General Problem
- Someone gives you a PCFG G
- For any given sentence you might want to:
 - Find the best parse according to G
 - Find a bunch of reasonable parses
 - Find the total probability of all parses

Techniques:
- Beam search
- Agenda-based search
- The CKY algorithm

Beam Search
- State space search
 - States are partial parses
 - Find a way to ensure that all parses of a sentence have the same number N steps
 - Leftmost top-down CFG derivations in CNF
 - Shift-reduce derivations in CNF
 - (Use a binary grammar, or binarize what you've got)

Kinds of Beam Search
- Constant beam size K
- Constant beam width
 - Additive
 - Multiplicative
- Sometimes do fancier stuff, like try to keep beam diverse
- Beam search can be made very fast
- No measure of how optimal it is
 - Correct hypothesis trick

Agenda-Based Parsing
- For general grammars
- Start with a table recording $\delta(X,i,j)$
 - The best score of a parse of X over $[i,j]$
 - All entries start at ∞
 - Can be a sparse or dense map
 - Sometimes record backtraces, too
- Step 1: Hit the lexicon
 - For each word w, and each tag t, set $\delta(t,i,j) = \text{tag-score}(w,t)$
Agenda-Based Parsing

- Keep a list of edges called an agenda
 - Edges are triples \([X,i,j]\)
 - Agenda is a priority queue
- Every time some \(\delta(X,i,j)\) lowers:
 - Stick the edge \([X,i,j]\) into the agenda
 - Update the backtrace for \(\delta(X,i,j)\)

Agenda-Based Parsing

- Step II: While agenda not empty:
 - Get the "next" edge \([X,i,j]\) from the agenda
 - Fetch all compatible neighbors \([Y,j,k]\) or \([Z,k,i]\)
 - Compatible means there are rules \(A \rightarrow XY\) or \(B \rightarrow ZX\)
 - Build parent edges \([A,i,k]\) or \([B,k,j]\)
 - \(\delta(A,i,k) \leq \delta(X,i,j) + \delta(Y,j,k) + P(X|A)\)
 - If we’ve improved \(\delta(A,i,k)\), stick \([A,i,k]\) on the agenda
 - Also project unary rules:
 - When do we know we have a parse for the root?

Open questions:

- Agenda priority: What did “next” mean?
- Efficiency: how do we do as little work as possible?
- Optimality: how do we know when we find the best parse of a sentence?
- If we use \(\delta(X,i,j)\) as the priority:
 - Each edge goes on the agenda at most once
 - When an edge pops off the agenda, its best parse score is known (why?)
 - This is basically uniform cost search

Speeding Up Agenda Parsers

- Two options for doing less work
 - The optimal way: \(A^*\) Parsing
 - The ugly (but possibly faster) way: Best-First Parsing

CKY Parsing

- Assuming:
 - You’ve got a lot of memory
 - You’re willing to do exhaustive parsing
 - Your grammar is in CNF
 - There’s an easy solution: CKY parsing

Next Time

- Grammars beyond PCFGs
- Reading:
 - M+S 11 (over next few classes)
 - J+M 12 (over next few classes)