w|w_{-1}) = \frac{c(w, w_{-1}) - D}{\sum_{w'} c(w', w_{-1})} + \alpha(w_{-1})P_{CONTINUATION}(w)$$

What Actually Works?

- Trigrams:
 - Unigrams, bigrams too little context
 - Trigrams much better (when there’s enough data)
 - 4-, 5-grams usually not worth the cost (which is more than it seems, due to how speech recognizers are constructed)
- Good-Turing-like methods for count adjustment
 - Absolute discounting, Good-Turing, held-out estimation, Witten-Bell
- Kneser-Ney equalization for lower-order models
- See [Chen+Goodman] reading for tons of graphs!
Data >> Method?

- Having more data is always good…

- … but so is picking a better smoothing mechanism!
- \(N > 3 \) often not worth the cost (greater than you’d think)

Beyond N-Gram LMs

- **Caching Models**
 - Recent words more likely to appear again

 \[
 P_{\text{CACHE}}(w \mid \text{history}) = \lambda \hat{P}(w \mid w_{-1}w_{-2}) + (1 - \lambda) \frac{c(w \in \text{history})}{|\text{history}|}
 \]
 - Can be disastrous in practice for speech (why?)

- **Skipping Models**
 \[
 P_{\text{SKIP}}(w \mid w_{-1}w_{-2}) = \lambda_1 \hat{P}(w \mid w_{-1}w_{-2}) + \lambda_2 P(w \mid w_{-1} __ __) + \lambda_3 P(w \mid ___w_{-2})
 \]

- **Clustering Models**: condition on word classes when words are too sparse
- **Trigger Models**: condition on bag of history words (e.g., maxent)
- **Structured Models**: use parse structure (we’ll see these later)
Overview

- So far: language models give P(s)
 - Help model fluency for various noisy-channel processes (MT, ASR, etc.)
 - N-gram models don’t represent any deep variables involved in language structure or meaning
 - Usually we want to know something about the input other than how likely it is (syntax, semantics, topic, etc)

- Next: Naïve-Bayes models
 - We introduce a single new global variable
 - Still a very simplistic model family
 - Lets us model hidden properties of text, but only very non-local ones…
Text Categorization

- Want to classify documents into broad semantic topics (e.g. politics, sports, etc.)
- Which one is the politics document? (And how much deep processing did that decision take?)
- One approach: bag-of-words and Naïve-Bayes models
- Another approach next lecture...

Democratic vice presidential candidate John Edwards on Sunday accused President Bush and Vice President Dick Cheney of misleading Americans by implying a link between deposed Iraqi President Saddam Hussein and the Sept. 11, 2001 terrorist attacks.

While No. 1 Southern California and No. 2 Oklahoma had no problems holding on to the top two spots with lopsided wins, four teams fell out of the rankings — Kansas State and Missouri from the Big 12 and Clemson from the Atlantic Coast Conference and Oregon from the Pac-10.

Naïve-Bayes Models

- Idea: pick a topic, then generate a document using a language model for that topic.
- Naïve-Bayes assumption: all words are independent given the topic.

\[P(c, w_1, w_2, \ldots w_n) = P(c) \prod_i P(w_i | c) \]

We have to smooth these!

Compare to a unigram language model:

\[P(w_1, w_2, \ldots w_n) = \prod_i P(w_i) \]
Using NB for Classification

- We have a joint model of topics and documents
 \[
P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i | c)
\]
- Gives posterior likelihood of topic given a document
 \[
P(c | w_1, w_2, \ldots, w_n) = \frac{P(c) \prod_i P(w_i | c)}{\sum_{c'} P(c') \prod_i P(w_i | c')}
\]
- What about totally unknown words?
- Can work shockingly well for textcat (especially in the wild)
- How can unigram models be so terrible for language modeling, but class-
 conditional unigram models work for textcat?
- Numerical / speed issues
- How about NB for spam detection?

Two NB Formulations

- Two NB models for text categorization
 - The class-conditional unigram model, a.k.a. multinomial model
 - One node per word in the document
 - Driven by words which are present
 - Multiple occurrences, multiple evidence
 - Better overall – plus, know how to smooth
 - The binary model
 - One node for each word in the vocabulary
 - Incorporates explicit negative correlations
 - Know how to do feature selection (e.g. keep words with high mutual information with the class variable)
Example: Barometers

Reality

- **Raining**
 - $P(+,+,r) = 3/8$
 - $P(\cdot,+,r) = 1/8$
- **Sunny**
 - $P(+,+,s) = 1/8$
 - $P(\cdot,+,s) = 3/8$

NB Model

- **Raining?**
 - $P(s) = 1/2$
 - $P(+|s) = 1/4$
 - $P(+|r) = 3/4$

NB FACTORS:

- $P(w) = 6/7$
- $P(r|w) = 1/2$
- $P(g|w) = 1/2$
- $P(r) = 1/7$
- $P(r|b) = 1$
- $P(g|b) = 0$

PREDICTIONS:

- $P(r,+,+) = (1/2)(3/4)(3/4)$
- $P(s,+,+) = (1/2)(1/4)(1/4)$
- $P(r|+,+) = 9/10$
- $P(s|+,+) = 1/10$

Overconfidence!

Example: Stoplights

Reality

- **Lights Working**
 - $P(g,r,w) = 3/7$
 - $P(r,g,w) = 3/7$
- **Lights Broken**
 - $P(r,r,b) = 1/7$

NB Model

- **Working?**
 - $P(w) = 6/7$
 - $P(r|w) = 1/2$
 - $P(g|w) = 1/2$

NB FACTORS:

- $P(b|r,r) = 4/10$ (what happened?)
(Non-)Independence Issues

- **Mild Non-Independence**
 - Evidence all points in the right direction
 - Observations just not entirely independent
 - Results
 - Inflated Confidence
 - Deflated Priors
 - What to do? Boost priors or attenuate evidence
 \[P(c, w_1, w_2, \ldots w_n) = P(c) \prod_i P(w_i | c) \]

- **Severe Non-Independence**
 - Words viewed independently are misleading
 - Interactions have to be modeled
 - What to do?
 - Change your model!

Language Identification

- **How can we tell what language a document is in?**
 - How to tell the French from the English?
 - Treat it as word-level textcat?
 - Overkill, and requires a lot of training data
 - You don’t actually need to know about words!
 - Σύμφωνο σταθερότητας και ανάπτυξης
 - Patto di stabilità e di crescita
 - Option: build a character-level language model
Class-Conditional LMs

- Can have a topic variable for other language models
 \[P(c, w_1, w_2, \ldots w_n) = P(c) \prod_i P(w_i \mid w_{i-1}, c) \]

- Could be characters instead of words, used for language ID (HW2)
- Could sum out the topic variable and use as a language model
- How might a class-conditional n-gram language model behave differently from a standard n-gram model?