A Discriminative Approach

- View WSD as a discrimination task (regression, really)

\[P(\text{sense} \mid \text{context: jail, context: county, context: feeding, ...}) \]
- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / back-off problem
- Many feature-based classification techniques out there
 - We tend to need ones that output distributions over classes (why?)

Feature Representations

- Features are indicator functions \(f_i \) which count the occurrences of certain patterns in the input
- We map each input to a vector of feature predicate counts

\[
\begin{align*}
\text{context: jail} & = 1 \\
\text{context: county} & = 1 \\
\text{context: feeding} & = 1 \\
\text{context: game} & = 0 \\
\text{local-context: jail} & = 1 \\
\text{local-context: meals} & = 1 \\
\text{subcat: NP} & = 1 \\
\text{subcat: PP} & = 0 \\
\text{object-head: meals} & = 1 \\
\text{object-head: ball} & = 0
\end{align*}
\]

Example: Text Classification

- We want to classify documents into categories
 - Document length
 - Average word length
 - Document's source
 - Document layout

\[
\begin{array}{ll}
\text{DOCUMENT} & \text{CATEGORY} \\
\ldots \text{win the election} \ldots & \text{POLITICS} \\
\ldots \text{win the game} \ldots & \text{SPORTS} \\
\ldots \text{see a movie} \ldots & \text{OTHER}
\end{array}
\]

Some Definitions

- Sometimes, we want \(Y \) to depend on \(x \)

Block Feature Vectors

- Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

\[
\begin{align*}
X & \ldots \text{win the election} \ldots \\
& \text{sports} \quad \text{politics} \quad \text{other} \\
& \text{DOCLEN} \\
& \text{AVGLEN} \\
& \text{SOURCE} \\
& \text{LAYOUT}
\end{align*}
\]

\[
\begin{align*}
f_i(x) & = [1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \\
& \text{sports} = \text{"win"} \\
& \text{politics} = \text{"election"}
\end{align*}
\]

\[
\begin{align*}
f_i(\text{SPORTS}) & = [0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0] \\
f_i(\text{POLITICS}) & = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0] \\
f_i(\text{OTHER}) & = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0]
\end{align*}
\]
Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way.
- Example: a parse tree’s features may be the productions present in the tree.

\[f_1(\text{NP VP}) = [1 1 0 0] \]
\[f_2(\text{NP VP}) = [1 0 1 0] \]

- Different candidates will thus often share features.
- We’ll return to the non-block case later.

Linear Models: Scoring

- In a linear model, each feature gets a weight \(w \).

\[f_1(\text{POLITICS}) = [0 0 0 0 1 0 1 0 0 0 0] \]
\[f_2(\text{SPORTS}) = [1 0 1 0 0 0 0 0 0 0] \]
\[w = [1 1 -1 -2 1 -1 1 -2 -2 -1 -1] \]

- We compare hypotheses on the basis of their linear scores:

\[score(x^i, y, w) = w^T f_i(y) \]

\[f_1(\text{POLITICS}) = [0 0 0 0 1 0 1 0 0 0 0] \]
\[w = [1 1 -1 -2 1 -1 1 -2 -2 -1 -1] \]

\[score(x^i, \text{POLITICS}, w) = 1 \times 1 + 1 \times 1 = 2 \]

Linear Models: Prediction Rule

- The linear prediction rule:

\[prediction(x^i, w) = \arg \max_{y \in \mathbb{Y}} w^T f_i(y) \]

\[score(x^i, \text{SPORTS}, w) = 1 \times 1 + (-1) \times 1 = 0 \]
\[score(x^i, \text{POLITICS}, w) = 1 \times 1 + 1 \times 1 = 2 \]
\[score(x^i, \text{OTHER}, w) = (-2) \times 1 + (-1) \times 1 = -3 \]

\[prediction(x^i, w) = \text{POLITICS} \]

- We’ve said nothing about where weights come from!

Binary Decision Rule

- Heavily studied case: binary classification.

\[prediction(x^i, w) = (w^T f_i > 0) \]

- Decision rule is a hyperplane.
- One side will be class 1.
- Other side will be class 0.

```
<table>
<thead>
<tr>
<th>CLASS</th>
<th>BIAS</th>
<th>free</th>
<th>money</th>
<th>the</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAM</td>
<td>-3</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HAM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Multiclass Decision Rule

- If more than two classes:
 - Highest score wins.
 - Boundaries are more complex.
 - Harder to visualize.

\[prediction(x^i, w) = \arg \max_{y \in \mathbb{Y}} w^T f_i(y) \]

- There are other ways: e.g. reconcile pairwise decisions.

Learning Classifier Weights

- Two broad approaches to learning weights.

- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities.
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling.

- Discriminative: set weights based on some error-related criterion.
 - Advantages: error-driven, often weights which are good for classification aren’t the ones which best describe the data.

- We’ll mainly talk about the latter.
Example: Stoplights

Reality

<table>
<thead>
<tr>
<th>Lights Working</th>
<th>Lights Broken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P(g, r, w) = 3/7
P(r, g, w) = 3/7
P(r, r, b) = 1/7

NB Model

Working?

- P(w) = 6/7
- P(r) = 1/2
- P(g) = 1/2
- P(∅) = 0

NB FACTORS:

- P(w) = 6/7
- P(r|w) = 1/2
- P(g|w) = 1/2
- P(b) = 1/7
- P(r|b) = 1
- P(g|b) = 0

Example: Stoplights

- What does the model say when both lights are red?
 - P(b, r) = (1/7)(1/1) = 1/7 = 4/28
 - P(w, r) = (6/7)(1/2)(1/2) = 6/28 = 6/28
 - P(w|b) = 6/10!

- We’ll guess that (r, r) indicates lights are working

- Imagine if P(b) were boosted higher, to 1/2:
 - P(b, r) = (1/2)(1/1) = 1/2 = 4/8
 - P(w, r) = (1/2)(1/2)(1/2) = 1/8 = 1/8
 - P(w|b) = 1/5!

- Non-generative values can give better classification

Linear Models: Naïve-Bayes

- (Multinomial) Naïve-Bayes is a linear model, where:

 \[x^j = d_1, d_2, \ldots, d_n \]
 \[w = [\cdots, 0, \cdot, \log P(y), \log P(\eta_1 | y), \log P(\eta_2 | y), \ldots, \log P(\eta_m | y), \cdot, \cdots] \]

 \[\text{score}(x^j, y, w) = \log P(x^j | y) \]

 \[= \log \left(\prod_{d \in x^j} P(d | y) \right) \]
 \[= \log \prod_{d \in x^j} P(d | y)^{\#_d} \]
 \[= \log P(y) + \sum_{d} \#_d \log P(d | y) \]
 \[= w^T f(y) \]

How to pick weights?

- **Goal:** choose “best” vector w given training data
 - For now, we mean “best for classification”

- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don’t have the test set
 - Must compute weights from training set

- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error

- The (online) perceptron algorithm:
 - Start with zero weights
 - Visit training instances one by one
 - Try to classify
 \[y^* = \arg \max_y w^T f(y) \]
 - If correct, no change!
 - If wrong: adjust weights
 \[w \leftarrow w + f(y^*) \]
 \[w \leftarrow w - f(y^*) \]
Examples: Perceptron

- Separable Case

Perceptrons and Separability

- A data set is separable if some parameters classify it perfectly
- Convergence: if training data separable, perceptron will separate (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

Examples: Perceptron

- Non-Separable Case

Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn’t quite as bad as overfitting, but is similar
- Regularization: if the data isn’t separable, weights often thrash around
 - Averaging weight vectors over time can help (averaged perceptron)
 - [Freund & Schapire 99, Collins 02]
- Mediocre generalization: finds a “barely” separating solution
Problems with Perceptrons

- Perceptron "goal": separate the training data
 \[\forall i, y_i \neq y^i \quad w^T f_i(y^i) \geq w^T f_i(y) \]

 1. This may be an entire feasible space
 2. Or it may be impossible

Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:
 \[\sum \delta^{(i)} (w^T f_i(y^i) - \max_{y \neq y^i} w^T f_i(y)) \]
 - This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway
 - Maximum entropy and SVMs have other objectives related to zero-one loss

Linear Separators

- Which of these linear separators is optimal?

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:
 \[P(y | x, w) = \frac{\exp(w^T f_i(y))}{\sum_y \exp(w^T f_i(y))} \]
 - Make positive
 - Normalize
 - Maximize the (log) conditional likelihood of training data
 \[L(w) = \log \prod \left(\frac{\exp(w^T f_i(y))}{\sum_y \exp(w^T f_i(y))} \right) \]
 \[= \sum \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right) \]

Derivative for Maximum Entropy

\[L(w) = \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right) \]
\[\frac{\partial L(w)}{\partial w_n} = \sum_i \left(f_i(y^i)_n - \sum_y P(y | x, w)_n \right) \]

Expected Counts

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if features counts are from actual data).
Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked

- Regularization (smoothing)

\[
\begin{align*}
\max_w & \quad \sum_y \left(w^T f(y') - \log \sum_y \exp(w^T f(y)) \right) - \lambda \|w\|^2 \\
\min_w & \quad \|w\|^2 - \sum_y \left(w^T f(y') - \log \sum_y \exp(w^T f(y)) \right)
\end{align*}
\]

Example: NER Smoothing

Because of smoothing, the more common prefixes have larger weights, even though entire-word features are more specific.

<table>
<thead>
<tr>
<th>Local Context</th>
<th>Feature Type</th>
<th>Feature</th>
<th>PERS</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Previous</td>
<td>at</td>
<td>0.85</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>Grace</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Beginning</td>
<td><G</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Current POS</td>
<td>IN</td>
<td>0.47</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Previous tags</td>
<td>NNP</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
<td>0.70</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Current sign</td>
<td>Xr</td>
<td>0.80</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Prev state</td>
<td>O-Xr</td>
<td>0.68</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>current sig</td>
<td>Xr-Xr</td>
<td>0.69</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>P. state</td>
<td>O-Xr-Xr</td>
<td>0.69</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>P. - current</td>
<td>O-Xr-Xr</td>
<td>0.20</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total:</td>
<td>-0.58</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Log-Loss

- If we view maxent as a minimization problem:

\[
\min_w \quad \|w\|^2 - \sum_y \left(w^T f(y') - \log \sum_y \exp(w^T f(y)) \right)
\]

- This minimizes the "log loss" on each example

\[
- \left(w^T f(y') - \log \sum_y \exp(w^T f(y)) \right) = - \log P(y'|x, w)
\]

- One view: Log loss is an upper bound on zero-one loss
Derivative for Maximum Entropy

\[L(w) = -\frac{1}{2}||w||^2 + \sum_{y} \left(w^T f(y) - \log \sum_{y'} \exp(w^T f(y')) \right) \]

\[\frac{\partial L(w)}{\partial w_n} = -2w_n + \sum_{y} \left(f(y)_n - \sum_{y'} p(y|x) f(y')_n \right) \]

Big weights are bad

Expected count of feature \(n \) in predicted candidates

Total count of feature \(n \) in correct candidates

Unconstrained Optimization

- The maxent objective is an unconstrained optimization problem

\[\nabla L(w) = 0 \]

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

Convexity

- The maxent objective is nicely behaved:
 - Differentiable (so many ways to optimize)
 - Convex (so no local optima)

\[f(\lambda a + (1 - \lambda)b) \geq \lambda f(a) + (1 - \lambda)f(b) \]

Convex

Non-Convex

Convexity guarantees a single, global maximum value because any higher points are greedily reachable

Classification Margin (Binary)

- Distance of \(x_i \) to separator is its margin, \(w_i \)
- Examples closest to the hyperplane are support vectors
- Margin \(\gamma \) of the separator is the minimum \(w \)

\[\gamma_i(y) = \min \{ w^T f(y') - w^T f(y) \} \]

\[\gamma = \min_i \left(\min_{y'} w^T f(y') - w^T f(y) \right) \]

\[\forall i, \forall y \quad w^T f(y') \geq w^T f(y) + \gamma_i(y) \]

Classification Margin

- For each example \(x_i \), and possible mistaken candidate \(y_i \), we avoid that mistake by a margin \(w_i(y) \) (with zero-one loss)

\[m_i(y) = w_i^T f(y') - w_i^T f(y) \]

- Margin \(\gamma \) of the entire separator is the minimum \(w \)

\[\gamma = \min \left(\min_{y} w^T f(y') - \min_{y'} w^T f(y) \right) \]

- It is also the largest \(\gamma \) for which the following constraints hold

\[\forall i, \forall y \quad w^T f(y') \geq w^T f(y) + \gamma_i(y) \]
Maximum Margin

- Separable SVMs: find the max-margin w
 \[
 \max_{|w|=1} \gamma \quad \text{s.t.} \quad \forall i, y_i = +1, w^T f_i(x_i) \geq \gamma + \xi_i
 \]
 \[
 \max_{|w|=1} \gamma \quad \text{s.t.} \quad \forall i, y_i = -1, w^T f_i(x_i) \geq -\gamma + \xi_i
 \]
- Can stick this into Matlab and (slowly) get an SVM
- Won’t work (well) if non-separable

Why Max Margin?

- Why do this? Various arguments:
 - Solution depends only on the boundary cases, or support vectors (but remember how this diagram is broken!)
 - Solution robust to movement of support vectors
 - Sparse solutions (features not in support vectors get zero weight)
 - Generalization bound arguments
 - Works well in practice for many problems

Max Margin / Small Norm

- Reformulation: find the smallest w which separates data
 \[
 \max_{|w|=1} \gamma
 \]
 \[
 \forall i, y_i, w^T f_i(x_i) \geq \gamma + \xi_i
 \]
- \(\gamma \) scales linearly in w, so if |w| isn’t constrained, we can take any separating w and scale up our margin
 \[
 \gamma = \min_{i, y \neq y_i} (\|w\|^2 - w^T f_i(x_i))/\xi_i
 \]
- Instead of fixing the scale of w, we can fix \(\gamma = 1 \)
 \[
 \min \frac{1}{2} \|w\|^2
 \]
 \[
 \forall i, y \quad w^T f_i(x_i) \geq \gamma + \xi_i
 \]

Gamma to w

\[
\forall i, y\quad w^T f_i(x_i) \geq \gamma w^T f_i(x_i) + \xi_i
\]
\[
\gamma = 1/\|w\|^2
\]
\[
\max \frac{1}{2} \|w\|^2
\]
\[
\forall i, y\quad w^T f_i(x_i) \geq \gamma w^T f_i(x_i) + \xi_i
\]

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables \(\xi_i \) can be added to allow misclassification of difficult or noisy examples, resulting in a soft margin classifier

Maximum Margin

- Non-separable SVMs
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:
 \[
 \min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_i \xi_i
 \]
 \[
 \forall i, y_i = +1, w^T f_i(x_i) + \xi_i \geq w^T f_i(x_i) + \xi_i
 \]
 \[
 \forall i, y_i = -1, w^T f_i(x_i) + \xi_i \geq w^T f_i(x_i) + \xi_i
 \]
 - C is called the capacity of the SVM – the smoothing knob
- Learning:
 - Can still stick this into Matlab if you want
 - Constrained optimization is hard; better methods!
 - We’ll come back to this latter
Maximum Margin

We had a constrained minimization
\[\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \]
\[\forall i, y_i \mathbf{w}^T f_i(y_i) + \xi_i \geq \mathbf{w}^T f_i(y) + \xi_i \]
\[\mathbf{w} \]...but we can solve for \(\xi_i \)
\[\forall i, \xi_i \geq \mathbf{w}^T f_i(y) + \xi_i - \mathbf{w}^T f_i(y_i) \]
\[\forall i, \xi_i = \max(\mathbf{w}^T f_i(y) + \xi_i) - \mathbf{w}^T f_i(y_i) \]

Giving
\[\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 - C \sum_i (\mathbf{w}^T f_i(y) - \max(\mathbf{w}^T f_i(y) + \xi_i)) \]

Hinge Loss

- Consider the per-instance objective:
 \[\min \mathbf{w}||\mathbf{w}||^2 - \sum_i (\mathbf{w}^T f_i(y) - \max(\mathbf{w}^T f_i(y) + \xi_i)) \]
- This is called the “hinge loss”
 - Unlike maxent/log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective

Max vs “Soft-Max” Margin

- SVMs:
 \[\min \mathbf{w}||\mathbf{w}||^2 - \sum_i (\mathbf{w}^T f_i(y) - \max(\mathbf{w}^T f_i(y) + \xi_i)) \]
- Maxent:
 \[\min \mathbf{w}||\mathbf{w}||^2 - \sum_i \mathbf{w}^T f_i(y) - \log \sum \exp(\mathbf{w}^T f_i(y)) \]
 You can make this zero

Loss Functions: Comparison

- Zero-One Loss
 \[\sum_i \text{step}(\mathbf{w}^T f_i(y) - \max(\mathbf{w}^T f_i(y))) \]
- Hinge
 \[\sum_i (\mathbf{w}^T f_i(y) - \max(\mathbf{w}^T f_i(y) + \xi_i)) \]
- Log
 \[\sum_i (\mathbf{w}^T f_i(y) - \log \sum \exp(\mathbf{w}^T f_i(y))) \]

Separators: Comparison

Very similar! Both try to make the true score better than a function of the other scores
- The SVM tries to beat the true score
- The Maxent classifier tries to beat the “soft-max”