
1

Statistical NLP
Spring 2010

Lecture 6: Parts-of-Speech

Dan Klein – UC Berkeley

Parts-of-Speech (English)

� One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM

Italy

cat / cats

snow

see

registered

can

had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312

one

CC conjunction, coordinating and both but either or

CD numeral, cardinal mid-1890 nine-thirty 0.5 one

DT determiner a all an every no that the

EX existential there there

FW foreign word gemeinschaft hund ich jeux

IN preposition or conjunction, subordinating among whether out on by if

JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller

JJS adjective, superlative bravest cheapest tallest

MD modal auxiliary can may might will would

NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool

NNPS noun, proper, plural Americans Materials States

NNS noun, common, plural undergraduates bric-a-brac averages

POS genitive marker ' 's

PRP pronoun, personal hers himself it we them

PRP$ pronoun, possessive her his mine my our ours their thy your

RB adverb occasionally maddeningly adventurously

RBR adverb, comparative further gloomier heavier less-perfectly

RBS adverb, superlative best biggest nearest worst

RP particle aboard away back by on open through

TO "to" as preposition or infinitive marker to

UH interjection huh howdy uh whammo shucks heck

VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw

VBG verb, present participle or gerund stirring focusing approaching erasing

VBN verb, past participle dilapidated imitated reunifed unsettled

VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone

VBZ verb, present tense, 3rd person singular bases reconstructs marks uses

WDT WH-determiner that what whatever which whichever

WP WH-pronoun that what whatever which who whom

WP$ WH-pronoun, possessive whose

WRB Wh-adverb however whenever where why

Part-of-Speech Ambiguity

� Words can have multiple parts of speech

� Two basic sources of constraint:
� Grammatical environment
� Identity of the current word

� Many more possible features:
� Suffixes, capitalization, name databases (gazetteers), etc…

Fed raises interest rates 0.5 percent

NNP NNS NN NNS CD NN

VBN VBZ VBP VBZ

VBD VB

Why POS Tagging?

� Useful in and of itself (more than you’d think)
� Text-to-speech: record, lead

� Lemmatization: saw[v] → see, saw[n] → saw

� Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

� Useful as a pre-processing step for parsing
� Less tag ambiguity means fewer parses

� However, some tag choices are better decided by parsers

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

Classic Solution: HMMs

� We want a model of sequences s and observations w

� Assumptions:
� States are tag n-grams
� Usually a dedicated start and end state / word
� Tag/state sequence is generated by a markov model
� Words are chosen independently, conditioned only on the tag/state
� These are totally broken assumptions: why?

s1 s2 sn

w1 w2 wn

s0

2

States

� States encode what is relevant about the past

� Transitions P(s|s’) encode well-formed tag sequences
� In a bigram tagger, states = tags

� In a trigram tagger, states = tag pairs

<♦,♦>

s1 s2 sn

w1 w2 wn

s0

< ♦, t1> < t1, t2> < tn-1, tn>

<♦>

s1 s2 sn

w1 w2 wn

s0

< t1> < t2> < tn>

Estimating Transitions

� Use standard smoothing methods to estimate transitions:

� Can get a lot fancier (e.g. KN smoothing) or use higher orders, but in
this case it doesn’t buy much

� One option: encode more into the state, e.g. whether the previous
word was capitalized (Brants 00)

� BIG IDEA: The basic approach of state-splitting turns out to be very
important in a range of tasks

)(ˆ)1()|(ˆ),|(ˆ),|(211121221 iiiiiiiii tPttPtttPtttP λλλλ −−++= −−−−−

Estimating Emissions

� Emissions are trickier:
� Words we’ve never seen before
� Words which occur with tags we’ve never seen them with
� One option: break out the Good-Turning smoothing
� Issue: unknown words aren’t black boxes:

� Solution: unknown words classes (affixes or shapes)

� [Brants 00] used a suffix trie as its emission model

343,127.23 11-year Minteria reintroducibly

D+,D+.D+ D+-x+ Xx+ x+-“ly”

Disambiguation (Inference)

� Problem: find the most likely (Viterbi) sequence under the model

� Given model parameters, we can score any tag sequence

� In principle, we’re done – list all possible tag sequences, score each
one, pick the best one (the Viterbi state sequence)

Fed raises interest rates 0.5 percent .

NNP VBZ NN NNS CD NN .

P(NNP|<♦,♦>) P(Fed|NNP) P(VBZ|<NNP,♦>) P(raises|VBZ) P(NN|VBZ,NNP)…..

NNP VBZ NN NNS CD NN

NNP NNS NN NNS CD NN

NNP VBZ VB NNS CD NN

logP = -23

logP = -29

logP = -27

<♦,♦> <♦,NNP> <NNP, VBZ> <VBZ, NN> <NN, NNS> <NNS, CD> <CD, NN> <STOP>

Finding the Best Trajectory

� Too many trajectories (state sequences) to list
� Option 1: Beam Search

� A beam is a set of partial hypotheses
� Start with just the single empty trajectory
� At each derivation step:

� Consider all continuations of previous hypotheses
� Discard most, keep top k, or those within a factor of the best

� Beam search works ok in practice
� … but sometimes you want the optimal answer
� … and you need optimal answers to validate your beam search
� … and there’s usually a better option than naïve beams

<>

Fed:NNP

Fed:VBN

Fed:VBD

Fed:NNP raises:NNS

Fed:NNP raises:VBZ

Fed:VBN raises:NNS

Fed:VBN raises:VBZ

The State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

3

The State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

The Viterbi Algorithm

� Dynamic program for computing

� The score of a best path up to position i ending in state s

� Also store a backtrace

� Memoized solution
� Iterative solution

)...,...(max)(1110
... 10

−−
−

= ii
sss

i wwsssPs
i

δ

)'()'|()'|(max)(1
'

sswPssPs i
s

i −= δδ



 >••=<

=
otherwise

sif
s

0

,1
)(0δ

)'()'|()'|(maxarg)(1
'

sswPssPs i
s

i −= δψ

So How Well Does It Work?

� Choose the most common tag
� 90.3% with a bad unknown word model
� 93.7% with a good one

� TnT (Brants, 2000):
� A carefully smoothed trigram tagger
� Suffix trees for emissions
� 96.7% on WSJ text (SOA is ~97.5%)

� Noise in the data
� Many errors in the training and test corpora

� Probably about 2% guaranteed error
from noise (on this data)

NN NN NN
chief executive officer

JJ NN NN
chief executive officer

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

Overview: Accuracies

� Roadmap of (known / unknown) accuracies:

� Most freq tag: ~90% / ~50%

� Trigram HMM: ~95% / ~55%

� TnT (HMM++): 96.2% / 86.0%

� Maxent P(t|w): 93.7% / 82.6%

� MEMM tagger: 96.9% / 86.9%

� Cyclic tagger: 97.2% / 89.0%

� Upper bound: ~98%

Most errors
on unknown

words

Common Errors

� Common errors [from Toutanova & Manning 00]

NN/JJ NN

official knowledge

VBD RP/IN DT NN

made up the story

RB VBD/VBN NNS

recently sold shares

Better Features

� Can do surprisingly well just looking at a word by itself:

� Word the: the → DT

� Lowercased word Importantly: importantly → RB

� Prefixes unfathomable: un- → JJ

� Suffixes Surprisingly: -ly → RB

� Capitalization Meridian: CAP → NNP

� Word shapes 35-year: d-x → JJ

� Then build a maxent (or whatever) model to predict tag

� Maxent P(t|w): 93.7% / 82.6% s3

w3

4

Why Linear Context is Useful

� Lots of rich local information!

� We could fix this with a feature that looked at the next word

� We could fix this by linking capitalized words to their lowercase versions

� Solution: discriminative sequence models (MEMMs, CRFs)

� Reality check:
� Taggers are already pretty good on WSJ journal text…
� What the world needs is taggers that work on other text!
� Though: other tasks like IE have used the same methods to good effect

PRP VBD IN RB IN PRP VBD .
They left as soon as he arrived .

NNP NNS VBD VBN .
Intrinsic flaws remained undetected .

RB

JJ

Sequence-Free Tagging?

� What about looking at a word and its
environment, but no sequence information?

� Add in previous / next word the __

� Previous / next word shapes X __ X

� Occurrence pattern features [X: x X occurs]

� Crude entity detection __ ….. (Inc.|Co.)

� Phrasal verb in sentence? put …… __

� Conjunctions of these things

� All features except sequence: 96.6% / 86.8%

� Uses lots of features: > 200K

� Why isn’t this the standard approach?

t3

w3 w4w2

MEMM Taggers

� One step up: also condition on previous tags

� Train up P(ti|w,ti-1,ti-2) as a normal maxent model, then use to
score sequences

� This is referred to as an MEMM tagger [Ratnaparkhi 96]

� Beam search effective! (Why?)

� What’s the advantage of beam size 1?

Decoding

� Decoding maxent taggers:

� Just like decoding HMMs

� Viterbi, beam search, posterior decoding

� Viterbi algorithm (HMMs):

� Viterbi algorithm (Maxent):

TBL Tagger

� [Brill 95] presents a transformation-based tagger
� Label the training set with most frequent tags

DT MD VBD VBD .
The can was rusted .

� Add transformation rules which reduce training mistakes

� MD → NN : DT __
� VBD → VBN : VBD __ .

� Stop when no transformations do sufficient good
� Does this remind anyone of anything?

� Probably the most widely used tagger (esp. outside NLP)
� … but definitely not the most accurate: 96.6% / 82.0 %

TBL Tagger II

� What gets learned? [from Brill 95]

5

EngCG Tagger

� English constraint grammar tagger
� [Tapanainen and Voutilainen 94]

� Something else you should know
about

� Hand-written and knowledge driven

� “Don’t guess if you know” (general
point about modeling more structure!)

� Tag set doesn’t make all of the hard
distinctions as the standard tag set
(e.g. JJ/NN)

� They get stellar accuracies: 99% on
their tag set

� Linguistic representation matters…

� … but it’s easier to win when you make
up the rules

Global Discriminative Taggers

� Newer, higher-powered discriminative sequence models
� CRFs (also perceptrons, M3Ns)

� Do not decompose training into independent local regions

� Can be deathly slow to train – require repeated inference on
training set

� Differences tend not to be too important for POS tagging

� Differences more substantial on other sequence tasks

� However: one issue worth knowing about in local models
� “Label bias” and other explaining away effects

� MEMM taggers’ local scores can be near one without having
both good “transitions” and “emissions”

� This means that often evidence doesn’t flow properly

� Why isn’t this a big deal for POS tagging?

� Also: in decoding, condition on predicted, not gold, histories

Perceptron Taggers

� Linear models:

� … that decompose along the sequence

� … allow us to predict with the Viterbi algorithm

� … which means we can train with the perceptron
algorithm (or related updates, like MIRA)

[Collins 01]

CRFs

� Make a maxent model over entire taggings
� MEMM

� CRF

CRFs

� Like any maxent model, derivative is:

� So all we need is to be able to compute the expectation each
feature, for example the number of times the label pair DT-NN
occurs, or the number of times NN-interest occurs in a sentence

� How many times does, say, DT-NN occur at position 10? The ratio
of the scores of trajectories with that configuration to the score of all

� This requires exactly the same forward-backward score ratios as for
EM, but using the local potentials phi instead of the local
probabilities

Domain Effects

� Accuracies degrade outside of domain

� Up to triple error rate

� Usually make the most errors on the things you care
about in the domain (e.g. protein names)

� Open questions

� How to effectively exploit unlabeled data from a new
domain (what could we gain?)

� How to best incorporate domain lexica in a principled
way (e.g. UMLS specialist lexicon, ontologies)

6

Unsupervised Tagging?

� AKA part-of-speech induction

� Task:

� Raw sentences in

� Tagged sentences out

� Obvious thing to do:

� Start with a (mostly) uniform HMM

� Run EM

� Inspect results

EM for HMMs: Process

� Alternate between recomputing distributions over hidden variables
(the tags) and reestimating parameters

� Crucial step: we want to tally up how many (fractional) counts of
each kind of transition and emission we have under current params:

� But we need a dynamic program to help, because there are too
many sequences to sum over to compute these marginals

EM for HMMs: Quantities

� Cache total path values:

� Can calculate in O(s2n) time (why?)

The State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

EM for HMMs: Process

� From these quantities, can compute expected transitions:

� And emissions:

Merialdo: Setup

� Some (discouraging) experiments [Merialdo 94]

� Setup:
� You know the set of allowable tags for each word

� Fix k training examples to their true labels
� Learn P(w|t) on these examples

� Learn P(t|t-1,t-2) on these examples

� On n examples, re-estimate with EM

� Note: we know allowed tags but not frequencies

7

Merialdo: Results Distributional Clustering

president the __ of

president the __ said

governor the __ of

governor the __ appointed

said sources __ ♦

said president __ that

reported sources __ ♦

president
governor

said
reported

the

a

♦ the president said that the downturn was over ♦

[Finch and Chater 92, Shuetze 93, many others]

Distributional Clustering

� Three main variants on the same idea:

� Pairwise similarities and heuristic clustering

� E.g. [Finch and Chater 92]

� Produces dendrograms

� Vector space methods

� E.g. [Shuetze 93]

� Models of ambiguity

� Probabilistic methods

� Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

