Problems with PCFGs?

- If we do no annotation, these trees differ only in one rule:
 - $\text{VP} \rightarrow \text{VP PP}$
 - $\text{NP} \rightarrow \text{NP PP}$
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add “headwords” to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like
 - $W(\text{case}) \rightarrow W(\text{case}) \text{ NP} - C(\text{last}) \text{ NP}(\text{today})$
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps
Lexical Derivation Steps
- Simple derivation of a local tree [simplified Charniak 97]

Naïve Lexicalized Parsing
- Can, in principle, use CKY on lexicalized PCFGs
 - $O(Rn^2)$ time and $O(Sn^2)$ memory
 - But $R = n^2$ and $S = n^2$
 - Result is completely impractical (why?)
 - Memory: $10K$ rules * $50K$ words * (40 words)2 * 8 bytes = 6TB
- Can modify CKY to exploit lexical sparsity
 - Lexicalized symbols are a base grammar symbol and a pointer
 into the input sentence, not any arbitrary word
 - Result: $O(n^2)$ time, $O(n^2)$
 - Memory: $10K$ rules * (40 words)2 * 8 bytes = 5GB

Lexicalized CKY
```
if (j = i+1)
    return tagScore(X,x[i])
else
    return max
      max_{h'} max_{h} score(X[h] -> Y[h] Z[h'])
    * bestScore(X,i,j,h')
    * bestScore(Y,i,k,h')
    * bestScore(Z,j,k,h)
```

Quartic Parsing
- Turns out, you can do better [Eisner 99]
 - Gives an $O(n^2)$ algorithm
 - Still prohibitive in practice if not pruned

Dependency Parsing
- Lexicalized parsers can be seen as producing dependency trees
 - Each local binary tree corresponds to an attachment in the dependency graph
Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]
- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n^3) CKY
 - Remember only a few hypotheses for each span <i,j>
 - If we keep K hypotheses at each span, then we do at most O(nK^2) work per span (why?)
 - Keeps things more or less cubic
 - Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X[i,j] calculate P(X[i,j]|s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n^3) CKY
 - Skip any X[i,j] which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!
 - Currently the fastest lexicalized parser
 - Charniak et al 06: can use more passes
 - Petrov et al 07: can use many more passes

Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimality [Klein and Manning 03]

Projection-Based A*

A* Speedup

- Total time dominated by calculation of A* tables in each projection… O(n^3)
Results

- **Some results**
 - Collins 99 – 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 – 90.7 F1 (generative unlexical)
 - McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

- **However**
 - Bilexical counts rarely make a difference (why?)
 - Gildea 01 – Removing bilexical counts costs < 0.5 F1

- **Bilexical vs. monolexical vs. smart smoothing**

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as an arbitrary feature vector $\phi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features

- The best parsing numbers are from reranking systems

Parse Reranking

- Since the number of parses is no longer huge
 - Can enumerate all parses efficiently
 - Can use simple machine learning methods to score trees
 - E.g. maxent reranking: learn a binary classifier over trees where:
 - The top candidates are positive
 - All others are negative
 - Rank trees by $\Pr(+) | T$

- The best parsing numbers are from reranking systems

Shift-Reduce Parsers

- Another way to derive a tree:

- Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:

- Rewrite large (possibly lexicalized) subtrees in a single step

- Formally, a tree-insertion grammar
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

TIG: Insertion
Derivational Representations

- Generative derivational models:
 \[P(D) = \prod_{d \in D} P(d_0 d_1 \ldots d_{k-1}) \]

- How is a PCFG a generative derivational model?

- Distinction between parses and parse derivations.
 \[P(D) = \sum_{T \in T} P(D) \]

- How could there be multiple derivations?

Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly context-sensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don’t capture well (e.g. cross-serial dependencies)

TAG: Adjunction

- TAG: Long Distance

- \(\text{NP} \)
- \(\text{Adj} \)
- \(\text{N} \)
- \(\text{V} \)
- \(\text{s} \)
- \(\text{AdjN} \)
- \(\text{AdjN}^* \)
- \(\text{tall} \)
- \(\text{man} \)

CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

- \(\text{John} \vdash \text{NP} \)
- \(\text{shares} \vdash \text{NP} \)
- \(\text{buys} \vdash (S/\text{NP})/\text{NP} \)
- \(\text{sleeps} \vdash S/\text{NP} \)
- \(\text{well} \vdash (S/\text{NP})/(S/\text{NP}) \)
- \(\text{NP} \vdash (S/\text{NP})/\text{NP} \)
- \(\text{NP} \vdash \text{NP} \)
- \(\text{buys} \)
- \(\text{shares} \)