Overview

- So far: Classification
 - Applications: text categorization, language identification, word sense disambiguation
 - Generative models: Naive Bayes
 - Discriminative models: maximum entropy models (a.k.a. logistic regression)
 - “Supervised” learning paradigm
- Today: Clustering
 - “Unsupervised” learning: no class labels to learn from
 - Magic: discovers hidden patterns in the data
 - Useful in a range of NLP tasks: IR, smoothing, data mining, exploratory data analysis
 - Please interrupt me (I hear you’re good at that!)

Ambiguous web queries

- Web queries are often truly ambiguous:
 - jaguar
 - NLP
 - paris hilton
- Seems like word sense ambiguation should help
 - Different senses of jaguar: animal, car, OS X…
- In practice WSD doesn’t help for web queries
 - Disambiguation is either impossible (“jaguar”) or trivial (“jaguar car”)
- Better to let the user decide
- “Cluster” the results into useful groupings

How’d they do that?

- Text categorization
 - Label data and build a MaxEnt classifier for every major disambiguation decision
 - Expensive, impractical for open domain
- Many clustering methods have been developed
 - Most start with a pairwise distance function
 - Most can be interpreted probabilistically (with some effort)
 - Axes: flat / hierarchical, agglomerative / divisive, incremental / iterative, probabilistic / graph theoretic / linear algebraic
- Our focus: “model-based” vs. “model-free”
 - Model-Free: Define a notion of “page similarity”, and put similar things together in clusters (heuristic, agglomerative)
 - Model-Based: Define a generative probabilistic model over the pages and their clusters, and search for parameters which maximize data likelihood (probabilistic, generative)

Point Clustering

- Task: group points into clusters
- Here we illustrate with simple two-dimensional point examples
- Warning: quite different from text clustering
 - Featural representations of text will typically have a large number of dimensions (10^3 - 10^6)
 - Euclidean distance isn’t necessarily the best distance metric for featural representations of text
Two Views of Documents

- **Probabilistic**
 - A document is a collection of words sampled from some distribution, an empirical distribution
 - Correlations between words flow through hidden model structure
 - Distance: divergences

- **Vector Space**
 - A document is a point in a high-dimensional vector space
 - Correlations between words reflect low rank of valid document subspace
 - Distance: Euclidean / cosine

High-Dimensional Data

- Both of these pictures are totally misleading!
 - Documents are zero in almost all axes
 - Most document pairs are very far apart (i.e. not strictly orthogonal, but only share very common words and a few scattered others)
 - In classification terms: virtually all document sets are separable, for most any classification

Model-Based Clustering

- Document clustering with probabilistic models:

<table>
<thead>
<tr>
<th>Unobserved (C)</th>
<th>Observed (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>LONDON – Soccer team wins match…</td>
</tr>
<tr>
<td>(c_2)</td>
<td>NEW YORK – Stocks close up 3%…</td>
</tr>
<tr>
<td>(c_2)</td>
<td>Investing in the stock market has…</td>
</tr>
<tr>
<td>(c_1)</td>
<td>The first game of the world series…</td>
</tr>
</tbody>
</table>

Find \(C\) and \(\theta\) to maximize \(P(X, C | \theta)\)

k-Means Clustering

- The simplest model-based technique
 - Procedure:

 - Failure Cases:

Mixture Models

- Consider models of the form:

\[P(x, c) = \prod_i P(c_i)P(x_i | c_i) \]

- Example: generating points in 2D with Gaussian

Learning with EM

\[P(x, c) = \prod_i P(c_i)P(x_i | c_i) \]

- Recall that in supervised learning, we search for model parameters which maximize data likelihood
 - Not guaranteed to work well, but it's a reasonable thing to do and we know how to do it
 - Maximum likelihood estimation is trivial in a generative model: can compute in closed form from data counts
- Can we do that here?
 - We could if we knew the cluster labels \(c_i\)
 - Iterative procedure (Expectation-Maximization):
 1. Guess some initial parameters for the model
 2. Use model to make best guesses of \(c_i\) (E-step)
 3. Use the new complete data to learn better model (M-step)
 4. Repeat steps 2 and 3 until convergence
k-Means is Hard EM

Iterative procedure (Expectation-Maximization):
1. Guess some initial parameters for the model
2. Use model to make best guesses of \(c_i \) (E-step)
3. Use the new complete data to learn better model (M-step)
4. Repeat steps 2 and 3 until convergence

EM in Detail

\[P(x, c) = \prod_i P(c_i)P(x_i | c_i) \]

- **Expectation step**
 - Using current model parameters, do probabilistic inference to compute the probability of the cluster labels \(c \)
 \[
 Q_i^{(t)}(c_i) := P_{\theta^{(t)}}(c_i | x_i) = \frac{P_{\theta^{(t)}}(c_i)P_{\theta^{(t)}}(x_i | c_i)}{\sum_{c_i} P_{\theta^{(t)}}(c_i | x_i)}
 \]
 - These Q's can viewed as "soft completions" of the data
 - Note: k-Means approximates this Q function with the max

- **Maximization step**
 - Compute the model parameters which maximize the log likelihood of the "completed" data (can do in closed form)
 \[
 \theta^{(t+1)} = \arg \max_{\theta} \sum_i \sum_{c_i} Q_i^{(t)}(c_i) \log P_\theta(x_i, c_i)
 \]

EM Properties

- EM is a general technique for learning anytime we have incomplete data \((x, y)\)
 - Convenience Scenario: we want \(P(x) \), including \(y \) just makes the model simpler (e.g. mixing weights)
 - Induction Scenario: we actually want to know \(y \) (e.g. clustering)
 - You’ll see it again in this course!
- Each step of EM is guaranteed to increase data likelihood - a hill climbing procedure
- Not guaranteed to find global maximum of data likelihood
 - Data likelihood typically has many local maxima for a general model class and rich feature set
 - Many "patterns" in the data that we can fit our model to…

EM Monotonicity Proof

\[
\ell(\theta^{(t)}) = \sum_i \log P_{\theta^{(t)}}(x_i | c_i) \geq \sum_i \log \sum_{c_i} Q_i^{(t-1)}(c_i) P_{\theta^{(t-1)}}(x_i | c_i)
\]

Multiply by 1

\[
\geq \sum_i \log \sum_{c_i} \frac{Q_i^{(t-1)}(c_i)}{Q_i^{(t)}(c_i)} P_{\theta^{(t-1)}}(x_i | c_i)
\]

Jensen’s inequality for concave function \(f \):
\[
\ell(E[Y]) = E[\ell(Y)]
\]

\[
\geq \sum_i \log \sum_{c_i} \frac{Q_i^{(t-1)}(c_i)}{Q_i^{(t-1)}(c_i)} P_{\theta^{(t-1)}}(x_i | c_i)
\]

We had chosen \(\theta^{(t)} \) to be the max, so any other \(\theta \) is worse.

Uhoh! Jensen’s would go the wrong way!

\[
\ell(\theta^{(t)}) = \sum_i \log P_{\theta^{(t)}}(x_i | c_i)
\]

EM For Text Clustering

\[P(x, c) = \prod_i P(c_i)P(x_i | c_i) \]

- Remember, we care about documents, not points
- How to model probability of a document given a class?
 - Probabilistic: Naive Bayes \(P(x_i | c_i) = \prod P(w_i | c_i) \)
 - Doesn’t represent differential feature weighting
 - Vector Space: Gaussian \(P(x_i | c_i) = P(f(x_i) | c_i) \sim \mathcal{N}(\mu_i, \Sigma) \)
 - Euclidean distance assumption isn’t quite right

Agglomerative Clustering

- Most popular heuristic clustering methods
- Big idea: pick up similar documents and stick them together, repeat
- Point Example (single link):

- You get a cluster hierarchy for free
Agglomerative Choices

- **Choice of distance metric between instances:**
 - Euclidean distance (L2-norm) - equivalent to vector space model
 - KL-divergence - equivalent to probabilistic model

- **Choice of distance metric between clusters:**
 - Single-link: distance between closest instances in clusters
 - Complete-link: distance between furthest instances in clusters
 - Average-link: average distance between instances in clusters
 - Ward’s method: difference between sum squared error to centroid of combined cluster and separate clusters

Single-Link Clustering

- **Procedure:**

- **Failure Cases**
 - Fails when clusters are not well separated (often!)

- **Model Form**
 - Corresponds to fitting a model where instances in each cluster were generated by a random walk though the space

Complete-Link Clustering

- **Procedure:**

- **Failure Cases**
 - Fails when clusters aren’t spherical, or of uniform size

- **Model Form**
 - Corresponds to fitting a model where instances in each cluster are generated in uniform spheres around a centroid

Clustering Method Summary

- **Agglomerative methods:**
 - Pro: easy to code
 - Pro: you get a hierarchy of clusters for free
 - Pro/Con: you don’t have to explicitly propose a model (but your distance metrics imply one anyway)
 - Con: runtime $> n^2$, which becomes prohibitive

- **Model-based methods:**
 - Pro/Con: you’re forced to propose an explicit model
 - Pro: usually quick to converge
 - Con: very sensitive to initialization
 - Con: how many clusters?

Clustering vs. Classification

- **Classification:** we specify which pattern we want, features uncorrelated with pattern are idle
- **Clustering:** clustering procedure locks on to whichever pattern is most salient
 - $P(\text{content words} \mid \text{class})$ will learn topics
 - $P(\text{length, function words} \mid \text{class})$ will learn style
 - $P(\text{characters} \mid \text{class})$ will learn “language”
Even with the same model class, there are multiple patterns in the data...

Ways to deal with it
- Change the data itself
- Change the search procedure (including smart initialization)
- Change the model class

Examples:
- Remove stopwords from documents
- Use dimensionality reduction techniques to change feature representation

Examples:
- Smart initialization of the search
- Search a subspace by only reestimating some of the model parameters in the M-step

Examples:
- Add heuristic feature weighting such as inverse document frequency (IDF)
- Add a hierarchical emission model to Naïve Bayes
- Limit the form of the covariance matrix in a Gaussian
Clustering Problems

- There are multiple patterns in the data, basic approach will just give you the most salient one
- Relationship between the data representation and the model class is complex and not well understood
- Data likelihood isn’t usually what you want to maximize
- Can’t find the global maximum anyway

Practical Advice

- What can go wrong:
 - Bad initialization (more on this later)
 - Bad interaction between data representation and model bias
 - Can learn some salient pattern that is not what you wanted
- What can you do?
 - Get used to disappointment
 - Look at errors!
 - Understand what the model family can (and can’t) learn
 - Change data representation
 - Change model structure or estimators
 - …or change objective function [Smith and Eisner, ACL 05]

Semi-Supervised Learning

- A middle ground: semi-supervised methods
 - Use a small labeled training set and a large unlabeled extension set
 - Use labeled data to lock onto the desired patterns
 - Use unlabeled data to flesh out model parameters
- Some approaches
 - Constrained clustering
 - Self-training
 - Adaptation / anchoring
- Also: active learning

Summary

- Clustering
 - Clustering is cool
 - It’s easy to find the most salient pattern
 - It’s quite hard to find the pattern you want
 - It’s hard to know how to fix when broken
 - EM is a useful optimization technique you should understand well if you don’t already
- Next time: Part of speech tagging