Semantic Role Labeling (SRL)

- Characterize clauses as relations with roles:

 \[\text{Judge} \text{ She } \text{ blames } \text{ Evaluate the Government } \text{ for failing to do enough to help}. \]

 Holman would characterise this as blaming \(\text{Evaluate the poor} \).

 The letter quotes Black as saying that \(\text{Judge white and Navajo ranchers} \) misrepresent their livestock losses and blame \(\text{Reason everything} \) on coyotes.

- Want to more than which NP is the subject (but not much more):
- Relations like \textit{subject} are syntactic, relations like \textit{agent} or \textit{message} are semantic
- Typical pipeline:
 - Parse, then label roles
 - Almost all errors locked in by parser
 - Really, SRL is quite a lot easier than parsing
FrameNet: roles shared between verbs
PropBank: each verb has its own roles
PropBank more used, because it's layered over the treebank (and so has greater coverage, plus parses)
Note: some linguistic theories postulate even fewer roles than FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)
PropBank Example

fall.01

<table>
<thead>
<tr>
<th>sense</th>
<th>move downward</th>
</tr>
</thead>
<tbody>
<tr>
<td>roles</td>
<td>Arg1: thing falling</td>
</tr>
<tr>
<td></td>
<td>Arg2: extent, distance fallen</td>
</tr>
<tr>
<td></td>
<td>Arg3: start point</td>
</tr>
<tr>
<td></td>
<td>Arg4: end point</td>
</tr>
</tbody>
</table>

Sales fell to $251.2 million from $278.7 million.

arg1: Sales
rel: fell
arg4: to $251.2 million
arg3: from $278.7 million

PropBank Example

rotate.02

<table>
<thead>
<tr>
<th>sense</th>
<th>shift from one thing to another</th>
</tr>
</thead>
<tbody>
<tr>
<td>roles</td>
<td>Arg0: cause of shift</td>
</tr>
<tr>
<td></td>
<td>Arg1: thing being changed</td>
</tr>
<tr>
<td></td>
<td>Arg2: old thing</td>
</tr>
<tr>
<td></td>
<td>Arg3: new thing</td>
</tr>
</tbody>
</table>

Many of Wednesday’s winners were losers yesterday as investors quickly took profits and rotated their buying to other issues, traders said. (wsj[1723])

arg0: investors
rel: rotated
arg1: their buying
arg3: to other issues
PropBank Example

aim.01 sense: intend, plan
roles: Arg0: aim, planer
 Arg1: plan, intent

The Central Council of Church Bell Ringers aims *trace* to improve relations with vicars. (waj_0080)
arg0: The Central Council of Church Bell Ringers
rel: aims
arg1: *trace* to improve relations with vicars

aim.02 sense: point (weapon) at
roles: Arg0: aimer
 Arg1: weapon, etc.
 Arg2: target

Banks have been aiming packages at the elderly.
arg0: Banks
rel: aiming
arg1: packages
arg2: at the elderly

Shared Arguments

(NP-SBJ (JJ massive) (JJ internal) (NN debt))
 (VP (VBZ has))
 (VP (VBN forced))
 (S
 (NP-SBJ-1 (DT die) (NN government))
 (VP
 (VP (TO to)
 (VP (VB borrow)
 (ADVP-MNR (RB massively))...
Path Features

- Path from target to filler
- Filler’s syntactic type, headword, case
- Target’s identity
- Sentence voice, etc.
- Lots of other second-order features

Gold vs parsed source trees

- SRL is fairly easy on gold trees
- Harder on automatic parses

Results
Interaction with Empty Elements

Empty Elements

- In the PTB, three kinds of empty elements:
 - Null items (usually complementizers)
 - Dislocation (WH-traces, topicalization, relative clause and heavy NP extraposition)
 - Control (raising, passives, control, shared argumentation)

- Need to reconstruct these (and resolve any indexation)
Example: English

Example: German
Types of Empties

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>POS</th>
<th>Label</th>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>NP</td>
<td>*</td>
<td>18,334</td>
<td>NP trace (e.g., \textit{Sam was seen *})</td>
</tr>
<tr>
<td>WHNF</td>
<td>NP</td>
<td>*</td>
<td>9,812</td>
<td>NP PRO (e.g., \textit{he to sleep is nice})</td>
</tr>
<tr>
<td>WHNF</td>
<td>NP</td>
<td>*T*</td>
<td>8,620</td>
<td>WH trace (e.g., \textit{the woman who you saw *T*})</td>
</tr>
<tr>
<td>WHNF</td>
<td>NP</td>
<td>*U*</td>
<td>7,478</td>
<td>Empty units (e.g., \textit{S 25 *U*})</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>*T*</td>
<td>5,635</td>
<td>Empty complementizers (e.g., \textit{Sam said 0 Sasha snores})</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td></td>
<td>4,083</td>
<td>Moved clauses (e.g., \textit{Sam had to go, Sasha explained *T*})</td>
</tr>
<tr>
<td>WHADVP</td>
<td>ADVP</td>
<td>*T*</td>
<td>2,492</td>
<td>WH trace (e.g., \textit{Sam explained how to leave *T*})</td>
</tr>
<tr>
<td>SBAR</td>
<td>WHNF</td>
<td></td>
<td>2,033</td>
<td>Empty clauses (e.g., \textit{Sam had to go, Sasha explained (SBAR)})</td>
</tr>
<tr>
<td>WHNF</td>
<td>O</td>
<td></td>
<td>1,759</td>
<td>Empty relative pronouns (e.g., \textit{the woman 0 we saw})</td>
</tr>
<tr>
<td>WHADVP</td>
<td>O</td>
<td></td>
<td>575</td>
<td>Empty relative pronouns (e.g., \textit{no reason 0 to leave})</td>
</tr>
</tbody>
</table>

A Pattern-Matching Approach

- [Johnson 02]
Pattern-Matching Details

- Something like transformation-based learning
- Extract patterns
 - Details: transitive verb marking, auxiliaries
 - Details: legal subtrees
- Rank patterns
 - Pruning ranking: by correct / match rate
 - Application priority: by depth
- Pre-order traversal
- Greedy match

Top Patterns Extracted

<table>
<thead>
<tr>
<th>Count</th>
<th>Match</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>5816</td>
<td>6773</td>
<td>(S (NP (-NONE- *)) VP)</td>
</tr>
<tr>
<td>5050</td>
<td>7895</td>
<td>(SBAR (-NONE- 0) S)</td>
</tr>
<tr>
<td>5121</td>
<td>5447</td>
<td>(GDAR WHNP -1 (S (NP (NONE- *) (vp)))</td>
</tr>
<tr>
<td>4474</td>
<td>5167</td>
<td>(NP QP (-NONE- *))</td>
</tr>
<tr>
<td>1082</td>
<td>1492</td>
<td>(NP & UU (-NONE- *))</td>
</tr>
<tr>
<td>1327</td>
<td>1593</td>
<td>(VP VBNL (NP (-NONE- *)) PP)</td>
</tr>
<tr>
<td>700</td>
<td>700</td>
<td>(AD-VP QP (-NONE- *))</td>
</tr>
<tr>
<td>662</td>
<td>1219</td>
<td>(SBAR (WHNP-1 (-NONE- 0)) (S</td>
</tr>
<tr>
<td>618</td>
<td>635</td>
<td>(S S-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- *)}}) .)</td>
</tr>
<tr>
<td>499</td>
<td>512</td>
<td>(SINV ' ' S-1 , ' ' (VP VBZ (S (-NONE- *)) NP))</td>
</tr>
<tr>
<td>361</td>
<td>369</td>
<td>(SINV ' ' S-1 , ' ' (VP VBZ (S (-NONE- *)) NP))</td>
</tr>
<tr>
<td>352</td>
<td>350</td>
<td>(S NP-1 (VP VBZ (S (NP (-NONE- *)) VP)))</td>
</tr>
<tr>
<td>346</td>
<td>273</td>
<td>(S NP-1 (VP AUX (VP VBD)) (NP (-NONE- *)) PP))</td>
</tr>
<tr>
<td>422</td>
<td>46/</td>
<td>(VP VBDL (NP (-NONE- *)) PP)</td>
</tr>
<tr>
<td>269</td>
<td>275</td>
<td>([S ' ' S-1 , ' ' NP (VP VBD (S (-NONE- *)']) .)</td>
</tr>
</tbody>
</table>
Results

A Machine-Learning Approach

- [Levy and Manning 04]
- Build two classifiers:
 - First one predicts where empties go
 - Second one predicts if/where they are bound
 - Use syntactic features similar to SRL (paths, categories, heads, etc)

Performance on gold trees

<table>
<thead>
<tr>
<th></th>
<th>ID</th>
<th>Rel</th>
<th>Combo</th>
<th>Performance on parsed trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSJ (full)</td>
<td>92.0</td>
<td>92.3</td>
<td>92.0</td>
<td>92.0</td>
</tr>
<tr>
<td>WSJ (sm)</td>
<td>92.0</td>
<td>92.3</td>
<td>92.0</td>
<td>92.0</td>
</tr>
<tr>
<td>NEGRA</td>
<td>73.0</td>
<td>64.6</td>
<td>60.0</td>
<td>64.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POS</th>
<th>Label</th>
<th>Section 23</th>
<th>Parser output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Overall)</td>
<td>0.93</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>NP</td>
<td>*</td>
<td>0.95</td>
<td>0.87</td>
</tr>
<tr>
<td>NP</td>
<td>T</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>0</td>
<td>U</td>
<td>0.94</td>
<td>0.99</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>0.92</td>
<td>0.98</td>
</tr>
<tr>
<td>ADVP</td>
<td>T</td>
<td>0.91</td>
<td>0.52</td>
</tr>
<tr>
<td>SBAR</td>
<td>0</td>
<td>0.90</td>
<td>0.63</td>
</tr>
<tr>
<td>WHNP</td>
<td>0</td>
<td>0.75</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Semantic Interpretation

- Back to meaning!
 - A very basic approach to computational semantics
 - Truth-theoretic notion of semantics (Tarskian)
 - Assign a “meaning” to each word
 - Word meanings combine according to the parse structure
 - People can and do spend entire courses on this topic
 - We’ll spend about an hour!

- What’s NLP and what isn’t?
 - Designing meaning representations?
 - Computing those representations?
 - Reasoning with them?

- Supplemental reading will be on the web page.

Meaning

- “Meaning”
 - What is meaning?
 - “The computer in the corner.”
 - “Bob likes Alice.”
 - “I think I am a gummi bear.”
 - Knowing whether a statement is true?
 - Knowing the conditions under which it’s true?
 - Being able to react appropriately to it?
 - “Who does Bob like?”
 - “Close the door.”

- A distinction:
 - Linguistic (semantic) meaning
 - “The door is open.”
 - Speaker (pragmatic) meaning

- Today: assembling the semantic meaning of sentence from its parts
Entailment and Presupposition

- Some notions worth knowing:
 - **Entailment:**
 - A entails B if A being true necessarily implies B is true
 - "Twitchy is a big mouse" → "Twitchy is a mouse"
 - "Twitchy is a big mouse" → "Twitchy is big"
 - "Twitchy is a big mouse" → "Twitchy is furry"

 - **Presupposition:**
 - A presupposes B if A is only well-defined if B is true
 - "The computer in the corner is broken" presupposes that there is a (salient) computer in the corner

Truth-Conditional Semantics

- **Linguistic expressions:**
 - "Bob sings"

- **Logical translations:**
 - \(\text{sings}(\text{bob}) \)
 - Could be \(p_{1218}(e_{397}) \)

- **Denotation:**
 - \([\text{bob}] = \text{some specific person (in some context)}\)
 - \([\text{sings}(\text{bob})] = ???)\)

- **Types on translations:**
 - \(\text{bob} : e\) (for entity)
 - \(\text{sings}(\text{bob}) : t\) (for truth-value)
Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob \([\text{[bob]}]^{W} \rightarrow ????\)
 - Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)
 - What about verbs (and verb phrases)?
 - sings must combine with bob to produce \(\text{sings(bob)} \)
 - The \(\lambda \)-calculus is a notation for functions whose arguments are not yet filled.
 - \(\text{sings} : \lambda \text{x}. \text{sings(x)} \)
 - This is predicate – a function which takes an entity (type \(e \)) and produces a truth value (type \(t \)). We can write its type as \(e \rightarrow t \).
 - Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - \(S : \beta(\alpha) \rightarrow NP : \alpha \quad VP : \beta \) (function application)
 - \(VP : \lambda \text{x} \cdot \alpha(x) \land \beta(x) \rightarrow VP : \alpha \) and : \(\emptyset \) VP : \(\beta \) (intersection)
- Example:
 - \(S \quad NP \quad VP \quad \lambda x. \text{sings(x)} \land \text{dances(x)} \)
 - \([\lambda x. \text{sings(x)} \land \text{dances(x)}](bob) \)
 - \(\text{sings(bob)} \land \text{dances(bob)} \)
Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
 - More usefully: assert truth and modify a database
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
 - Chain together facts and use them for comprehension

Other Cases

- Transitive verbs:
 - likes : \(\lambda x.\lambda y.\text{likes}(y,x) \)
 - Two-place predicates of type e\(\rightarrow \) (e\(\rightarrow \) t).
 - \(\text{likes Amy} : \lambda y.\text{likes}(y,\text{Amy}) \) is just like a one-place predicate.

- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : \(\lambda f.\forall x.f(x) \)
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won’t work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!
Indefinites

- First try
 - "Bob ate a waffle": ate(bob,waffle)
 - "Amy ate a waffle": ate(amy,waffle)

- Can’t be right!
 - $\exists x : \text{waffle}(x) \land \text{ate}(bob,x)$
 - What does the translation of “a” have to be?
 - What about “the”?
 - What about “every”?

Grounding

- Grounding
 - So why does the translation $\lambda x. \lambda y. \text{likes}(y,x)$ have anything to do with actual liking?
 - It doesn’t (unless the denotation model says so)
 - Sometimes that’s enough: wire up bought to the appropriate entry in a database

- Meaning postulates
 - Insist, e.g. $\forall x, y. \text{likes}(y,x) \rightarrow \text{knows}(y,x)$
 - This gets into lexical semantics issues

- Statistical version?
Tense and Events

- In general, you don’t get far with verbs as predicates
- Better to have event variables \(e \)
 - “Alice danced” : \(\text{danced(alice)} \)
 - \(\exists e : \text{dance}(e) \land \text{agent}(e,alice) \land \text{time}(e) < \text{now} \)
- Event variables let you talk about non-trivial tense / aspect structures
 - “Alice had been dancing when Bob sneezed”
 - \(\exists e, e' : \text{dance}(e) \land \text{agent}(e,alice) \land \text{sneeze}(e') \land \text{agent}(e',bob) \land \text{start}(e) < \text{start}(e') \land \text{end}(e) = \text{end}(e') \land \text{time}(e') < \text{now} \)

Adverbs

- What about adverbs?
 - “Bob sings terribly”
 - \(\text{terribly(sings(bob))} \)?
 - \(\text{(terribly(sings))(bob)} \)?
 - \(\exists e : \text{present}(e) \land \text{type}(e, \text{singing}) \land \text{agent}(e,bob) \land \text{manner}(e, \text{terrible}) \)?
 - It’s really not this simple..
Propositional Attitudes

- “Bob thinks that I am a gummi bear”
 - \(\text{thinks(bob, gummi(me))} \) ?
 - \(\text{thinks(bob, "I am a gummi bear")} \) ?
 - \(\text{thinks(bob, ^gummi(me))} \) ?

- Usual solution involves intensions (\(^X\)) which are, roughly, the set of possible worlds (or conditions) in which \(X \) is true

- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - \(\text{green ball : } \lambda x.[\text{green}(x) \land \text{ball}(x)] \)
 - \(\text{fake diamond : } \lambda x.[\text{fake}(x) \land \text{diamond}(x)] \) ?

- Generalized Quantifiers
 - \(\text{the : } \lambda f.[\text{unique-member}(f)] \)
 - \(\text{all : } \lambda f.\lambda g. [\forall x.f(x) \rightarrow g(x)] \)
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - \(\text{the(cat, meows), all(cat, meows)} \)

- Generics
 - “Cats like naps”
 - “The players scored a goal”

- Pronouns (and bound anaphora)
 - “If you have a dime, put it in the meter.”

- … the list goes on and on!
Multiple Quantifiers

- **Quantifier scope**
 - Groucho Marx celebrates quantifier order ambiguity:
 "In this country a woman gives birth every 15 min. Our job is to find that woman and stop her."

- **Deciding between readings**
 - "Bob bought a pumpkin every Halloween"
 - "Bob put a warning in every window"
 - Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Implementation, TAG, Idioms

- **Add a “sem” feature to each context-free rule**
 - $S \rightarrow NP \text{ loves } NP$
 - $S[\text{sem=loves}(x,y)] \rightarrow NP[\text{sem}=x] \text{ loves } NP[\text{sem}=y]$
 - Meaning of S depends on meaning of NPs

- **TAG version:**

 $S \rightarrow NP \text{ loves } VP \rightarrow NP \text{ loved } NP$

 $S \rightarrow NP \text{ died } VP \rightarrow NP \text{ kicked } NP$

- **Template filling:** $S[\text{sem=showflights}(x,y)] \rightarrow$
 - I want a flight from $NP[\text{sem}=x]$ to $NP[\text{sem}=y]$
Modeling Uncertainty

- Gaping hole warning!
- Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like “72% belief that the PP attaches to the NP.”
- That means that *probably* the enemy has night vision goggles.
- However, you can’t throw a logical assertion into a theorem prover with 72% confidence.
- Not clear humans really extract and process logical statements symbolically anyway.
- Use this to decide the expected utility of calling reinforcements?

- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning!

CCG Parsing

- **Combinatory Categorial Grammar**
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus
 - Can have spurious ambiguities (why?)

\[
\begin{align*}
John &\vdash NP : john' \\
shares &\vdash NP : shares' \\
buys &\vdash (S\setminus NP)/NP : \lambda x.\lambda y. buxs'xy \\
sleeps &\vdash S\setminus NP : \lambda x. sleep'x \\
wells &\vdash (S\setminus NP)\setminus(S\setminus NP) : \lambda f.\lambda x. well'(fx)
\end{align*}
\]

```
NP
S
S\setminus NP
John
(S\setminus NP)/NP
NP

buys
shares
```