Word Senses

- Words have multiple distinct meanings, or senses:
 - Plant: living plant, manufacturing plant, …
 - Title: name of a work, ownership document, form of address, material at the start of a film, …

- Many levels of sense distinctions
 - Homonymy: totally unrelated meanings (river bank, money bank)
 - Polysemy: related meanings (star in sky, star on tv)
 - Systematic polysemy: productive meaning extensions (organizations to their buildings) or metaphor
 - Sense distinctions can be extremely subtle (or not)

- Granularity of senses needed depends a lot on the task

- Why is it important to model word senses?
 - Translation, parsing, information retrieval?
Word Sense Disambiguation

- Example: living plant vs. manufacturing plant
- How do we tell these senses apart?
 - "context"
 - The manufacturing plant which had previously sustained the town’s economy shut down after an extended labor strike.
 - Maybe it’s just text categorization
 - Each word sense represents a topic
 - Run the naive-bayes classifier from last class?
- Bag-of-words classification works ok for noun senses
 - 90% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns
 - 70% on senseval-1 verbs

Verb WSD

- Why are verbs harder?
 - Verbal senses less topical
 - More sensitive to structure, argument choice
- Verb Example: “Serve”
 - [function] The tree stump serves as a table
 - [enable] The scandal served to increase his popularity
 - [dish] We serve meals for the homeless
 - [enlist] He served his country
 - [jail] He served six years for embezzlement
 - [tennis] It was Agassi’s turn to serve
 - [legal] He was served by the sheriff
Various Approaches to WSD

- **Unsupervised learning**
 - Bootstrapping (Yarowsky 95)
 - Clustering

- **Indirect supervision**
 - From thesauri
 - From WordNet
 - From parallel corpora

- **Supervised learning**
 - Most systems do some kind of supervised learning
 - Many competing classification technologies perform about the same (it’s all about the knowledge sources you tap)
 - Problem: training data available for only a few words

Resources

- **WordNet**
 - Hand-build (but large) hierarchy of word senses
 - Basically a hierarchical thesaurus

- **SensEval**
 - A WSD competition, of which there have been 3 iterations
 - Training / test sets for a wide range of words, difficulties, and parts-of-speech
 - Bake-off where lots of labs tried lots of competing approaches

- **SemCor**
 - A big chunk of the Brown corpus annotated with WordNet senses

- **OtherResources**
 - The Open Mind Word Expert
 - Parallel texts
 - Flat thesauri
Knowledge Sources

- So what do we need to model to handle “serve”?
 - There are distant topical cues
 - point … court … serve … game …

\[
P(c, w_1, w_2, \ldots w_n) = P(c) \prod_i P(w_i | c)
\]

Weighted Windows with NB

- Distance conditioning
 - Some words are important only when they are nearby
 - point … court … serve …
 - serve … game …

\[
P(c, w_{-k}, \ldots, w_{-1}, w_0, w_{+1}, \ldots w_{+k'}) = P(c) \prod_{i=-k}^{k'} P(w_i | c, \text{bin}(i))
\]

- Distance weighting
 - Nearby words should get a larger vote
 - point … serve as … game …

\[
P(c, w_{-k}, \ldots, w_{-1}, w_0, w_{+1}, \ldots w_{+k'}) = P(c) \prod_{i=-k}^{k'} P(w_i | c)^{\text{boost}(i)}
\]
Better Features

- There are smarter features:
 - Argument selectional preference:
 - serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
 - Subcategorization:
 - [function] serve PP[as]
 - [enable] serve VP[to]
 - [tennis] serve <intransitive>
 - [food] serve NP {PP[to]}
 - Can capture poorly (but robustly) with local windows
 - … but we can also use a parser and get these features explicitly

- Other constraints (Yarowsky 95)
 - One-sense-per-discourse (only true for broad topical distinctions)
 - One-sense-per-collocation (pretty reliable when it kicks in: manufacturing plant, flowering plant)

Complex Features with NB?

- Example: Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.

- So we have a decision to make based on a set of cues:
 - context:jail, context:county, context:feeding, …
 - local-context:jail, local-context:meals
 - subcat:NP, direct-object-head:meals

- Not clear how build a generative derivation for these:
 - Choose topic, then decide on having a transitive usage, then pick “meals” to be the object’s head, then generate other words?
 - How about the words that appear in multiple features?
 - Hard to make this work (though maybe possible)
 - No real reason to try
A Discriminative Approach

- View WSD as a discrimination task (regression, really)
 \[P(\text{sense} \mid \text{context: jail, context: county, context: feeding, …, local-context: jail, local-context: meals, ...}) \]
- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / backoff problem
- Many feature-based classification techniques out there
- We tend to need ones that output distributions over classes (why?)

Feature Representations

\(d \quad \{f_i(d)\} \)

- Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.
- Features are indicator functions \(f_i \) which count the occurrences of certain patterns in the input
- We map each input to a vector of feature predicate counts

\[
\begin{align*}
\text{context: jail} &= 1 \\
\text{context: county} &= 1 \\
\text{context: feeding} &= 1 \\
\text{context: game} &= 0 \\
\ldots \\
\text{local-context: jail} &= 1 \\
\text{local-context: meals} &= 1 \\
\ldots \\
\text{subcat: NP} &= 1 \\
\text{subcat: PP} &= 0 \\
\ldots \\
\text{object-head: meals} &= 1 \\
\text{object-head: ball} &= 0
\end{align*}
\]
Linear Classifiers

- For a pair \((c,d)\), we take a weighted vote for each class:
 \[
 \text{vote}(c \mid d) = \exp \sum_i \lambda_i(c) f_i(d)
 \]

- There are many ways to set these weights
 - Perceptron: find a currently misclassified example, and nudge weights in the direction of a correct classification
 - Other discriminative methods usually work in the same way: try out various weights until you maximize some objective

<table>
<thead>
<tr>
<th>Feature</th>
<th>Food</th>
<th>Jail</th>
<th>Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>context:jail</td>
<td>-0.5 * 1</td>
<td>+1.2 * 1</td>
<td>-0.8 * 1</td>
</tr>
<tr>
<td>subcat:NP</td>
<td>+1.0 * 1</td>
<td>+1.0 * 1</td>
<td>-0.3 * 1</td>
</tr>
<tr>
<td>object-head:meals</td>
<td>+2.0 * 1</td>
<td>-1.5 * 1</td>
<td>-1.5 * 1</td>
</tr>
<tr>
<td>object-head:years = 0</td>
<td>-1.8 * 0</td>
<td>+2.1 * 0</td>
<td>-1.1 * 0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>+3.5</td>
<td>+0.7</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

Maximum-Entropy Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Turn the votes into a probability distribution:
 \[
 P(c \mid d, \lambda) = \frac{\exp \sum_i \lambda_i(c) f_i(d)}{\sum_c \exp \sum_i \lambda_i(c') f_i(d)} \quad \text{Makes votes positive.}
 \]
 \[
 \frac{\sum_c \exp \sum_i \lambda_i(c) f_i(d)}{\sum_c \exp \sum_i \lambda_i(c') f_i(d)} \quad \text{Normalizes votes.}
 \]
 - For any weight vector \(\{\lambda_i\}\), we get a conditional probability model \(P(c \mid d, \lambda)\).
 - We want to choose parameters that maximize the conditional (log) likelihood of the data:
 \[
 \log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_i \lambda_i(c) f_i(d)}{\sum_c \exp \sum_i \lambda_i(c) f_i(d)}
 \]
Building a Maxent Model

- **How to define features:**
 - Features are patterns in the input which we think the weighted vote should depend on
 - Usually features added incrementally to target errors
 - If we’re careful, adding some mediocre features into the mix won’t hurt (but won’t help either)

- **How to learn model weights?**
 - Maxent just one method
 - Use a numerical optimization package
 - Given a current weight vector, need to calculate (repeatedly):
 - Conditional likelihood of the data
 - Derivative of that likelihood wrt each feature weight

The Likelihood Value

- The (log) conditional likelihood is a function of the iid data \((C,D)\) and the parameters \(\lambda\):
 \[
 \log P(C \mid D, \lambda) = \log \prod_{(c,d)\in(C,D)} P(c \mid d, \lambda) = \sum_{(c,d)\in(C,D)} \log P(c \mid d, \lambda)
 \]
 - If there aren’t many values of \(c\), it’s easy to calculate:
 \[
 \log P(C \mid D, \lambda) = \sum_{(c,d)\in(C,D)} \log \frac{\exp \sum_{i} \lambda_i(c)f_i(d)}{\sum_{c'} \exp \sum_{i} \lambda_i(c')f_i(d)}
 \]
 - We can separate this into two components:
 \[
 \log P(C \mid D, \lambda) = \sum_{(c,d)\in(C,D)} \log \exp \sum_{i} \lambda_i(c)f_i(d) - \sum_{(c,d)\in(C,D)} \log \sum_{c'} \exp \sum_{i} \lambda_i(c')f_i(d)
 \]
 \[
 \log P(C \mid D, \lambda) = N(\lambda) - M(\lambda)
 \]
The Derivative I: Numerator

\[
\frac{\partial N(\lambda)}{\partial \lambda_i(c)} = \sum_k \log \exp \sum_i \lambda_i(c_k) f_i(d_k) = \frac{\partial \sum_k \sum_i \lambda_i(c_k) f_i(d_k)}{\partial \lambda_i(c)} = \frac{\partial \sum_k \lambda_i(c_k) f_i(d_k)}{\partial \lambda_i(c)} = \sum_{k: x_k = c} \frac{\partial \sum_i \lambda_i(c_k) f_i(d_k)}{\partial \lambda_i(c)} = \sum_{k: x_k = c} \lambda_i(c_k) f_i(d_k) = \sum f_i(d)
\]

Derivative of the numerator is the empirical count \(f_i, c\)

E.g.: we actually saw the word “dish” with the “food” sense 3 times (maybe twice in one example and once in another).

The Derivative II: Denominator

\[
\frac{\partial M(\lambda)}{\partial \lambda_i(c)} = \sum_i \log \sum_c \exp \sum_i \lambda_i(c') f_i(d_i) = \frac{\partial \log \sum_c \exp \sum_i \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} = \frac{\partial \sum_c \exp \sum_i \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} = \frac{\partial \sum_i \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} \sum_c \frac{\exp \sum_i \lambda_i(c') f_i(d_i)}{\lambda_i(c')} \frac{\partial \sum_i \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} = \sum_i \sum_c \sum_{c'} \lambda_i(c') f_i(d_i) \frac{\partial \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} \sum_c \sum_{c'} \frac{\exp \sum_i \lambda_i(c') f_i(d_i)}{\lambda_i(c')} = \sum_k \sum_{c'} \sum_{c''} \sum_i \lambda_i(c') f_i(d_i) \frac{\partial \lambda_i(c') f_i(d_i)}{\partial \lambda_i(c)} = \sum_k P(c \mid d_k, \lambda) f_i(d_k) = \text{predicted count}(f_i, \lambda)
\]
The Derivative III

\[
\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i(c)} = \text{actual count}(f_i, c) - \text{predicted count}(f_i, \lambda)
\]

The optimum distribution is:

- Always exists (if features counts are from actual data).
- Always unique (but parameters may not be unique).
- The optimum parameters are the ones for which each feature’s predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if features counts are from actual data).

Summary

- We have a function to optimize:
 \[
 \log P(C \mid D, \lambda) = \sum_{(c, d) \in (C, D)} \log \exp \sum_c \lambda_i(c) f_i(d)
 \]

- We know the function’s derivatives:
 \[
 \frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i(c)} = \text{actual count}(f_i, c) - \text{predicted count}(f_i, \lambda)
 \]

- Ready to feed it into a numerical optimization package…
- What did any of that have to do with entropy?
Smoothing: Issues of Scale

- Lots of features:
 - NLP maxent models can have over 1M features.
 - Even storing a single array of parameter values can have a substantial memory cost.

- Lots of sparsity:
 - Overfitting very easy – need smoothing!
 - Many features seen in training will never occur again at test time.

- Optimization problems:
 - Feature weights can be infinite, and iterative solvers can take a long time to get to those infinities.

Assume the following empirical distribution:

- Features: \{Heads\}, \{Tails\}
- We’ll have the following model distribution:

\[
P_{\text{HEADS}} = \frac{e^{\lambda H}}{e^{\lambda H} + e^{\lambda T}} \quad P_{\text{TAILS}} = \frac{e^{\lambda T}}{e^{\lambda H} + e^{\lambda T}}
\]

- Really, only one degree of freedom ($\lambda = \lambda_H - \lambda_T$)

\[
P_{\text{HEADS}} = \frac{e^{\lambda_H} e^{-\lambda_T}}{e^{\lambda_H} e^{-\lambda_T} + e^{\lambda_T} e^{-\lambda_H}} = \frac{e^{\lambda_H}}{e^{\lambda_H} + e^{\lambda_T}} \quad P_{\text{TAILS}} = \frac{e^{\lambda_T}}{e^{\lambda_H} + e^{\lambda_T}}
\]
Smoothing: Issues

- The data likelihood in this model is:

\[
\log P(h, t | \lambda) = h \log p_{\text{HEADS}} + t \log p_{\text{TAILS}}
\]

\[
\log P(h, t | \lambda) = h\lambda - (t + h) \log (1 + e^{\lambda})
\]

Smoothing: Early Stopping

- In the 4/0 case, there were two problems:
 - The optimal value of \(\lambda \) was \(\infty \), which is a long trip for an optimization procedure.
 - The learned distribution is just as spiked as the empirical one – no smoothing.

- One way to solve both issues is to just stop the optimization early, after a few iterations.
 - The value of \(\lambda \) will be finite (but presumably big).
 - The optimization won’t take forever (clearly).
 - Commonly used in early maxent work.
Smoothing: Priors (MAP)

- What if we had a prior expectation that parameter values wouldn’t be very large?
- We could then balance evidence suggesting large parameters (or infinite) against our prior.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite!).
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:

\[
\log P(C, \lambda | D) = \log P(\lambda) + \log P(C | D, \lambda)
\]

Posterior Prior Evidence

Smoothing: Priors

- **Gaussian, or quadratic, priors:**
 - Intuition: parameters shouldn’t be large.
 - Formalization: prior expectation that each parameter will be distributed according to a gaussian with mean μ and variance σ^2.

\[
P(\lambda_i) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(\lambda_i - \mu)^2}{2\sigma^2} \right)
\]

- Penalizes parameters for drifting to far from their mean prior value (usually $\mu=0$).
- $2\sigma^2=1$ works surprisingly well (better to set using held-out data, though)

They don’t even capitalize my name anymore!
Smoothing: Priors

- If we use Gaussian priors:
 - Trade off some expectation-matching for smaller parameters.
 - When multiple features can be recruited to explain a data point, the more common ones generally receive more weight.
 - Accuracy generally goes up!
- Change the objective:

\[
\log P(C, \lambda | D) = \log P(C | D, \lambda) - \log P(\lambda)
\]

\[
\log P(C, \lambda | D) = \sum_{(c,d) \in (C,D)} P(c | d, \lambda) - \sum_i \frac{(\lambda_i - \mu_i)^2}{2\sigma_i^2} + k
\]

- Change the derivative:

\[
\frac{\partial \log P(C, \lambda | D)}{\partial \lambda_i} = \text{actual}(f_i, C) - \text{predicted}(f_i, \lambda) - \frac{(\lambda_i - \mu_i)}{\sigma^2}
\]

Example: NER Smoothing

Because of smoothing, the more common prefixes have larger weights even though entire-word features are more specific.

Local Context

<table>
<thead>
<tr>
<th>Prev</th>
<th>Cur</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Other</td>
<td>???</td>
</tr>
<tr>
<td>Word</td>
<td>at</td>
<td>Grace</td>
</tr>
<tr>
<td>Tag</td>
<td>IN</td>
<td>NNP</td>
</tr>
<tr>
<td>Sig</td>
<td>x</td>
<td>Xx</td>
</tr>
</tbody>
</table>

Feature Weights

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>PERS</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at</td>
<td>-0.73</td>
<td>0.94</td>
</tr>
<tr>
<td>Current word</td>
<td>Grace</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Beginning bigram</td>
<td><G</td>
<td>0.45</td>
<td>-0.04</td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN NNP</td>
<td>-0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Previous state</td>
<td>Other</td>
<td>-0.70</td>
<td>-0.92</td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx</td>
<td>0.80</td>
<td>0.46</td>
</tr>
<tr>
<td>Prev state, cur sig</td>
<td>O-Xx</td>
<td>0.68</td>
<td>0.37</td>
</tr>
<tr>
<td>Prev-cur-next sig</td>
<td>x-Xx-Xx</td>
<td>-0.69</td>
<td>0.37</td>
</tr>
<tr>
<td>P. state - p-cur sig</td>
<td>O-x-Xx</td>
<td>-0.20</td>
<td>0.82</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>-0.58</td>
<td>2.68</td>
</tr>
</tbody>
</table>