A Simple Chart Parser

- Chart parsers are sparse dynamic programs
- Ingredients:
 - Nodes: positions between words
 - Edges: spans of words with labels, represent the set of trees over those words rooted at x
 - A chart: records which edges we’ve built
 - An agenda: a holding pen for edges (a queue)
- We’re going to figure out:
 - What edges can we build?
 - All the ways we built them.

<table>
<thead>
<tr>
<th>0</th>
<th>critics</th>
<th>1</th>
<th>write</th>
<th>2</th>
<th>reviews</th>
<th>3</th>
<th>with</th>
<th>4</th>
<th>computers</th>
<th>5</th>
</tr>
</thead>
</table>

Word Edges

- An edge found for the first time is called discovered. Edges go into the agenda on discovery.
- To initialize, we discover all word edges.

AGENDA
critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

0 1 2 3 4 5
critics write reviews with computers

Unary Projection

- When we pop an word edge off the agenda, we check the lexicon to see what tag edges we can build from it

<table>
<thead>
<tr>
<th>critics[0,1]</th>
<th>write[1,2]</th>
<th>reviews[2,3]</th>
<th>with[3,4]</th>
<th>computers[4,5]</th>
</tr>
</thead>
</table>

0 1 2 3 4 5
critics write reviews with computers

The “Fundamental Rule”

- When we pop edges off of the agenda:
 - Check for unary projections (NNS → critics, NP → NNS)

 \[Y[i,j] \text{ with } X \rightarrow Y \text{ forms } X[i,j] \]

 - Combine with edges already in our chart (this is sometimes called the fundamental rule)

 \[Y[i,j] \text{ and } Z[j,k] \text{ with } X \rightarrow Y Z \text{ form } X[i,k] \]

- Enqueue resulting edges (if newly discovered)
- Record backtraces (called traversals)
- Stick the popped edge in the chart

- Queries a chart must support:
 - Is edge X[i,j] in the chart?
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?
An Example

Exploiting Substructure
- Each edge records all the ways it was built (locally)
- Can recursively extract trees
- A chart may represent too many parses to enumerate (how many?)

Order Independence
- A nice property:
 - It doesn’t matter what policy we use to order the agenda (FIFO, LIFO, random).
- Why? Invariant: before popping an edge:
 - Any edge X[i,j] that can be directly built from chart edges and a single grammar rule is either in the chart or in the agenda.
 - Convince yourselves this invariant holds!
- This will not be true weighted parsers:
 - Instead must also insure that an edge has best score when added to the chart
 - Sufficient (but not necessary) to order agenda items by current best score

Problems with PCFGs?
- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
 - Parse will go one way or the other, regardless of words
 - We addressed this in one way with unlexicalized grammars (how?)
 - Lexicalization allows us to be sensitive to specific words

Problems with PCFGs
- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?
Lexicalized Trees

- Add "headwords" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
- Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost JN
 - Take right child
 - VP:
 - Take leftmost VP
 - Take rightmost NP
- Take left child

Lexical Derivation Steps

- Simple derivation of a local tree [simplified Charniak 97]

```
  VP[saw]  
  \   / 
 VP[saw] NP[her] NP[today] PP[on]
```

Lexical Derivation Steps

- Another derivation of a local tree [Collins 99]

```
 Choose a head tag and word
 Choose a complement bag
 Generate children (incl. adjuncts)
 Recursively derive children
```

Naïve Lexicalized Parsing

- Can, in principle, use CKY on lexicalized PCFGs
 - \(O(R^n)\) time and \(O(S^n)\) memory
 - But \(R = r^2\) and \(S = s^v\)
 - Result is completely impractical (why?)
 - Memory: 10K rules \(\times 50K\) words \(\times (40\) words\)^2 \(\times 8\) bytes = 6TB
- Can modify CKY to exploit lexical sparsity
 - Lexicalized symbols are a base grammar symbol and a pointer into the input sentence, not any arbitrary word
 - Result: \(O(m^n)\) time, \(O(n^3)\)
 - Memory: 10K rules \(\times (40\) words\)^3 \(\times 8\) bytes = 5GB

Lexicalized CKY

```
bestScore(X, i, j, h)
if (j = i+1)
  return tagScore(X, x[i])
else
  return max
      max score(X[h] -> Y[h] Z[h']) * bestScore(Y, i, k, h')
      max score(X[h] -> Y[h] Z[h']) * bestScore(Z, k, j, h)
```
Quartic Parsing

- Turns out, you can do better [Eisner 99]
- Gives an $O(n^4)$ algorithm
- Still prohibitive in practice if not pruned

Dependency Parsing

- Lexicalized parsers can be seen as producing dependency trees
- Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]
- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the $O(n^4)$ CKY
 - Remember only a few hypotheses for each span $<i,j>$.
 - If we keep K hypotheses at each span, then we do at most $O(nK^2)$ work per span (why?)
 - Keeps things more or less cubic
 - Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
 - First, parse with the base grammar
 - For each $X[i,j]$ calculate $P(X[i,j]|s)$
 - This isn't trivial, and there are clever speed ups
 - Second, do the full $O(n^4)$ CKY
 - Skip any $X[i,j]$ which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!
 - Currently the fastest lexicalized parser

 - Charniak et al 06: can use more passes
 - Petrov et al 07: can use many more passes

Pruning with A^*

- You can also speed up the search without sacrificing optimality
 - For agenda-based parsers:
 - Can select which items to process first
 - Can do with any A^* heuristic, no loss of optimality [Klein and Manning 03]
Projection-Based A*

![Diagram of Projection-Based A*]

A* Speedup

- Total time dominated by calculation of A* tables in each projection... $O(n^2)$

Results

- **Some results**
 - Collins 99 – 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 – 90.7 F1 (generative unlexical)
 - Petrov et al 06 – 92.1 F1 (gen + rerank + self-train)

- **However**
 - Bilexical counts rarely make a difference (why?)
 - Gildea 01 – Removing bilexical counts costs < 0.5 F1

- Bilexical vs. monolexical vs. smart smoothing

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as an arbitrary feature vector $\phi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features

- Bilexical vs. monolexical vs. smart smoothing

Shift-Reduce Parsers

- **Another way to derive a tree:**
 - Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]

Parse Reranking

- Since the number of parses is no longer huge
 - Can enumerate all parses efficiently
 - Can use simple machine learning methods to score trees
 - E.g. maxent reranking: learn a binary classifier over trees where:
 - The top candidates are positive
 - All others are negative
 - Rank trees by $P(T)$
 - The best parsing numbers are from reranking systems
Data-oriented parsing:

- Rewrite large (possibly lexicalized) subtrees in a single step

![Diagram of parse tree]

- Formally, a tree-insertion grammar
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

Derivational Representations

- Generative derivational models:
 \[P(D) = \prod_{d \in D} P(d_0, \ldots, d_{i-1}) \]
- How is a PCFG a generative derivational model?
- Distinction between parses and parse derivations.
 \[P(T) = \sum_{D: T \rightarrow Y} P(D) \]
- How could there be multiple derivations?

Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly context-sensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)

TAG: Adjunction

![Diagram of TAG adjunction]

TAG: Long Distance

![Diagram of TAG long distance]
CCG Parsing

- Combinatory Categorial Grammar
- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus (more later)
- Can have spurious ambiguities (why?)

\[
\begin{align*}
\text{John} & \vdash \text{NP} \\
\text{shares} & \vdash \text{NP} \\
\text{buys} & \vdash (S\backslash \text{NP})/\text{NP} \\
\text{sleeps} & \vdash S/\text{NP} \\
\text{wells} & \vdash (S/\text{NP})\backslash (S/\text{NP}) \\
S & \vdash \text{NP} \backslash S/\text{NP} \\
\text{John} & \vdash (S/\text{NP})/\text{NP} \\
\text{buys} & \vdash \text{NP} \\
\text{shares} & \vdash \text{NP} \\
\end{align*}
\]

Digression: Is NL a CFG?

- Cross-serial dependencies in Dutch

... that ... Jan has the children teach the children to teach

"... that Jan now has the children teach the children to teach"