Lecture 7: POS Tagging
Dan Klein – UC Berkeley

Parts-of-Speech (English)

- One basic kind of linguistic structure: syntactic word classes

<table>
<thead>
<tr>
<th>Open class (lexical) words</th>
<th>Verbs</th>
<th>Adjectives</th>
<th>Adverbs</th>
<th>Prepositions</th>
<th>Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cat / cats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed class (functional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determiners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the some</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronouns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he / its</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122,312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>one</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>can</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... more</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slowly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... more</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part-of-Speech Ambiguity

Example

<table>
<thead>
<tr>
<th>VBD</th>
<th>VB</th>
<th>VBN</th>
<th>VBZ</th>
<th>VBP</th>
<th>VBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP</td>
<td>NNS</td>
<td>NN</td>
<td>NNS</td>
<td>CD</td>
<td>NN</td>
</tr>
</tbody>
</table>

Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

Two basic sources of constraint:
- Grammatical environment
- Identity of the current word

Many more possible features:
- ... but we won’t be able to use them for a while
Why POS Tagging?

- **Useful in and of itself**
 - Text-to-speech: record, lead
 - Lemmatization: saw\[v\] → see, saw[n] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

- **Useful as a pre-processing step for parsing**
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

```
IN
DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …
```

```
VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …
```

HMMs

- We want a model of sequences s and observations w

```
P(s, w) = \prod_{i} P(s_i | s_{i-1}) P(w_i | s_i)
```

- **Assumptions:**
 - States are tag n-grams
 - Usually a dedicated start and end state / word
 - Tag/state sequence is generated by a markov model
 - Words are chosen independently, conditioned only on the tag/state
 - These are totally broken assumptions: why?
Transitions and Emissions

Transitions $P(s|s')$ encode well-formed tag sequences

- In a bigram tagger, states = tags

- In a trigram tagger, states = tag pairs
Estimating Transitions

- Use standard smoothing methods to estimate transitions:

 \[
P(t_i | t_{i-1}, t_{i-2}) = \lambda_2 \hat{P}(t_i | t_{i-1}, t_{i-2}) + \lambda_i \hat{P}(t_i | t_{i-1}) + (1 - \lambda_1 - \lambda_2) \hat{P}(t_i)
 \]

- Can get a lot fancier (e.g. KN smoothing), but in this case it doesn’t buy much

- One option: encode more into the state, e.g. whether the previous word was capitalized (Brants 00)

Estimating Emissions

\[
P(s, w) = \prod_i P(s_i | s_{i-1}) P(w_i | s_i)
\]

- Emissions are trickier:
 - Words we’ve never seen before
 - Words which occur with tags we’ve never seen
 - One option: break out the Good-Turning smoothing
 - Issue: words aren’t black boxes:

 343,127.23 11-year Minteria reintroducibly

- Unknown words usually broken into word classes
 - D*, D*, D*
 - D*, x*, Xx*
 - x*“ly”

- Another option: decompose words into features and use a maxent model along with Bayes’ rule

 \[
P(w | t) = P_{\text{MAXENT}}(t | w) P(w) / P(t)
 \]
Better Features

- Can do surprisingly well just looking at a word by itself:
 - Word: the: the \rightarrow DT
 - Lowercased word: Importantly: importantly \rightarrow RB
 - Prefixes: unfathomable: un- \rightarrow JJ
 - Suffixes: Importantly: -ly \rightarrow RB
 - Capitalization: Meridian: CAP \rightarrow NNP
 - Word shapes: 35-year: d-x \rightarrow JJ

- Then build a maxent (or whatever) model to predict tag
- Maxent $P(t|w)$: 93.7% / 82.6%

Disambiguation

- Given these two multinomials, we can score any word / tag sequence pair

Fed raises interest rates 0.5 percent .

$P(\text{NNP}|\text{Fed}) P(\text{VBZ}|\text{NNP}) P(\text{NN}|\text{VBZ}) P(\text{NNS}|\text{NN}) P(\text{CD}|\text{NNS}) P(\text{NN}|\text{CD}) P(\text{STOP}|\text{NN})$......

- In principle, we’re done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>logP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP VBZ NNS CD NN</td>
<td>logP = -23</td>
</tr>
<tr>
<td>NNP NNS NN NNS CD NN</td>
<td>logP = -29</td>
</tr>
<tr>
<td>NNP VBZ VB NNS CD NN</td>
<td>logP = -27</td>
</tr>
</tbody>
</table>
Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search

A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
 - Consider all continuations of previous hypotheses
 - Discard most, keep top k, or those within a factor of the best, (or some combination)
- Beam search works relatively well in practice
 - … but sometimes you want the optimal answer
 - … and you need optimal answers to validate your beam search

The Path Trellis

- Represent paths as a trellis over states
- Each arc \(s_i \rightarrow s_{i+1} \) is weighted with the combined cost of:
 - Transitioning from \(s_i \) to \(s_{i+1} \) (which involves some unique tag \(t \))
 - Emitting word \(i \) given \(t \)
- Each state path (trajectory):
 - Corresponds to a derivation of the word and tag sequence pair
 - Corresponds to a unique sequence of part-of-speech tags
 - Has a probability given by multiplying the arc weights in the path
The Viterbi Algorithm

- Dynamic program for computing
 \[\delta_i(s) = \max_{s_0 \ldots s_{i-1} s} P(s_0 \ldots s_{i-1} s, w_1 \ldots w_i) \]
 - The score of a best path up to position \(i\) ending in state \(s\)
 \[\delta_0(s) = \begin{cases} 1 & \text{if } s = \bullet \bullet > \\ 0 & \text{otherwise} \end{cases} \]
 \[\delta_i(s) = \max_{s'} P(s \mid s') P(w \mid s') \delta_{i-1}(s') \]
 - Also store a backtrace
 \[\psi_i(s) = \arg \max_{s'} P(s \mid s') P(w \mid s') \delta_{i-1}(s') \]

- Memoized solution
- Iterative solution
So How Well Does It Work?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one

- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text (SOA is ~97.2%)

- Noise in the data
 - Many errors in the training and test corpora
 - Probably about 2% guaranteed error from noise (on this data)

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag: ~90% / ~50%
 - Trigram HMM: ~95% / ~55%
 - Maxent P(t|w): 93.7% / 82.6%
 - TnT (HMM++): 96.2% / 86.0%
 - MEMM tagger: 96.9% / 86.9%
 - Cyclic tagger: 97.2% / 89.0%
 - Upper bound: ~98%
What’s Next for POS Tagging

- Better features!

 - We could fix this with a feature that looked at the next word
 - We could fix this by linking capitalized words to their lowercase versions

- Solution: maximum entropy sequence models (next class)

- Reality check:
 - Taggers are already pretty good on WSJ journal text…
 - What the world needs is taggers that work on other text!

Common Errors

- Common errors [from Toutanova & Manning 00]

```
<table>
<thead>
<tr>
<th></th>
<th>JJ</th>
<th>NN</th>
<th>NNP</th>
<th>NNPS</th>
<th>RB</th>
<th>RP</th>
<th>IN</th>
<th>VB</th>
<th>VBD</th>
<th>VBN</th>
<th>VBP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>0</td>
<td>177</td>
<td>56</td>
<td>0</td>
<td>61</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>108</td>
<td>0</td>
<td>488</td>
</tr>
<tr>
<td>NN</td>
<td>244</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>5</td>
<td>6</td>
<td>19</td>
<td>525</td>
</tr>
<tr>
<td>NNP</td>
<td>187</td>
<td>106</td>
<td>0</td>
<td>132</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>NNPS</td>
<td>1</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>RB</td>
<td>72</td>
<td>21</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>138</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>295</td>
</tr>
<tr>
<td>RP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>169</td>
<td>103</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>323</td>
</tr>
<tr>
<td>VB</td>
<td>17</td>
<td>64</td>
<td>9</td>
<td>0</td>
<td>169</td>
<td>103</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>VBD</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>VBN</td>
<td>101</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>108</td>
<td>0</td>
<td>221</td>
</tr>
<tr>
<td>VBP</td>
<td>5</td>
<td>34</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>49</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>
```

- NN/JJ official knowledge
- NN made up
- VBD RP/IN DT NN recently sold shares
- RB VBD/VBN NNS

- They left as soon as he arrived.
- Intrinsic flaws remained undetected.

- They left as soon as he arrived.
- Intrinsic flaws remained undetected.
Sequence-Free Tagging?

- What about looking at a word and it’s environment, but no sequence information?
 - Add in previous / next word: the __
 - Previous / next word shapes: X __ X
 - Occurrence pattern features: [X: x X occurs]
 - Crude entity detection: __ (Inc.|Co.)
 - Phrasal verb in sentence?: put __
 - Conjunctions of these things

- All features except sequence: 96.6% / 86.8%
- Uses lots of features: > 200K
- Why isn’t this the standard approach?

Maxent Taggers

- One step up: also condition on previous tags
 \[P(t|w) = \prod_i P_{ME}(t_i|w, t_{i-1}, t_{i-2}) \]

- Train up \(P(t_i|w, t_{i-1}, t_{i-2}) \) as a normal maxent problem, then use to score sequences
- This is referred to as a maxent tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What’s the advantage of beam size 1?
Feature Templates

- We’ve been sloppy:
 - Features: \(<w_0=\text{future}, t_0=\text{JJ}>=\>
 - Feature templates: \(<w_0, t_0>=\>

- In maxent taggers:
 - Can now add *edge* feature templates:
 - \(<t_{i-1}, t_i>=\>
 - \(<t_{i-2}, t_{i-1}, t_i>=\>
 - Also, mixed feature templates:
 - \(<t_i, w_0, t_0>=\>

Decoding

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding

- Viterbi algorithm (HMMs):
 \[
 \delta_i(s) = \arg \max_{s'} P(s|s') P(w_{i-1}|s') \delta_{i-1}(s')
 \]

- Viterbi algorithm (Maxent):
 \[
 \delta_i(s) = \arg \max_{s'} P(s|s', w) \delta_{i-1}(s')
 \]
TBL Tagger

- [Brill 95] presents a transformation-based tagger
 - Label the training set with most frequent tags

 DT MD VBD VBD .
 The can was rusted .

 - Add transformation rules which reduce training mistakes

 MD → NN : DT __
 VBD → VBN : VBD __ .

 - Stop when no transformations do sufficient good

 - Probably the most widely used tagger (esp. outside NLP)

 ... but not the most accurate: 96.6% / 82.0 %

TBL Tagger II

- What gets learned? [from Brill 95]
EngCG Tagger

- English constraint grammar tagger
 - [Tapanainen and Voutilainen 94]
 - Something else you should know about
 - Hand-written and knowledge driven
 - “Don’t guess if you know” (general point about modeling more structure!)
 - Tag set doesn’t make all of the hard distinctions as the standard tag set (e.g. JJ/NN)
 - They get stellar accuracies: 98.5% on their tag set
 - Linguistic representation matters…
 - … but it’s easier to win when you make up the rules

CRF Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also voted perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train – require repeated inference on training set
- Differences tend not to be too important for POS tagging
- However: one issue worth knowing about in local models
 - “Label bias” and other explaining away effects
 - Maxent taggers’ local scores can be near one without having both good “transitions” and “emissions”
 - This means that often evidence doesn’t flow properly
 - Why isn’t this a big deal for POS tagging?
Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)

- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)