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Statistical NLP
Spring 2011

Lecture 22: Compositional Semantics
Dan Klein – UC Berkeley

Truth-Conditional Semantics

� Linguistic expressions:
� “Bob sings”

� Logical translations:
� sings(bob)
� Could be p_1218(e_397)

� Denotation:
� [[bob]] = some specific person (in some context)
� [[sings(bob)]] = ???

� Types on translations:
� bob : e (for entity)
� sings(bob) : t (for truth-value)
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Truth-Conditional Semantics
� Proper names:

� Refer directly to some entity in the world
� Bob : bob          [[bob]]W � ???

� Sentences:
� Are either true or false (given

how the world actually is)
� Bob sings : sings(bob)

� So what about verbs (and verb phrases)?
� sings must combine with bob to produce sings(bob)
� The λ-calculus is a notation for functions whose arguments are 

not yet filled.
� sings : λx.sings(x)
� This is predicate – a function which takes an entity (type e) and 

produces a truth value (type t).  We can write its type as e→t.
� Adjectives?
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Compositional Semantics
� So now we have meanings for the words
� How do we know how to combine words?
� Associate a combination rule with each grammar rule:

� S : β(α) → NP : α VP : β (function application)

� VP : λx . α(x) ∧ β(x) → VP : α and : ∅ VP : β (intersection)

� Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)

sings(bob) ∧ dances(bob)
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Denotation

� What do we do with logical translations?
� Translation language (logical form) has fewer 

ambiguities
� Can check truth value against a database

� Denotation (“evaluation”) calculated using the database

� More usefully: assert truth and modify a database
� Questions: check whether a statement in a corpus 

entails the (question, answer) pair:
� “Bob sings and dances” → “Who sings?” + “Bob”

� Chain together facts and use them for comprehension

Other Cases

� Transitive verbs:
� likes : λx.λy.likes(y,x)

� Two-place predicates of type e→(e→t).

� likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

� Quantifiers:
� What does “Everyone” mean here?

� Everyone : λf.∀x.f(x)

� Mostly works, but some problems
� Have to change our NP/VP rule.
� Won’t work for “Amy likes everyone.”

� “Everyone likes someone.”

� This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes
λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))

∀x.likes(x,amy)
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Indefinites

� First try
� “Bob ate a waffle” : ate(bob,waffle)
� “Amy ate a waffle” : ate(amy,waffle)

� Can’t be right!
� ∃ x : waffle(x) ∧ ate(bob,x)

� What does the translation

of “a” have to be?

� What about “the”?

� What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

� Grounding
� So why does the translation likes : λx.λy.likes(y,x) have anything 

to do with actual liking?
� It doesn’t (unless the denotation model says so)
� Sometimes that’s enough: wire up bought to the appropriate 

entry in a database

� Meaning postulates
� Insist, e.g ∀x,y.likes(y,x) → knows(y,x)
� This gets into lexical semantics issues

� Statistical version?
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Tense and Events
� In general, you don’t get far with verbs as predicates
� Better to have event variables e

� “Alice danced” : danced(alice)

� ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

� Event variables let you talk about non-trivial tense / 
aspect structures
� “Alice had been dancing when Bob sneezed”

� ∃ e, e’ : dance(e) ∧ agent(e,alice) ∧
sneeze(e’) ∧ agent(e’,bob) ∧
(start(e) < start(e’) ∧ end(e) = end(e’)) ∧
(time(e’) < now)

Adverbs
� What about adverbs?

� “Bob sings terribly”

� terribly(sings(bob))?

� (terribly(sings))(bob)?

� ∃e present(e) ∧
type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?

� It’s really not this 
simple..

S

NP VP

Bob VBP ADVP

terriblysings
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Propositional Attitudes
� “Bob thinks that I am a gummi bear”

� thinks(bob, gummi(me)) ?
� thinks(bob, “I am a gummi bear”) ?
� thinks(bob, ^gummi(me)) ?

� Usual solution involves intensions (^X) which are, 
roughly, the set of possible worlds (or conditions) in 
which X is true

� Hard to deal with computationally
� Modeling other agents models, etc
� Can come up in simple dialog scenarios, e.g., if you want to talk 

about what your bill claims you bought vs. what you actually 
bought

Trickier Stuff

� Non-Intersective Adjectives
� green ball : λx.[green(x) ∧ ball(x)]
� fake diamond : λx.[fake(x) ∧ diamond(x)] ?

� Generalized Quantifiers
� the : λf.[unique-member(f)]
� all : λf. λg [∀x.f(x) → g(x)]
� most?
� Could do with more general second order predicates, too (why worse?)

� the(cat, meows), all(cat, meows)
� Generics

� “Cats like naps”
� “The players scored a goal”

� Pronouns (and bound anaphora)
� “If you have a dime, put it in the meter.”

� … the list goes on and on!

λx.[fake(diamond(x))
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Multiple Quantifiers
� Quantifier scope

� Groucho Marx celebrates quantifier order ambiguity:
“In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her.”

� Deciding between readings
� “Bob bought a pumpkin every Halloween”
� “Bob uses a Visa card for every purchase”
� Multiple ways to work this out

� Make it syntactic (movement)
� Make it lexical (type-shifting)

� Add a “sem” feature to each context-free rule
� S → NP loves NP

� S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

� Meaning of S depends on meaning of NPs

� TAG version:

Implementation, TAG, Idioms

NPV
loves

VP

S

NP
x

y

loves(x,y)

NP
the bucket

V
kicked

VP

S

NP
x

died(x)

� Template filling: S[sem=showflights(x,y)] →
I want a flight from NP[sem=x] to NP[sem=y]
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Modeling Uncertainty

� Gaping hole warning!
� Big difference between statistical disambiguation and statistical 

reasoning.

� With probabilistic parsers, can say things like “72% belief that the PP 
attaches to the NP.”

� That means that probably the enemy has night vision goggles.
� However, you can’t throw a logical assertion into a theorem prover

with 72% confidence.
� Use this to decide the expected utility of calling reinforcements?

� In short, we need probabilistic reasoning, not just probabilistic 
disambiguation followed by symbolic reasoning

The scout saw the enemy soldiers with night goggles.

CCG Parsing

� Combinatory 
Categorial 
Grammar
� Fully (mono-) 

lexicalized 
grammar

� Categories encode 
argument 
sequences

� Very closely 
related to the 
lambda calculus

� Can have spurious 
ambiguities (why?)
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Mapping to LF: Zettlemoyer & Collins 05/07

Given training examples like:
Input: List one way flights to Prague.

Output:  λx.flight(x) ∧ one_way(x) ∧ to(x,PRG)

Challenging Learning Problem:
• Derivations (or parses) are not annotated
• Approach: [Zettlemoyer & Collins 2005]
• Learn a lexicon and parameters for a weighted 

Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

• Combinatory Categorial Grammar (CCG)

• Weighted CCGs 

• Learning lexical entries: GENLEX
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CCG Lexicon

Words Category

flights N : λx.flight ( x )

to (N\N)/NP : λx. λf. λy.f(x) ∧ to ( y,x )

Prague NP : PRG

New York city NP : NYC

… …

Parsing Rules (Combinators)

Application
• X/Y : f      Y : a  =>   X : f(a)

• Y : a    X\Y : f  =>   X : f(a)

Composition
• X/Y : f   Y/Z : g   =>  X/Z : λx.f(g(x))

• Z\Y : f   X\Y : g   =>  X\Z : λx.f(g(x))

Additional rules:
• Type Raising
• Crossed Composition
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CCG Parsing

to Pragueflights

N\N
λλλλf.λλλλx.f(x)∧∧∧∧to( x,PRG)

N
λλλλx.flight(x)∧∧∧∧to( x,PRG)

Show me

N
λλλλx.flight( x)

(N\N)/NP
λλλλy.λλλλf.λλλλx.f(y)∧∧∧∧to(x,y)

NP
PRG

S/N
λλλλf.f

S
λλλλx.flight(x)∧∧∧∧to( x,PRG)

Weighted CCG

Given a log-linear model with a CCG lexicon Λ, 
a feature vector f, and weights w.

� The best parse is:

Where we consider all possible parses y for the 
sentence x given the lexicon Λ.

y* = argmax
y

w ⋅ f (x,y)
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Lexical Generation

Words Category

Show me S/N : λf.f

flights N : λx.flight ( x )

to (N\N)/NP : λx. λf. λy.f(x) ∧ to ( y,x )

Prague NP : PRG

... ...

Output Lexicon

Input Training Example
Sentence: Show me flights to Prague.

Logic Form: λx.flight(x) ∧ to(x,PRG)

GENLEX: Substrings X Categories

All possible substrings:

Show 
me
flights 
…
Show me
Show me flights 
Show me flights to
…

Categories created by rules 
that trigger on the logical 
form:

NP : PRG

N : λx.flight ( x )

(S\NP)/NP : λx. λy.to ( y,x )

(N\N)/NP : λy. λf. λx. …
…

X

Input Training Example

Sentence: Show me flights to Prague.
Logic Form: λx.flight(x) ∧ to(x,PRG)

Output Lexicon

[Zettlemoyer & Collins 2005]



13

Challenge Revisited

The lexical entries that work for:

Show me the latest flight from Boston to Prague on Friday

S/NP     NP/N      N        N\N        N\N       N\N
…        …       …          …          …        …

Will not parse:

Boston to Prague the latest on Friday

NP     N\N       NP/N       N\N
…      …          …          …

Relaxed Parsing Rules

Two changes:

� Add application and composition rules 
that relax word order

� Add type shifting rules to recover missing 
words

These rules significantly relax the grammar 

� Introduce features to count the number of 
times each new rule is used in a parse
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Review: Application

X/Y : f      Y : a   =>   X : f(a)

Y : a      X\Y : f   =>   X : f(a)

Disharmonic Application

• Reverse the direction of the principal category: 

X\ Y : f      Y : a   =>   X : f(a)

Y : a      X / Y : f   =>   X : f(a)

N
λλλλx.flight( x)

N/N
λλλλf.λλλλx.f(x)∧one_way( x)

flights one way

N
λλλλx.flight(x)∧one_way( x)
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Missing content words

Insert missing semantic content

� NP : c  =>  N\N : λf. λx.f(x) ∧ p(x,c)

N
λλλλx.flight( x)

N\N
λλλλf.λλλλx.f( x) ∧to( x,PRG)

flights to Prague

NP
BOS

Boston

N\N
λλλλf.λλλλx.f( x) ∧from( x,BOS)

N
λλλλx.flight( x) ∧from( x,BOS)

N
λλλλx.flight( x) ∧from( x,BOS)∧to( x,PRG)

Missing content-free words

Bypass missing nouns

� N\N : f =>  N : f( λx.true)

N/N
λλλλf.λλλλx.f(x)∧airline( x,NWA)

N\N
λλλλf.λλλλx.f(x)∧to( x,PRG)

Northwest Air to Prague

N
λλλλx.to( x,PRG)

N
λλλλx.airline( x,NWA) ∧ to( x,PRG)
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Inputs: Training set {(xi, zi) | i= 1…n} of sentences and logical forms.  Initial 
lexicon Λ.  Initial parameters w.  Number of iterations T.

Computation: For t = 1…T, i =1…n:

Step 1: Check Correctness �

• Let

• If L(y*) = zi, go to the next example

Step 2: Lexical Generation

• Set 

• Let 

• Define λi to be the lexical entries in y*

• Set lexicon to Λ = Λ ∪ λi

Step 3: Update Parameters

• Let

• If

• Set 

Output: Lexicon Λ and parameters w.

y* = argmax
y

w ⋅ f (xi ,y)

  
λ = Λ U GENLEX(xi,zi )

ˆ y = arg max
y s.t. L(y)= zi

w ⋅ f (xi,y)

′ y = argmax
y

w ⋅ f (xi,y)

L( ′ y ) ≠ zi

w = w + f (xi, ˆ y ) − f (xi, ′ y )

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006

� Learns a probabilistic push-down automaton with EM

� Is integrated with speech recognition

λ-WASP: Wong & Mooney 2007

� Builds a synchronous CFG with statistical machine 
translation techniques

� Easily applied to different languages

Zettlemoyer and Collins 2005

� Uses GENLEX with maximum likelihood batch training and 
stricter grammar
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Two Natural Language Interfaces

ATIS (travel planning)
– Manually-transcribed speech queries
– 4500 training examples
– 500 example development set
– 500 test examples

Geo880 (geography)
– Edited sentences
– 600 training examples
– 280 test examples

Evaluation Metrics

Precision, Recall, and F-measure for:

• Completely correct logical forms

• Attribute / value partial credit

λx.flight(x) ∧ from(x,BOS) ∧ to(x,PRG)

is represented as:
{ from = BOS, to = PRG }
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Two-Pass Parsing

Simple method to improve recall:

• For each test sentence that can not be parsed:

� Reparse with word skipping

� Every skipped word adds a constant penalty 

� Output the highest scoring new parse

ATIS Test Set

Precision Recall F1

Single-Pass 90.61 81.92 86.05

Two-Pass 85.75 84.60 85.16

Exact Match Accuracy:
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Geo880 Test Set

Precision Recall F1

Single-Pass 95.49 83.20 88.93

Two-Pass 91.63 86.07 88.76

Zettlemoyer & Collins 2005 96.25 79.29 86.95

Wong & Money 2007 93.72 80.00 86.31

Exact Match Accuracy:


