The Dream

- Language is our UI!
- It’d be great if machines could:
 - Process our email (usefully)
 - Translate for us
 - Write up our research
 - Talk to us / listen to us
- But they can’t:
 - Language is ambiguous
 - Language is flexible
 - Language is complex
 - Language is subtle
- So we use their UIs.

What is NLP?

- Fundamental goal: deep understand of broad language
 - Not just string processing or keyword matching!
- Applications:
 - Ambitious: machine translation, information extraction, dialog systems, question answering…
 - Modest: spelling correction, text categorization

What is nearby NLP?

- Computational Linguistics
 - Using computational methods to learn more about how language works
 - We end up doing this and using it
- Cognitive Science
 - Figuring out how the human brain works
 - Includes the bits that do language
 - Humans: the only working NLP prototype!
- Speech Recognition
 - Mapping audio signals to text
 - Traditionally separate from NLP, converging?
 - Two components: acoustic models and language models
 - Language models in the domain of stat NLP

What is this Class?

- Three aspects to the course:
 - Linguistic Issues
 - What are the range of language phenomena?
 - What are the knowledge sources that let us disambiguate?
 - What representations are appropriate?
 - Technical Methods
 - Learning and parameter estimation
 - Increasingly complex model structures
 - Efficient algorithms: dynamic programming, search
 - Engineering Methods
 - Issues of scale
 - Memory limitations
 - Sometimes, very ugly hacks
 - We’ll visit a series of language problems
Class Requirements and Goals

- **Class requirements**
 - Uses a variety of skills / knowledge:
 - Basic probability and statistics
 - Basic linguistics background
 - Decent coding skills (Java)
 - Most people are probably missing one of the above!

- **Class goals**
 - Learn the issues and techniques of statistical NLP
 - Build the real tools used in NLP (language models, taggers, parsers, translation systems)
 - Be able to read current research papers in the field
 - See where the gaping holes in the field are!

An Example

John bought a blue car

Language is Ambiguous

- **Headlines:**
 - Iraqi Head Seeks Arms
 - Ban on Nude Dancing on Governor’s Desk
 - Juvenile Court to Try Shooting Defendant
 - Teacher Strikes Idle Kids
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half
 - British Left Waffles on Falkland Islands
 - Clinton Wins on Budget, but More Lies Ahead
 - Hospitals Are Sued by 7 Foot Doctors

- Why are these funny?

Ambiguities Everywhere

- Maybe we’re sunk on funny headlines, but normal, boring sentences are unambiguous?

Fed raises interest rates 0.5 % in a measure against inflation

More Attachment Ambiguities

Semantic Ambiguities

- Even correct tree-structured syntactic analyses don’t always nail down the meaning

Every morning someone’s alarm clock wakes me up

John’s boss said he was doing better
Other Levels of Language

- **Tokenization/morphology:**
 - What are the words, what is the sub-word structure?
 - Often simple rules work (period after Mr isn’t sentence break)
 - Relatively easy in English, other languages are harder:
 - Segmentation
 - Morphology
 - sarà andata
 - be+fut+3sg
 - go+ppt+fem
 - “she will have gone”

- **Discourse:** how do sentences relate?
- **Pragmatics:** what intent is expressed by the literal meaning, how to react?

Disambiguation for Applications

- Sometimes life is easy
 - Can do text classification pretty well just knowing the set of words used in the document, same for authorship attribution
 - Word-sense disambiguation not usually needed for web search because of majority effects or intersection effects (“jaguar habitat” isn’t the car)

- Sometimes only certain ambiguities are relevant
 - he hoped to record a world record

- Other times, all levels can be relevant (e.g., translation)

Some Early NLP History

- **1950’s:**
 - Foundational work: automata, information theory, etc.
 - First speech systems
 - Machine translation (MT) hugely funded by military (imagine that)
 - Toy models: MT using basically word-substitution
 - Optimism!

- **1960’s and 1970’s: NLP Winter**
 - Bar-Hillel (FAHQT) and ALPAC reports kills MT
 - Work shifts to deeper models, syntax
 - … but toy domains / grammars (SHRDLU, LUNAR)

- **1980’s: The Empirical Revolution**
 - Expectations get reset
 - Corpus-based methods
 - Deep analysis often traded for robust and simple approximations
 - Evaluate everything

Classical NLP: Parsing

- **Write symbolic or logical rules:**
 - Grammar (CFG)
 - Lexicon
 - ROOT → S
 - NP → NP PP
 - NN → interest
 - S → NP VP
 - VP → VBP NP
 - NNS → raises
 - NP → DT NN
 - VP → VBP NP PP
 - VBZ → interest
 - NP → NN NNS
 - PP → IN NP
 - VBP → interest

- **Use deduction systems to prove parses from words**
 - Minimal grammar on “Fed raises” sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- **This scaled very badly, didn’t yield broad-coverage tools**

What Were They Thinking?

- People did know that language was ambiguous!
 - …but they hoped that all interpretations would be “good” ones (or ruled out pragmatically)
 - …they didn’t realize how bad it would be

Problems (and Solutions?)

- **Dark ambiguities:** most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

- “This will panic buyers!"

- Unknown words and new usages

- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
Corpora

- A corpus is a collection of text
 - Often annotated in some way
 - Sometimes just lots of text
 - Balanced vs. uniform corpora

Examples
- Newswire collections: 500M+ words
- Brown corpus: 1M words of tagged "balanced" text
- Penn Treebank: 1M words of parsed WSJ
- Canadian Hansards: 10M+ words of aligned French / English sentences
- The Web: billions of words of who knows what

Corpus-Based Methods

- A corpus like a treebank gives us three important tools:
 - It gives us broad coverage

Examples
- Newswire collections: 500M+ words
- Brown corpus: 1M words of tagged "balanced" text
- Penn Treebank: 1M words of parsed WSJ
- Canadian Hansards: 10M+ words of aligned French / English sentences
- The Web: billions of words of who knows what

Corpus-Based Methods

- It gives us distributional information

<table>
<thead>
<tr>
<th></th>
<th>All NPs</th>
<th>NPs under S</th>
<th>NPs under VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP PP DT NN</td>
<td>11%</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP DT NN</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
</tbody>
</table>

This is a very different kind of subject/object asymmetry than what many linguists are interested in.

Corpus-Based Methods

- It lets us check our answers!

The (Effective) NLP Cycle

- Pick a problem (usually disambiguation)
- Get a lot of data (usually a labeled corpus)
- Build the simplest thing that could possibly work
- Repeat:
 - See what the most common errors are
 - Figure out what information a human would use
 - Modify the system to exploit that information
 - Feature engineering
 - Representation design
 - Machine learning methods
- We’re going to do this over and over again
Example: POS Tagging

Local Context

Decision Point

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>VBD</td>
<td>NNP</td>
<td>???</td>
<td>???</td>
<td></td>
</tr>
<tr>
<td>The</td>
<td>Dow</td>
<td>fell</td>
<td>22.6</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Example: NER Features

Local Context

Decision Point

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VBD</td>
<td>IN</td>
<td>DT</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>went</td>
<td>for</td>
<td>a</td>
<td>21-mile</td>
<td>hike</td>
</tr>
</tbody>
</table>

Feature Weights

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature Type</th>
<th>Feature</th>
<th>PERS</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at</td>
<td>-0.73</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Current word</td>
<td>Grace</td>
<td>0.03</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Beginning bigram</td>
<td><G</td>
<td>0.45</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP</td>
<td>0.47</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN NNP</td>
<td>-0.10</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Previous state</td>
<td>Other</td>
<td>-0.79</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx</td>
<td>0.80</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Prev state, cur sig</td>
<td>X-x</td>
<td>0.68</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Prev-cur next sig</td>
<td>X-x-x-x</td>
<td>-0.69</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Prev - cur sig</td>
<td>X-x-x-x</td>
<td>-0.20</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-0.58</td>
<td>2.68</td>
<td></td>
</tr>
</tbody>
</table>

Language isn’t Adversarial

- Language isn’t adversarial:
 - It’s produced with the intent of being understood
 - With some understanding of language, you can often tell what knowledge sources are relevant

- But:
 - Some knowledge sources aren’t easily available (real-world knowledge, complex models of other people’s plans)
 - Some kinds of features are beyond our technical ability to model (especially cross-sentence correlations)

What’s Next?

- One more class on classical NLP (parsing, semantic translation)
 - Sets the stage for statistical processing
 - Introduction to key ideas we’ll need later

- Increasingly complex problems and models
 - Dealing with scale and sparsity
 - Sequence tasks (POS tagging, entity recognition)
 - Tree tasks (parsing, semantic interpretation)
 - Applications (translation, information extraction)

- Reading: M+S 3, J+M 1-3, 10
- Assignment 0 will be distributed on Friday