Statistical NLP
Spring 2008

Lecture 8: Word Classes
Dan Klein – UC Berkeley

What’s Next for POS Tagging

- Better features!
- We could fix this by linking capitalized words to their lowercase versions
- Solution: maximum entropy sequence models
- Reality check:
 - Taggers are already pretty good on WSJ journal text…
 - What the world needs is taggers that work on other text!
 - Also: same techniques used for other sequence models (NER, etc)

Decoding

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):
 \[\delta_j(s) = \arg \max_{s'} P(s|s') P(w_i|s) \delta_{j-1}(s') \]
- Viterbi algorithm (Maxent):
 \[\delta_j(s) = \arg \max_{s'} P(s|s', w, i) \delta_{j-1}(s') \]

Feature Templates

- Important distinction:
 - Features: \(<w_0=\text{future}, t_0=\text{JJ}>\)
 - Feature templates: \(<w_0, t_0>\)
- In maxent taggers:
 - Can now add edge feature templates:
 - \(<t_{i-1}, t_i, t_0>\)
 - Also, mixed feature templates:
 - \(<t_i, w_i, t_j>\)

Maxent Taggers

- MEMMs: use local discriminative models
 \[P(t|w) = \prod_i \frac{1}{Z} \exp \left(w^T f(t_i, t_{i-1}, t_{i-2}, w, i) \right) \]
 - Train up \(P(t|w, t_{i-1}, t_{i-2}, w) \) as a normal maxent problem, then use to score sequences
 - Referred to as a maxent tagger [Ratnaparkhi 96]
 - Beam search effective! (Why?)
 - What’s the advantage of beam size 1?

HMM Trellis

Intrinsic flaws remained undetected.
They left as soon as he arrived.
TBL Tagger

- [Brill 95] presents a transformation-based tagger
 - Label the training set with most frequent tags

 \[
 \text{TBL} \quad \text{MD} \quad \text{VBD} \quad \text{VBD}.
 \]

 \(\text{The can was rusted.}\)
 - Add transformation rules which reduce training mistakes

 - MD → NN: DT __
 - VBD → VBN: VBD __.
 - Stop when no transformations do sufficient good
 - Does this remind anyone of anything?

- Probably the most widely used tagger (esp. outside NLP)
- … but not the most accurate: 96.6% / 82.0 %

EngCG Tagger

- English constraint grammar tagger
 - [Tapanainen and Voutilainen 94]
 - Something else you should know about
 - "Don’t guess if you know" (general point about modeling more structure!)
 - Tag set doesn’t make all of the hard distinctions as the standard tag set (e.g. JJ/NN)
 - They get stellar accuracies: 98.5% on their tag set
 - Linguistic representation matters…
 - … but it’s easier to win when you make up the rules

CRFs

- Make a maxent model over entire taggings
 - MEMM

 \[
 P(t|w) = \prod_i \frac{1}{Z_i(t)} \exp \left(\lambda^\top f(t_i, t_{i-1}, w, i) \right)
 \]
 - CRF

 \[
 P(t|w) = \frac{1}{Z(w)} \exp \left(\lambda^\top f(t, w) \right) = \frac{1}{Z(w)} \exp \left(\lambda^\top \sum_i f(t_i, t_{i-1}, w, i) \right) = \frac{1}{Z(w)} \prod_i \phi_i(t_i, t_{i-1})
 \]

CRF Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also voted perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train – require repeated inference on training set
 - Differences tend not to be too important for POS tagging
 - Differences more substantial on other sequence tasks
 - However: one issue worth knowing about in local models
 - "Label bias" and other explaining away effects
 - Maxent taggers’ local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn’t flow properly
 - Why isn’t this a bigger deal for POS tagging?
 - Also: in decoding, condition on predicted, not gold, histories

CRFs

- Like any maxent model, derivative is:

 \[
 \frac{\partial L(\lambda)}{\partial \lambda} = \sum_x f(x^t) - \sum_i P(t_i|w) \delta_i(x)
 \]

 So all we need is to be able to compute the expectation each feature, for example the number of times the label pair DT-NN occurs, or the number of times NN-interest occurs in a sentence

 - How many times does, say, DT-NN occur at position 10? The ratio of the scores of trajectories with that configuration to the score of all
 - This requires exactly the same forward-backward score ratios as for EM, but using the local potentials \(\phi\) instead of the local probabilities
Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)

- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

Unsupervised Tagging? (cont.)

Unsupervised Tagging?

Unsupervised Tagging?
EM for HMMs: Quantities

- Cache total path values:
 \[
 \alpha_i(s) = P(w_0 \ldots w_i, s_i) = \sum_{s_{i-1}} P(s_i | s_{i-1}) P(w_i | s_i) \alpha_{i-1}(s_{i-1}),
 \]
 \[
 \beta_i(s) = P(w_{i+1} \ldots w_n | s_i) = \sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})
 \]
- Can calculate in \(O(s^2 n)\) time (why?)

EM for HMMs: Process

- From these quantities, we can re-estimate transitions:
 \[
 \text{count}(s \rightarrow s') = \frac{\sum \alpha_i(s) P(s' | s) P(w_i | s) \beta_{i+1}(s')}{P(w)}
 \]
- And emissions:
 \[
 \text{count}(w, s) = \frac{\sum \alpha_i(s) \beta_{i+1}(s)}{P(w)}
 \]
- If you don’t get these formulas immediately, just think about hard EM instead, where we re-estimate from the Viterbi sequences

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
 - You know the set of allowable tags for each word
 - Fix \(k\) training examples to their true labels
 - Learn \(P(w|t)\) on these examples
 - Learn \(P(t|t^-1, t^-2)\) on these examples
 - On \(n\) examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results

<table>
<thead>
<tr>
<th>Number of tagged sentences used for the initial model</th>
<th>0</th>
<th>100</th>
<th>2000</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter</td>
<td>Correct tags (% words) after</td>
<td>97.0</td>
<td>97.0</td>
<td>97.4</td>
<td>97.2</td>
<td>96.6</td>
<td>96.9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>86.6</td>
<td>85.8</td>
<td>95.8</td>
<td>96.3</td>
<td>96.4</td>
<td>96.4</td>
</tr>
<tr>
<td>2</td>
<td>81.8</td>
<td>83.0</td>
<td>95.7</td>
<td>96.1</td>
<td>96.0</td>
<td>96.4</td>
<td>96.4</td>
</tr>
<tr>
<td>3</td>
<td>83.0</td>
<td>93.0</td>
<td>95.4</td>
<td>95.8</td>
<td>96.1</td>
<td>96.2</td>
<td>96.2</td>
</tr>
<tr>
<td>4</td>
<td>84.0</td>
<td>93.0</td>
<td>95.8</td>
<td>95.4</td>
<td>95.5</td>
<td>94.9</td>
<td>96.3</td>
</tr>
<tr>
<td>5</td>
<td>84.8</td>
<td>92.9</td>
<td>95.3</td>
<td>95.4</td>
<td>95.8</td>
<td>95.8</td>
<td>95.8</td>
</tr>
<tr>
<td>6</td>
<td>85.3</td>
<td>92.8</td>
<td>94.9</td>
<td>95.7</td>
<td>95.5</td>
<td>95.8</td>
<td>95.6</td>
</tr>
<tr>
<td>7</td>
<td>85.8</td>
<td>92.8</td>
<td>94.7</td>
<td>95.1</td>
<td>95.7</td>
<td>95.7</td>
<td>95.5</td>
</tr>
<tr>
<td>8</td>
<td>86.1</td>
<td>92.7</td>
<td>94.8</td>
<td>95.0</td>
<td>95.2</td>
<td>95.4</td>
<td>95.4</td>
</tr>
<tr>
<td>9</td>
<td>86.3</td>
<td>92.6</td>
<td>94.9</td>
<td>95.1</td>
<td>95.3</td>
<td>95.3</td>
<td>95.3</td>
</tr>
<tr>
<td>10</td>
<td>86.6</td>
<td>92.6</td>
<td>94.4</td>
<td>94.8</td>
<td>95.0</td>
<td>95.2</td>
<td>95.2</td>
</tr>
</tbody>
</table>

Distributional Clustering

- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuetze 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]

[Finch and Chater 92, Shuetze 93, many others]
Nearest Neighbors

Dendrograms

A Probabilistic Version?

$$P(S, C) = \prod_i P(c_i)P(w_i | c_i)P(w_{i+1}, w_{i+2} | c_i)$$

What Else?

- Various newer ideas:
 - Context distributional clustering [Clark 00]
 - Morphology-driven models [Clark 03]
 - Contrastive estimation [Smith and Eisner 05]

- Also:
 - What about ambiguous words?
 - Using wider context signatures has been used for learning synonyms (what’s wrong with this approach?)
 - Can extend these ideas for grammar induction (later)