CS 294-5: Statistical Natural Language Processing

Course Introduction
Lecture I: 8/29/05

Accounts and Access
- **Accounts**
 - Data and code available on:
 - CS instructional accounts
 - EECS research accounts
 - Millennium accounts
 - Make sure you have one of them working
 - More details on resources in assignment 1 (next class), but sort out access ASAP

- **Computing Resources**
 - Lab resources may not be enough
 - Recommendation: start assignments early to find out
 - NLP cluster on Millennium network, signups later in the term

The Dream
- It’d be great if machines could
 - Process our email (usefully)
 - Translate languages accurately
 - Help us manage, summarize, and aggregate information
 - Use speech as a UI (when needed)
 - Talk to us / listen to us

- But they can’t:
 - Language is complex, ambiguous, flexible, and subtle
 - Good solutions need linguistics and machine learning knowledge

- So:

What is NLP?
- **Fundamental goal:** deep understand of broad language
- **End systems that we want to build:**
 - Ambitious: speech recognition, machine translation, information extraction, dialog interfaces, question answering…
 - Modest: spelling correction, text categorization…

Speech Systems
- **Automatic Speech Recognition (ASR)**
 - Audio in, text out
 - SOTA: 0.3% for digit strings, 5% dictation, 50%+ TV

- **Text to Speech (TTS)**
 - Text in, audio out
 - SOTA: totally intelligible (if sometimes unnatural)

- **Speech systems currently:**
 - Model the speech signal (later part of term)
 - Model language (next class)
Machine Translation

Translation systems encode:
- Something about fluent language (next class)
- Something about how two languages correspond (middle of term)

SOTA: for easy language pairs, better than nothing, but more an understanding aid than a replacement for human translators

Information Extraction

Information Extraction (IE)
- Unstructured text to database entries

New York Times Co. named Russell T. Lewis, 45, president and general manager of its flagship New York Times newspaper, responsible for all business-side activities. He was executive vice president and deputy general manager. He succeeds Lance R. Primis, who in September was named president and chief operating officer of the parent.

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Position</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell T. Lewis</td>
<td>New York Times newspaper</td>
<td>president and general manager</td>
<td>fall</td>
</tr>
<tr>
<td>Russell T. Lewis</td>
<td>New York Times newspaper</td>
<td>executive vice president</td>
<td>fall</td>
</tr>
<tr>
<td>Lance R. Primis</td>
<td>New York Times Co.</td>
<td>president and CEO</td>
<td>fall</td>
</tr>
</tbody>
</table>

SOTA: perhaps 70% accuracy for multi-sentence templates, 90%+ for single easy fields

What is this Class?

Three aspects to the course:
- Linguistic Issues
 - What are the range of language phenomena?
 - What are the knowledge sources that let us disambiguate?
 - What representations are appropriate?
- Technical Methods
 - Learning and parameter estimation
 - Increasingly complex model structures
 - Efficient algorithms: dynamic programming, search
- Engineering Methods
 - Issues of scale
 - Sometimes, very ugly hacks

We’ll focus on what makes the problems hard, and what works in practice...

Class Requirements and Goals

Class requirements
- Uses a variety of skills / knowledge:
 - Basic probability and statistics
 - Basic linguistics background
 - Decent coding skills (Java)
- Most people are probably missing one of the above
- We’ll address some review concepts with sections, TBD

Class goals
- Learn the issues and techniques of statistical NLP
- Build the real tools used in NLP (language models, taggers, parsers, translation systems)
- Be able to read current research papers in the field
- See where the gaping holes in the field are!
Course Work

- **Readings:**
 - Texts
 - Manning and Shuette (available online)
 - Jurafsky and Martin
 - Both on reserve in the Engineering library
 - Papers (on web page)

- **Assignments**
 - 5 individual coding assignments (60% of grade)
 - 7 late days, 3 per assignment
 - Substantial programming in Java 1.5
 - Evaluated by write-up
 - 1 group final project (40% of grade)

Some Early NLP History

- **1950’s:**
 - Foundational work: automata, information theory, etc.
 - First speech systems
 - Machine translation (MT) hugely funded by military (imagine that)
 - Toy models: MT using basically word-substitution
 - Optimism!

- **1960’s and 1970’s: NLP Winter**
 - Bar-Hillel (FAHQT) and ALPAC reports kills MT
 - Work shifts to deeper models, syntax
 - ... but toy domains / grammars (SHRDLU, LUNAR)

- **1980’s: The Empirical Revolution**
 - Expectations get reset
 - Corpus-based methods become central
 - Deep analysis often traded for robust and simple approximations
 - Evaluate everything

Classical NLP: Parsing

- **Write symbolic or logical rules:**

Grammar (CFG)	Lexicon
 ROOT \rightarrow S | NP \rightarrow NP PP
 S \rightarrow NP VP | VP \rightarrow VBP NP
 NP \rightarrow DT NN | NP \rightarrow NP PP
 VP \rightarrow VBP NP PP | VBZ \rightarrow raises
 VBZ \rightarrow raises

- Use deduction systems to prove parses from words
 - Minimal grammar on “Fed raises” sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- This scaled very badly, didn’t yield broad-coverage tools

NLP: Annotation

- Much of NLP is annotating text with structure which specifies how it’s assembled.
 - Syntax: grammatical structure
 - Semantics: “meaning,” either lexical or compositional

John bought a blue car

What Made NLP Hard?

- **The core problems:**
 - Ambiguity
 - Sparsity
 - Scale
 - Unmodeled Variables

Problem: Ambiguities

- **Headlines:**
 - Iraqi Head Seeks Arms
 - Ban on Nude Dancing on Governor’s Desk
 - Juvenile Court to Try Shooting Defendant
 - Teacher Strikes Idle Kids
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half
 - Hospitals Are Sued by 7 Foot Doctors

- Why are these funny?
Syntactic Ambiguities
- Maybe we’re sunk on funny headlines, but normal, boring sentences are unambiguous?

Fed raises interest rates 0.5% in a measure against inflation

Semantic Ambiguities
- Even correct tree-structured syntactic analyses don’t always nail down the meaning

Every morning someone’s alarm clock wakes me up

John’s boss said he was doing better

Disambiguation for Applications
- Sometimes life is easy
 - Can do text classification pretty well just knowing the set of words used in the document, same for authorship attribution
 - Word-sense disambiguation not usually needed for web search because of majority effects or intersection effects (“jaguar habitat” isn’t the car)

- Sometimes only certain ambiguities are relevant

 he hoped to record a world record

- Other times, all levels can be relevant (e.g., translation)

Dark Ambiguities
- Dark ambiguities: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of “This will panic buyers!”

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Other Levels of Language
- Tokenization/morphology:
 - What are the words, what is the sub-word structure?
 - Often simple rules work (period after “Mr.” isn’t sentence break)
 - Relatively easy in English, other languages are harder:
 - Segmentation
 - Morphology

- Discourse: how do sentences relate to each other?
- Pragmatics: what intent is expressed by the literal meaning, how to react to an utterance?
- Phonetics: acoustics and physical production of sounds
- Phonology: how sounds pattern in a language

Problem: Scale
- People did know that language was ambiguous!
 - …but they hoped that all interpretations would be “good” ones (or ruled out pragmatically)
 - …they didn’t realize how bad it would be
Corpora

- A corpus is a collection of text
 - Often annotated in some way
 - Sometimes just lots of text
 - Balanced vs. uniform corpora

- Examples
 - Newswire collections: 500M+ words
 - Brown corpus: 1M words of tagged "balanced" text
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French / English sentences
 - The Web: billions of words of who knows what

Corpus-Based Methods

- A corpus like a treebank gives us three important tools:
 - It gives us broad coverage

\[
\begin{array}{c}
\text{ROOT} \\
\text{NP} \\
\text{VP} \\
\text{PRP} \\
\text{VBD} \\
\text{ADJ} \\
\text{He} \\
\text{was} \\
\text{right}
\end{array}
\]

- Examples
 - Newswire collections: 500M+ words
 - Brown corpus: 1M words of tagged "balanced" text
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French / English sentences
 - The Web: billions of words of who knows what

Corpus-Based Methods

- It gives us statistical information

![Statistical Information](chart.png)

- It lets us check our answers!

\[
\begin{array}{c}
\text{NP} \\
\text{PP} \\
\text{DT} \\
\text{NN} \\
\text{PRP} \\
\text{NP} \\
\text{PP} \\
\text{DT} \\
\text{NN} \\
\text{PRP}
\end{array}
\]

Problem: Sparsity

- However: sparsity is always a problem
 - New unigram (word), bigram (word pair), and rule rates in newswire

![Sparsity Chart](chart.png)

The (Effective) NLP Cycle

- Pick a problem (usually some disambiguation)
- Get a lot of data (usually a labeled corpus)
- Build the simplest thing that could possibly work
- Repeat:
 - See what the most common errors are
 - Figure out what information a human would use
 - Modify the system to exploit that information
 - Feature engineering
 - Representation design
 - Machine learning methods
- We’re going to do this over and over again
Language isn’t Adversarial

- One nice thing: we know NLP can be done!

- Language isn’t adversarial:
 - It’s produced with the intent of being understood
 - With some understanding of language, you can often tell what knowledge sources are relevant

- But most variables go unmodeled
 - Some knowledge sources aren’t easily available (real-world knowledge, complex models of other people’s plans)
 - Some kinds of features are beyond our technical ability to model (especially cross-sentence correlations)