
1

Statistical NLP
Spring 2007

Lecture 19: Compositional Semantics
Dan Klein – UC Berkeley

Includes examples from Johnson, Jurafsky and Gildea, Luo, Palmer

Semantic Role Labeling (SRL)

Characterize clauses as relations with roles:

Want to more than which NP is the subject (but not much more):
Relations like subject are syntactic, relations like agent or message
are semantic
Typical pipeline:

Parse, then label roles
Almost all errors locked in by parser
Really, SRL is quite a lot easier than parsing

SRL Example PropBank / FrameNet

FrameNet: roles shared between verbs
PropBank: each verb has it’s own roles
PropBank more used, because it’s layered over the treebank (and
so has greater coverage, plus parses)
Note: some linguistic theories postulate even fewer roles than
FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

PropBank Example PropBank Example

2

PropBank Example Shared Arguments

Path Features Results

Features:
Path from target to filler
Filler’s syntactic type, headword, case
Target’s identity
Sentence voice, etc.
Lots of other second-order features

Gold vs parsed source trees

SRL is fairly easy on gold trees

Harder on automatic parses

Interaction with Empty Elements Empty Elements
In the PTB, three kinds of empty elements:

Null items (usually complementizers)
Dislocation (WH-traces, topicalization, relative
clause and heavy NP extraposition)
Control (raising, passives, control, shared
argumentation)

Need to reconstruct these (and resolve
any indexation)

3

Example: English Example: German

Types of Empties A Pattern-Matching Approach
[Johnson 02]

Pattern-Matching Details
Something like transformation-based learning
Extract patterns

Details: transitive verb marking, auxiliaries
Details: legal subtrees

Rank patterns
Pruning ranking: by correct / match rate
Application priority: by depth

Pre-order traversal
Greedy match

Top Patterns Extracted

4

Results A Machine-Learning Approach
[Levy and Manning 04]
Build two classifiers:

First one predicts where empties go
Second one predicts if/where they are bound
Use syntactic features similar to SRL (paths,
categories, heads, etc)

Semantic Interpretation

Back to meaning!
A very basic approach to computational semantics
Truth-theoretic notion of semantics (Tarskian)
Assign a “meaning” to each word
Word meanings combine according to the parse structure
People can and do spend entire courses on this topic
We’ll spend about an hour!

What’s NLP and what isn’t?
Designing meaning representations?
Computing those representations?
Reasoning with them?

Supplemental reading will be on the web page.

Meaning

“Meaning”
What is meaning?

“The computer in the corner.”
“Bob likes Alice.”
“I think I am a gummi bear.”

Knowing whether a statement is true?
Knowing the conditions under which it’s true?
Being able to react appropriately to it?

“Who does Bob like?”
“Close the door.”

A distinction:
Linguistic (semantic) meaning

“The door is open.”
Speaker (pragmatic) meaning

Today: assembling the semantic meaning of sentence from its parts

Entailment and Presupposition
Some notions worth knowing:

Entailment:
A entails B if A being true necessarily implies B is true
? “Twitchy is a big mouse” → “Twitchy is a mouse”
? “Twitchy is a big mouse” → “Twitchy is big”
? “Twitchy is a big mouse” → “Twitchy is furry”

Presupposition:
A presupposes B if A is only well-defined if B is true
“The computer in the corner is broken” presupposes that
there is a (salient) computer in the corner

Truth-Conditional Semantics

Linguistic expressions:
“Bob sings”

Logical translations:
sings(bob)
Could be p_1218(e_397)

Denotation:
[[bob]] = some specific person (in some context)
[[sings(bob)]] = ???

Types on translations:
bob : e (for entity)
sings(bob) : t (for truth-value)

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)

5

Truth-Conditional Semantics
Proper names:

Refer directly to some entity in the world
Bob : bob [[bob]]W ???

Sentences:
Are either true or false (given
how the world actually is)
Bob sings : sings(bob)

So what about verbs (and verb phrases)?
sings must combine with bob to produce sings(bob)
The λ-calculus is a notation for functions whose arguments are
not yet filled.
sings : λx.sings(x)
This is predicate – a function which takes an entity (type e) and
produces a truth value (type t). We can write its type as e→t.
Adjectives?

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)

Compositional Semantics
So now we have meanings for the words
How do we know how to combine words?
Associate a combination rule with each grammar rule:

S : β(α) → NP : α VP : β (function application)
VP : λx . α(x) ∧ β(x) → VP : α and : ∅ VP : β (intersection)

Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)

Denotation
What do we do with logical translations?

Translation language (logical form) has fewer
ambiguities
Can check truth value against a database

Denotation (“evaluation”) calculated using the database

More usefully: assert truth and modify a database
Questions: check whether a statement in a corpus
entails the (question, answer) pair:

“Bob sings and dances” → “Who sings?” + “Bob”

Chain together facts and use them for comprehension

Other Cases

Transitive verbs:
likes : λx.λy.likes(y,x)
Two-place predicates of type e→(e→t).
likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

Quantifiers:
What does “Everyone” mean here?
Everyone : λf.∀x.f(x)
Mostly works, but some problems

Have to change our NP/VP rule.
Won’t work for “Amy likes everyone.”

“Everyone likes someone.”
This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes
λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)

Indefinites
First try

“Bob ate a waffle” : ate(bob,waffle)
“Amy ate a waffle” : ate(amy,waffle)

Can’t be right!
∃ x : waffle(x) ∧ ate(bob,x)
What does the translation
of “a” have to be?
What about “the”?
What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

Grounding
So why does the translation likes : λx.λy.likes(y,x) have anything
to do with actual liking?
It doesn’t (unless the denotation model says so)
Sometimes that’s enough: wire up bought to the appropriate
entry in a database

Meaning postulates
Insist, e.g ∀x,y.likes(y,x) → knows(y,x)
This gets into lexical semantics issues

Statistical version?

6

Tense and Events
In general, you don’t get far with verbs as predicates
Better to have event variables e

“Alice danced” : danced(alice)
∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

Event variables let you talk about non-trivial tense /
aspect structures

“Alice had been dancing when Bob sneezed”
∃ e, e’ : dance(e) ∧ agent(e,alice) ∧

sneeze(e’) ∧ agent(e’,bob) ∧
(start(e) < start(e’) ∧ end(e) = end(e’)) ∧
(time(e’) < now)

Adverbs
What about adverbs?

“Bob sings terribly”
terribly(sings(bob)?
(terribly(sings))(bob)?
∃e present(e) ∧
type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?
It’s really not this
simple..

S

NP VP

Bob VBP ADVP

terriblysings

Propositional Attitudes
“Bob thinks that I am a gummi bear”

thinks(bob, gummi(me)) ?
Thinks(bob, “I am a gummi bear”) ?
thinks(bob, ^gummi(me)) ?

Usual solution involves intensions (^X) which are,
roughly, the set of possible worlds (or conditions) in
which X is true

Hard to deal with computationally
Modeling other agents models, etc
Can come up in simple dialog scenarios, e.g., if you want to talk
about what your bill claims you bought vs. what you actually
bought

Trickier Stuff

Non-Intersective Adjectives
green ball : λx.[green(x) ∧ ball(x)]
fake diamond : λx.[fake(x) ∧ diamond(x)] ?

Generalized Quantifiers
the : λf.[unique-member(f)]
all : λf. λg [∀x.f(x) → g(x)]
most?
Could do with more general second order predicates, too (why worse?)

the(cat, meows), all(cat, meows)
Generics

“Cats like naps”
“The players scored a goal”

Pronouns (and bound anaphora)
“If you have a dime, put it in the meter.”

… the list goes on and on!

λx.[fake(diamond(x))

Multiple Quantifiers
Quantifier scope

Groucho Marx celebrates quantifier order ambiguity:
“In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her.”

Deciding between readings
“Bob bought a pumpkin every Halloween”
“Bob put a pumpkin in every window”
Multiple ways to work this out

Make it syntactic (movement)
Make it lexical (type-shifting)

Add a “sem” feature to each context-free rule
S → NP loves NP

S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

Meaning of S depends on meaning of NPs

TAG version:

Implementation, TAG, Idioms

NPV
loves

VP

S

NPx

y

loves(x,y)

NP
the bucket

V
kicked

VP

S

NPx

died(x)

Template filling: S[sem=showflights(x,y)] →
I want a flight from NP[sem=x] to NP[sem=y]

7

Modeling Uncertainty

Gaping hole warning!
Big difference between the syntax and semantics models presented
here.

With probabilistic parsers, can say things like “72% belief that the PP
attaches to the NP.”
That means that probably the enemy has night vision goggles.
However, you can’t throw a logical assertion into a theorem prover
with 72% confidence.
Not clear humans really extract and process logical statements
symbolically anyway.
Use this to decide the expected utility of calling reinforcements?

In short, we need probabilistic reasoning, not just probabilistic
disambiguation followed by symbol reasoning!

The scout saw the enemy soldiers with night goggles.

CCG Parsing

Combinatory
Categorial
Grammar

Fully (mono-)
lexicalized
grammar
Categories encode
argument
sequences
Very closely
related to the
lambda calculus
Can have spurious
ambiguities (why?)

