Supervised Learning

- Systems duplicate correct analyses from training data
- Every system you deploy in the real world requires:
 - A learning algorithm (but they all work about the same)
 - A labeled data set (requires a lot of work – more than you think)
 - Feature engineering (the key to good practical systems in NLP)
- Data sets are usually the bottleneck for most tasks

Unsupervised Learning

- Systems take raw data and automatically detect patterns
- Unsupervised systems need:
 - A pattern detection method (not all the same, not well understood)
 - An unlabeled data set (these are always around – if you have a task, you have a data set)
 - Feature engineering?
- Big drawback: unsupervised systems don’t generally work as well (if at all!)

Clustering / Pattern Detection

- Problem 1: There are many patterns in the data, most of which you don’t care about.

Model-Based Clustering

- Clustering with probabilistic models:
 - Unobserved (Y)
 - Observed (X)
 - Find Y and \(\theta \) to maximize \(P(X,Y|\theta) \)
- Problem 2: The relationship between the structure of your model and the kinds of patterns it will detect is complex.

Clustering vs. Classification

- Classification: we specify which pattern we want, features uncorrelated with that pattern are idle
- Clustering: the clustering procedure locks on to whichever pattern is most salient
 - \(P(\text{content words} | \text{class}) \) will learn topics
 - \(P(\text{length, function words} | \text{class}) \) will learn style
 - \(P(\text{characters} | \text{class}) \) will learn "language"
Learning Models with EM

- **Alternate between**
 - E-step: Find Y to maximize P(X,Y|θ) for fixed θ
 - M-step: Find θ to maximize P(X,Y|θ) for fixed Y

- **Example: K-Means**
 - [Hard EM]

- **Problem 3**: Data likelihood (usually) isn’t the objective you really care about
- **Problem 4**: You can’t find global maxima anyway

Heuristic Clustering?

- **Many methods of clustering have been developed**
 - Most start with a pairwise distance function
 - Most can be interpreted probabilistically (with some effort)
 - Axes: flat / hierarchical, agglomerative / divisive, incremental / iterative, probabilistic / graph theoretic / linear algebraic

 - **Examples**:
 - Single-link agglomerative clustering
 - Complete-link agglomerative clustering
 - Ward’s method
 - Hybrid divisive / agglomerative schemes

Document Clustering

- **Typically want to cluster documents by topic**

- **Bag of words models usually do detect topic**
 - It’s detecting deeper structure, syntax, etc. where it gets really tricky!

- **All kinds of games to focus the clustering**
 - Stopword lists
 - Term weighting schemes (from IR, more later)
 - Dimensionality reduction (more later)

Two Views of Documents

- **Probabilistic**
 - A document is a collection of words sampled from some distribution, an empirical distribution
 - Correlations between words flows through hidden model structure
 - Distance: divergences

- **Vector Space**
 - A document is a point in a high-dimensional vector space
 - Correlations between words reflects low rank of valid document subspace
 - Distance: Euclidean / cosine

High Dimensional Data

- **Both of these pictures are absolutely misleading!**
 - Documents are zero in almost all axes
 - Most document pairs are very far apart (i.e. not strictly orthogonal, but only share very common words and a few scattered others)
 - In classification terms: virtually all document sets are separable, for most any classification

Dimensionality Reduction

- **Most document clustering posits that some small number of axes / variables account for all that variation**

 - **Probabilistic statement:**

 - **Vector-space statement:**

 - Low rank representations used for IR, more later.
Semi-Supervised Learning

- A middle ground: Semi-supervised methods
 - Use a small labeled training set and a large unlabeled extension set
 - Use labeled data to lock onto the desired patterns
 - Use unlabeled data to flesh out model parameters

- Broad approaches
 - Constrained clustering
 - Self-training
 - Adaptation / anchoring

- Also: active learning

Incorporating Supervision

What’s Next?

- Next class:
 - Learning parts of speech
 - Interaction between models and patterns

- Section on Wednesday
 - Q&A on HW4 techniques, if you need it

- Readings:
 - M+S Chapter 14