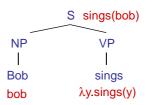
Statistical NLP Spring 2011

Lecture 22: Compositional Semantics

Dan Klein - UC Berkeley

Truth-Conditional Semantics

- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)
- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob): t (for truth-value)



Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob [[bob]]^W → ???
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)

- S sings(bob)

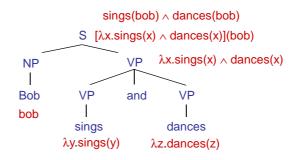
 NP VP

 Bob sings

 bob \(\lambda y.\sings(y)\)
- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ-calculus is a notation for functions whose arguments are not yet filled.
 - sings : λx.sings(x)
 - This is predicate a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
 - Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: \beta(\alpha) \to NP: \alpha \quad VP: \beta$ (function application)
 - $VP: \lambda x . \alpha(x) \land \beta(x) \rightarrow VP: \alpha$ and $: \emptyset VP: \beta$ (intersection)
- Example:

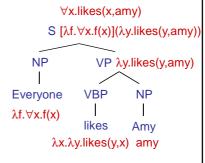


Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
 - More usefully: assert truth and modify a database
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
 - Chain together facts and use them for comprehension

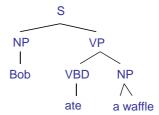
Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type $e \rightarrow (e \rightarrow t)$.
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!



Indefinites

- First try
 - "Bob ate a waffle": ate(bob,waffle)
 - "Amy ate a waffle": ate(amy,waffle)
- Can't be right!
 - ∃ x : waffle(x) ∧ ate(bob,x)
 - What does the translation of "a" have to be?
 - What about "the"?
 - What about "every"?



Grounding

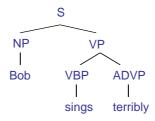
- Grounding
 - So why does the translation likes : λx.λy.likes(y,x) have anything to do with actual liking?
 - It doesn't (unless the denotation model says so)
 - Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x,y.likes(y,x) \rightarrow knows(y,x)$
 - This gets into lexical semantics issues
- Statistical version?

Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced": danced(alice)
 - ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"
 - ∃ e, e': dance(e) ∧ agent(e,alice) ∧
 sneeze(e') ∧ agent(e',bob) ∧
 (start(e) < start(e') ∧ end(e) = end(e')) ∧
 (time(e') < now)

Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob) ∧ manner(e, terrible) ?
 - It's really not this simple..



Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^{^X}) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

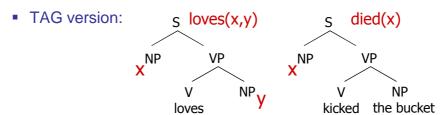
- Non-Intersective Adjectives
 - green ball : λx.[green(x) ∧ ball(x)]
 - fake diamond: λx .[fake(x) \wedge diamond(x)]? $\longrightarrow \lambda x$.[fake(diamond(x))
- Generalized Quantifiers
 - the : λf.[unique-member(f)]
 - all : λf . $\lambda g [\forall x. f(x) \rightarrow g(x)]$
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put it in the meter."
- ... the list goes on and on!

Multiple Quantifiers

- Quantifier scope
 - Groucho Marx celebrates quantifier order ambiguity:
 "In this country <u>a woman</u> gives birth <u>every 15 min</u>.
 Our job is to find that woman and stop her."
- Deciding between readings
 - "Bob bought a pumpkin every Halloween"
 - "Bob uses a Visa card for every purchase"
 - Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Implementation, TAG, Idioms

- Add a "sem" feature to each context-free rule
 - S → NP loves NP
 - $S[sem=loves(x,y)] \rightarrow NP[sem=x]$ loves NP[sem=y]
 - Meaning of S depends on meaning of NPs



Template filling: S[sem=showflights(x,y)] →
 I want a flight from NP[sem=x] to NP[sem=y]

Modeling Uncertainty

- Gaping hole warning!
- Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like "72% belief that the PP attaches to the NP."
- That means that probably the enemy has night vision goggles.
- However, you can't throw a logical assertion into a theorem prover with 72% confidence.
- Use this to decide the expected utility of calling reinforcements?
- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning

CCG Parsing

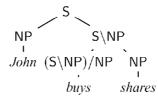
- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus
 - Can have spurious ambiguities (why?)

 $John \vdash NP : john'$ $shares \vdash NP : shares'$

 $buys \vdash (S\NP)/NP : \lambda x.\lambda y.buys'xy$

 $sleeps \vdash S \backslash NP : \lambda x.sleeps'x$

 $well \vdash (S \setminus NP) \setminus (S \setminus NP) : \lambda f. \lambda x. well'(fx)$



Mapping to LF: Zettlemoyer & Collins 05/07

Given training examples like:

Input: List one way flights to Prague. Output: $\lambda x.flight(x) \wedge one_way(x) \wedge to(x,PRG)$

Challenging Learning Problem:

- · Derivations (or parses) are not annotated
- Approach: [Zettlemoyer & Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- · Learning lexical entries: GENLEX

CCG Lexicon

Words	Category		
flights	$N: \lambda x.flight(x)$		
to	$(N\N)/NP : \lambda x. \lambda f. \lambda y. f(x) \wedge to(y,x)$		
Prague	NP : PRG		
New York city	NP : NYC		
•••	•••		

Parsing Rules (Combinators)

Application

- X/Y : f Y : a => X : f(a)
- $Y : a \quad X \setminus Y : f \Rightarrow X : f(a)$

Composition

- X/Y: f Y/Z: g \Rightarrow X/Z: $\lambda x.f(g(x))$
- $Z \setminus Y : f \quad X \setminus Y : g \implies X \setminus Z : \lambda x.f(g(x))$

Additional rules:

- Type Raising
- Crossed Composition

CCG Parsing

Show me flights		to	Prague
S/N <i>\lambda f.</i> f	N $\lambda x.flight(x)$	$\frac{(N\backslash N)/NP}{\lambda y. \lambda f. \lambda x. f(y) \wedge to(x,y)}$	NP <i>PRG</i>
		N\N λf.λx.f(x)∧to(x,	PRG)
	N $\lambda x. flight(x) \wedge to(x, PRG)$		
	λx.f1	S ight(x)^to(x,PRG)	

Weighted CCG

Given a log-linear model with a CCG lexicon Λ , a feature vector f, and weights w.

• The best parse is:

$$y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x, y)$$

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Lexical Generation

Input Training Example

Sentence: Show me flights to Prague. Logic Form: $\lambda x.flight(x) \wedge to(x,PRG)$

Output Lexicon

Words	Category		
Show me	S/N : λf.f		
flights	$N : \lambda x.flight(x)$		
to	$(N\N)/NP : \lambda x. \lambda f. \lambda y. f(x) \wedge to(y,x)$		
Prague	NP : PRG		

GENLEX: Substrings X Categories

Input Training Example

Sentence: Show me flights to Prague. Logic Form: $\lambda x.flight(x) \wedge to(x,PRG)$

Output Lexicon

All possible substrings:

Show me flights

•••

Show me

Show me flights
Show me flights to

•••

Categories created by rules that trigger on the logical form:

OIIII.

NP : PRG

 $N : \lambda x.flight(x)$ $(S\NP)/NP : \lambda x.\lambda y.to(y,x)$

 $(N\N)/NP : \lambda y.\lambda f.\lambda x. ...$

•••

[Zettlemoyer & Collins 2005]

Challenge Revisited

The lexical entries that work for:

$$\frac{\text{Show me}}{\text{S/NP}} \; \frac{\text{the latest}}{\text{NP/N}} \; \frac{\text{flight}}{\text{N}} \; \frac{\text{from Boston}}{\text{N/N}} \; \frac{\text{to Prague}}{\text{N/N}} \; \frac{\text{on Friday}}{\text{N/N}}$$

Will not parse:

Relaxed Parsing Rules

Two changes:

- Add application and composition rules that relax word order
- Add type shifting rules to recover missing words

These rules significantly relax the grammar

 Introduce features to count the number of times each new rule is used in a parse

Review: Application

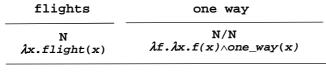
```
X/Y : f   Y : a => X : f(a)
 Y : a   X/Y : f => X : f(a)
```

Disharmonic Application

• Reverse the direction of the principal category:

```
X \setminus Y : f   Y : a => X : f(a)

Y : a   X \setminus Y : f => X : f(a)
```



 $N \\ \lambda x. flight(x) \land one_way(x)$

Missing content words

Insert missing semantic content

• NP : c => N\N : $\lambda f.\lambda x.f(x) \wedge p(x,c)$

flights	Boston	to Prague
N $\lambda x.flight(x)$	NP BOS	$N \setminus N$ $\lambda f \cdot \lambda x \cdot f(x) \wedge to(x, PRG)$
	$\frac{\text{N} \setminus \text{N}}{\lambda f. \lambda x. f(x) \land from(x, BOS)}$	
	N	

 $\lambda x.flight(x) \land from(x,BOS) \land to(x,PRG)$

Missing content-free words

Bypass missing nouns

• $N \setminus N$: $f \Rightarrow N$: $f(\lambda x.true)$

Northwest Air to Prague $\frac{N/N}{\lambda f. \lambda x. f(x) \land airline(x, NWA)} \frac{N \setminus N}{\lambda f. \lambda x. f(x) \land to(x, PRG)}$ $\frac{N}{\lambda x. to(x, PRG)}$

 $\lambda x.airline(x,NWA) \land to(x,PRG)$

Inputs: Training set $\{(x_i, z_i) \mid i=1...n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters w. Number of iterations T.

Computation: For t = 1...T, i = 1...n:

Step 1: Check Correctness

- Let $y^* = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y^*) = z_i$, go to the next example

Step 2: Lexical Generation

- Set $\lambda = \Lambda \cup GENLEX(x_i, z_i)$
- Let $\hat{y} = \arg \max_{y \in f(x) = z} w \cdot f(x_i, y)$
- Define λ_i to be the lexical entries in y^*
- Set lexicon to $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let $y' = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y') \neq z_i$
 - Set $w = w + f(x_i, \hat{y}) f(x_i, y')$

Output: Lexicon Λ and parameters w.

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006

- Learns a probabilistic push-down automaton with EM
- Is integrated with speech recognition

λ-WASP: Wong & Mooney 2007

- Builds a synchronous CFG with statistical machine translation techniques
- Easily applied to different languages

Zettlemoyer and Collins 2005

Uses GENLEX with maximum likelihood batch training and stricter grammar

Two Natural Language Interfaces

ATIS (travel planning)

- Manually-transcribed speech queries
- 4500 training examples
- 500 example development set
- 500 test examples

Geo880 (geography)

- Edited sentences
- 600 training examples
- 280 test examples

Evaluation Metrics

Precision, Recall, and F-measure for:

- Completely correct logical forms
- Attribute / value partial credit

```
\lambda x.flight(x) \land from(x,BOS) \land to(x,PRG)
```

is represented as:

```
{from = BOS, to = PRG }
```

Two-Pass Parsing

Simple method to improve recall:

- For each test sentence that can not be parsed:
 - Reparse with word skipping
 - Every skipped word adds a constant penalty
 - Output the highest scoring new parse

ATIS Test Set

Exact Match Accuracy:

	Precision	Recall	F1
Single-Pass	90.61	81.92	86.05
Two-Pass	85.75	84.60	85.16

Geo880 Test Set

Exact Match Accuracy:

	Precision	Recall	F1
Single-Pass	95.49	83.20	88.93
Two-Pass	91.63	86.07	88.76
Zettlemoyer & Collins 2005	96.25	79.29	86.95
Wong & Money 2007	93.72	80.00	86.31