A Recursive Parser

\begin{align*}
\text{bestScore}(X,i,j,s) \\
\text{if } (j = i+1) \\
\quad \text{return } \text{tagScore}(X,s[i]) \\
\text{else} \\
\quad \text{return max } \text{score}(X\rightarrow YZ) \ast \\
\quad \quad \text{bestScore}(Y,i,k) \ast \\
\quad \quad \text{bestScore}(Z,k,j)
\end{align*}

- Will this parser work?
- Why or why not?
- Memory requirements?
An Example

A Memoized Parser

- One small change:

```java
bestScore(X, i, j, s)
if (scores[X][i][j] == null)
    if (j = i+1)
        score = tagScore(X, s[i])
    else
        score = max score(X->YZ) * 
                    bestScore(Y, i, k) * 
                    bestScore(Z, k, j)
    scores[X][i][j] = score
return scores[X][i][j]
```
Memory: Theory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: $|\text{symbols}|n^2$ doubles
 - For the plain treebank grammar:
 - $X \sim 20K$, $n = 40$, double ~ 8 bytes $= \sim 256$MB
 - Big, but workable.

- What about sparsity?

Time: Theory

- How much time will it take to parse?
 - Have to fill each cache element (at worst)
 - Each time the cache fails, we have to:
 - Iterate over each rule $X \rightarrow YZ$ and split point k
 - Do constant work for the recursive calls
 - Total time: $|\text{rules}|n^3$
 - Cubic time
 - Something like 5 sec for an unoptimized parse of a 20-word sentences
Unary Rules

- Unary rules?

\[
\text{bestScore}(X, i, j, s) \\
\quad \text{if } (j = i+1) \\
\quad \quad \text{return } \text{tagScore}(X, s[i]) \\
\quad \text{else} \\
\quad \quad \text{return max max score}(X \rightarrow YZ) \times \\
\quad \quad \quad \text{bestScore}(Y, i, k) \times \\
\quad \quad \quad \text{bestScore}(Z, k, j) \\
\quad \quad \text{max score}(X \rightarrow Y) \times \\
\quad \quad \quad \text{bestScore}(Y, i, j)
\]
CNF + Unary Closure

- We need unaries to be non-cyclic
- Can address by pre-calculating the *unary closure*
- Rather than having zero or more unaries, always have exactly one

Alternate unary and binary layers
Reconstruct unary chains afterwards

Alternating Layers

```python
bestScoreB(X,i,j,s):
    return max max score(X->YZ) *
        bestScoreU(Y,i,k) *
        bestScoreU(Z,k,j)

bestScoreU(X,i,j,s):
    if (j = i+1)
        return tagScore(X,s[i])
    else
        return max max score(X->Y) *
            bestScoreB(Y,i,j)
```
A Bottom-Up Parser (CKY)

- Can also organize things bottom-up

```plaintext
bestScore(s)
    for i : [0,n-1]
    for (X : tags[s[i]])
        score[X][i][i+1] =
            tagScore(X,s[i])
    for (diff : [2,n])
    for (i : [0,n-diff])
        j = i + diff
        for (X->YZ : rule)
            for (k : [i+1, j-1])
                score[X][i][j] = max score[X][i][j],
                    score(X->YZ) *
                    score[Y][i][k] *
                    score[Z][k][j]
```

Efficient CKY

- Lots of tricks to make CKY efficient
 - Most of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar, input, even system details.
 - Another kind is more critical:
 - Many X:[i,j] can be suppressed on the basis of the input string
 - We'll see this next class as figures-of-merit or A* heuristics
Memory: Practice

- **Memory:**
 - Still requires memory to hold the score table

- **Pruning:**
 - score[X][i][j] can get too large (when?)
 - can instead keep beams scores[i][j] which only record scores for the top K symbols found to date for the span [i,j]

Time: Theory

- **How much time will it take to parse?**
 - For each diff (<= n)
 - For each i (<= n)
 - For each rule X → Y Z
 - For each split point k
 - Do constant work
 - Total time: |rules|*n^3
Runtime: Practice

- Parsing with the vanilla treebank grammar:
 - Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

 ![Graph showing average time (seconds) vs sentence length with an observed exponent of 3.6]
 ~ 20K Rules (not an optimized parser!)

Rule State Reachability

Example: NP CC •

0 \[\text{NP}\] n-1 \[\text{CC}\] n 1 Alignment

Example: NP CC NP •

0 \[\text{NP}\] n-k-1 \[\text{CC}\] n-k \[\text{NP}\] n Alignments

- Many states are more likely to match larger spans!
There was nothing magical about words spanning exactly one position.
When working with speech, we generally don’t know how many words there are, or where they break.
We can represent the possibilities as a lattice and parse these just as easily.

A Simple Chart Parser

Chart parsers are sparse dynamic programs

Ingredients:
- Nodes: positions between words
- Edges: spans of words with labels, represent the set of trees over those words rooted at x
- A chart: records which edges we’ve built
- An agenda: a holding pen for edges (a queue)

We’re going to figure out:
- What edges can we build?
- All the ways we built them.
Word Edges

- An edge found for the first time is called discovered. Edges go into the agenda on discovery.
- To initialize, we discover all word edges.

AGENDA

| critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5] |

CHART [EMPTY]

Unary Projection

- When we pop an word edge off the agenda, we check the lexicon to see what tag edges we can build from it

| critics[0,1] | write[1,2] | reviews[2,3] | with[3,4] | computers[4,5] |
The “Fundamental Rule”

- When we pop edges off of the agenda:
 - Check for unary projections (NNS → critics, NP → NNS)

 \[
 Y[i,j] \text{ with } X \rightarrow Y \text{ forms } X[i,j]
 \]

 - Combine with edges already in our chart (this is sometimes called the fundamental rule)

 \[
 Y[i,j] \text{ and } Z[j,k] \text{ with } X \rightarrow Y \text{ Z form } X[i,k]
 \]

- Enqueue resulting edges (if newly discovered)
- Record backtraces (called traversals)
- Stick the popped edge in the chart

- Queries a chart must support:
 - Is edge X[i,j] in the chart?
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?

An Example

```
0   1   2   3   4   5
critics  write  reviews  with  computers
```

Diagram:

```
X
Y
Z
```

```
NP
VP
PP
S
ROOT
```

```
NNS
VBP
```
Exploiting Substructure

- Each edge records all the ways it was built (locally)
 - Can recursively extract trees
 - A chart may represent too many parses to enumerate (how many?)

Order Independence

- A nice property:
 - It doesn’t matter what policy we use to order the agenda (FIFO, LIFO, random).

- Why? Invariant: before popping an edge:
 - Any edge X[i,j] that can be directly built from chart edges and a single grammar rule is either in the chart or in the agenda.
 - Convince yourselves this invariant holds!

- This will not be true once we get weighted parsers.
Empty Elements

- Sometimes we want to posit nodes in a parse tree that don’t contain any pronounced words:

 I want John to parse this sentence

 I want [] to parse this sentence

- These are easy to add to our chart parser!
 - For each position i, add the “word” edge $\varepsilon:[i,i]$
 - Add rules like $\text{NP} \rightarrow \varepsilon$ to the grammar
 - That’s it!

![Diagram showing a parse tree with empty elements](image)