Unsupervised Learning with EM

- Goal, learn parameters without observing labels
EM: More Formally

- Hard EM: \[\max_{\theta,y} P(y, \theta|x) \]
- Improve completions
 \[y^* = \arg \max_y P(y, \theta^*|x) = \arg \max_y P(y|x, \theta^*) \]
- Improve parameters
 \[\theta^* = \arg \max_\theta P(y^*, \theta|x) = \arg \max_\theta P(\theta|x, y^*) \]
- Each step either does nothing or increases the objective

Soft EM for Naïve-Bayes

- Procedure: (1) calculate posteriors (soft completions):
 \[P(y|x) = \frac{P(y) \prod_i P(x_i|y)}{\sum_{y'} P(y') \prod_i P(x_i|y')} \]
- (2) compute expected counts under those posteriors:
 \[c(w, y) = \sum_{x \in D} P(y|x) \sum_i [1(x_i = w, y)] \]
- (3) compute new parameters from these counts (divide)
- (4) repeat until convergence
EM in General

- We'll use EM over and over again to fill in missing data
 - Convenience Scenario: we want $P(x)$, including y just makes the model simpler (e.g. mixing weights for language models)
 - Induction Scenario: we actually want to know y (e.g. clustering)
- NLP differs from much of statistics / machine learning in that we often want to interpret or use the induced variables (which is tricky at best)

- General approach: alternately update y and θ
 - E-step: compute posteriors $P(y|x, \theta)$
 - This means scoring all completions with the current parameters
 - Usually, we do this implicitly with dynamic programming
 - M-step: fit θ to these completions
 - This is usually the easy part – treat the completions as (fractional) complete data
 - Initialization: start with some noisy labelings and the noise adjusts into patterns based on the data and the model
 - We'll see lots of examples in this course

- EM is only locally optimal (why?)

Problem: Word Senses

- Words have multiple distinct meanings, or senses:
 - Plant: living plant, manufacturing plant, …
 - Title: name of a work, ownership document, form of address, material at the start of a film, …

- Many levels of sense distinctions
 - Homonymy: totally unrelated meanings (river bank, money bank)
 - Polysemy: related meanings (star in sky, star on tv)
 - Systematic polysemy: productive meaning extensions (metonymy such as organizations to their buildings) or metaphor
 - Sense distinctions can be extremely subtle (or not)

- Granularity of senses needed depends a lot on the task

- Why is it important to model word senses?
 - Translation, parsing, information retrieval?
Word Sense Disambiguation

- Example: living plant vs. manufacturing plant

- How do we tell these senses apart?
 - “context”

 The manufacturing plant which had previously sustained the town’s economy shut down after an extended labor strike.

 - Maybe it’s just text categorization
 - Each word sense represents a topic
 - Run the naive-bayes classifier from last class?

- Bag-of-words classification works ok for noun senses
 - 90% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns
 - 70% on senseval-1 verbs

Various Approaches to WSD

- Unsupervised learning
 - Bootstrapping (Yarowsky 95)
 - Clustering

- Indirect supervision
 - From thesauri
 - From WordNet
 - From parallel corpora

- Supervised learning
 - Most systems do some kind of supervised learning
 - Many competing classification technologies perform about the same (it’s all about the knowledge sources you tap)
 - Problem: training data available for only a few words
Resources

- **WordNet**
 - Hand-build (but large) hierarchy of word senses
 - Basically a hierarchical thesaurus

- **SensEval -> SemEval**
 - A WSD competition, of which there have been 3+3 iterations
 - Training / test sets for a wide range of words, difficulties, and parts-of-speech
 - Bake-off where lots of labs tried lots of competing approaches

- **SemCor**
 - A big chunk of the Brown corpus annotated with WordNet senses

- **Other Resources**
 - The Open Mind Word Expert
 - Parallel texts
 - Flat thesauri

Verb WSD

- **Why are verbs harder?**
 - Verbal senses less topical
 - More sensitive to structure, argument choice

- **Verb Example: “Serve”**
 - [function] The tree stump serves as a table
 - [enable] The scandal served to increase his popularity
 - [dish] We serve meals for the homeless
 - [enlist] She served her country
 - [jail] He served six years for embezzlement
 - [tennis] It was Agassi's turn to serve
 - [legal] He was served by the sheriff
Knowledge Sources

- So what do we need to model to handle “serve”?
 - There are distant topical cues
 - ... point ... court serve game ...

\[
P(c, w_1, w_2, \ldots, w_n) = P(c) \prod_i P(w_i | c)
\]

Weighted Windows with NB

- Distance conditioning
 - Some words are important only when they are nearby
 - ... as ... point ... court serve game ...
 - ... serve as ... game ...

\[
P(c, w_{-k}, \ldots, w_{-1}, w_0, w_{+1}, \ldots, w_{+k'}) = P(c) \prod_{i=-k}^{k'} P(w_i | c, bin(i))
\]

- Distance weighting
 - Nearby words should get a larger vote
 - ... court serve as............ game point

\[
P(c, w_{-k}, \ldots, w_{-1}, w_0, w_{+1}, \ldots, w_{+k'}) = P(c) \prod_{i=-k}^{k'} P(w_i | c)^{boost(i)}
\]
Better Features

- There are smarter features:
 - Argument selectional preference:
 - serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
 - Subcategorization:
 - [function] serve PP[as]
 - [enable] serve VP[to]
 - [tennis] serve <intransitive>
 - [food] serve NP {PP[to]}
 - Can capture poorly (but robustly) with local windows
 - … but we can also use a parser and get these features explicitly

- Other constraints (Yarowsky 95)
 - One-sense-per-discourse (only true for broad topical distinctions)
 - One-sense-per-collocation (pretty reliable when it kicks in: manufacturing plant, flowering plant)

Complex Features with NB?

- Example: Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.

- So we have a decision to make based on a set of cues:
 - context:jail, context:county, context:feeding, …
 - local-context:jail, local-context:meals
 - subcat:NP, direct-object-head:meals

- Not clear how build a generative derivation for these:
 - Choose topic, then decide on having a transitive usage, then pick “meals” to be the object’s head, then generate other words?
 - How about the words that appear in multiple features?
 - Hard to make this work (though maybe possible)
 - No real reason to try (though people do)
A Discriminative Approach

- View WSD as a discrimination task (regression, really)
 \[P(\text{sense} \mid \text{context:jail, context:county, context:feeding, …, local-context:jail, local-context:meals, subcat:NP, direct-object-head:meals, …}) \]

- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / backoff problem

- Many feature-based classification techniques out there
- We tend to need ones that output distributions over classes (why?)

Feature Representations

- Features are indicator functions \(f_i \) which count the occurrences of certain patterns in the input
- We map each input to a vector of feature predicate counts

\[
\begin{align*}
\text{Washington County jail} & \text{ served} \\
11,166 & \text{ meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.}
\end{align*}
\]

\[
\{ f_i(d) \} = \left\{ \begin{array}{c}
\text{context:jail} = 1 \\
\text{context:county} = 1 \\
\text{context:feeding} = 1 \\
\text{context:game} = 0 \\
\vdots \\
\text{local-context:jail} = 1 \\
\text{local-context:meals} = 1 \\
\vdots \\
\text{subcat:NP} = 1 \\
\text{subcat:PP} = 0 \\
\vdots \\
\text{object-head:meals} = 1 \\
\text{object-head:ball} = 0 \\
\end{array} \right.
\]
Example: Text Classification

- We want to classify documents into categories

<table>
<thead>
<tr>
<th>DOCUMENT</th>
<th>CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>… win the election …</td>
<td>POLITICS</td>
</tr>
<tr>
<td>… win the game …</td>
<td>SPORTS</td>
</tr>
<tr>
<td>… see a movie …</td>
<td>OTHER</td>
</tr>
</tbody>
</table>

- Classically, do this on the basis of words in the document, but other information sources are potentially relevant:
 - Document length
 - Average word length
 - Document's source
 - Document layout

Some Definitions

- **INPUTS**
 - x^i

- **OUTPUT SPACE**
 - y

- **OUTPUTS**
 - y
 - y^i

- **TRUE OUTPUTS**

- **FEATURE VECTORS**
 - $f_i(y)$

Sometimes, we want Y to depend on x

-要么x是隐含的，要么y包含了x
Block Feature Vectors

- Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

\[
x \quad \text{... win the election ...}
\]

\[
\text{“} f_i(x) \text{“} \quad \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}
\]

\[
f_i(SPORTS) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
f_i(POLITICS) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
\]

\[
f_i(OTHER) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}
\]

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree’s features may be the productions present in the tree

\[
f_i\left(\begin{array}{c} S \\ NP \\ VP \end{array} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}
\]

\[
f_i\left(\begin{array}{c} S \\ NP \\ VP \end{array} \right) = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}
\]

- Different candidates will thus often share features
- We’ll return to the non-block case later
Linear Models: Scoring

- In a linear model, each feature gets a weight w

$$f_1(\text{POLITICS}) = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]$$

$$f_1(\text{SPORTS}) = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

$$w = [1, 1, -1, -2, 1, -1, 1, -2, -2, -1, -1, 1]$$

- We compare hypotheses on the basis of their linear scores:

$$\text{score}(x^i, y, w) = w^T f_i(y)$$

$$f_1(\text{POLITICS}) = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]$$

$$w = [1, 1, -1, -2, 1, -1, 1, -2, -2, -1, -1, 1]$$

$$\text{score}(x^i, \text{POLITICS}, w) = 1 \times 1 + 1 \times 1 = 2$$

Linear Models: Prediction Rule

- The linear prediction rule:

$$\text{prediction}(x^i, w) = \arg \max_{y \in Y} w^T f_i(y)$$

$$\text{score}(x^i, \text{SPORTS}, w) = 1 \times 1 + (-1) \times 1 = 0$$

$$\text{score}(x^i, \text{POLITICS}, w) = 1 \times 1 + 1 \times 1 = 2$$

$$\text{score}(x^i, \text{OTHER}, w) = (-2) \times 1 + (-1) \times 1 = -3$$

$$\text{prediction}(x^i, w) = \text{POLITICS}$$

- We’ve said nothing about where weights come from!
Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

\[
prediction(x^i, w) = \arg \max_{y \in Y} w^T f_i(y)
\]

- There are other ways: e.g. reconcile pairwise decisions

Learning Classifier Weights

- Two broad approaches to learning weights

- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling

- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren’t the ones which best describe the data

- Both are heavily used, different advantages
How to pick weights?

- Goal: choose “best” vector w given training data
 - For now, we mean “best for classification”

- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don’t have the test set
 - Must compute weights from training set

- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT does exactly this.

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error

- The (online) perceptron algorithm:
 - Start with zero weights
 - Visit training instances one by one
 - Try to classify
 \[
 y^* = \arg \max_{y \in Y} w^T f_i(y)
 \]
 - If correct, no change!
 - If wrong: adjust weights
 \[
 w \leftarrow w + f_i(y^i)
 \]
 \[
 w \leftarrow w - f_i(y^*)
 \]
Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:
 \[P(y|x, w) = \frac{\exp(w^T f(y))}{\sum_{y'} \exp(w^T f(y'))} \]
 - Make positive
 - Normalize
 - Maximize the (log) conditional likelihood of training data
 \[L(w) = \log \prod_i P(y^i|x^i, w) = \sum_i \log \left(\frac{\exp(w^T f_i(y^i))}{\sum_y \exp(w^T f_i(y))} \right) \]
 \[= \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right) \]

Derivative for Maximum Entropy

\[L(w) = \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right) \]

\[\frac{\partial L(w)}{\partial w_n} = \sum_i \left(f_i(y^i)_n - \sum_y P(y|x_i) f_i(y)_n \right) \]

- Total count of feature n in correct candidates
- Expected count of feature n in predicted candidates
Expected Counts

\[
\frac{\partial L(w)}{\partial w_n} = \sum_i \left(f_i(y^i)_n - \sum_y P(y|x_i)f_i(y)_n \right)
\]

- The optimum parameters are the ones for which each feature’s predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if feature counts are from actual data).

\begin{align*}
\text{x\textquotesingle}s & \quad \text{y}^i & \quad P(y \mid x^i, w) \\
\text{meal, jail, …} & \quad \text{food} & \quad .4 \\
\text{jail, term, …} & \quad \text{prison} & \quad .8
\end{align*}

The weight for the “context-word:jail and cat:prison” feature:

- Actual = 1
- Empirical = 1.2

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases…
 - … in practice, though, posteriors are pretty peaked

- Regularization (compare to smoothing)

\[
\max_w \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right) - k||w||^2
\]
Example: NER Smoothing

Because of smoothing, the more common prefixes have larger weights even though entire-word features are more specific.

Local Context

<table>
<thead>
<tr>
<th>Prev</th>
<th>Cur</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Other</td>
<td>??</td>
</tr>
<tr>
<td>Word</td>
<td>at</td>
<td>Grace</td>
</tr>
<tr>
<td>Tag</td>
<td>IN</td>
<td>NNP</td>
</tr>
<tr>
<td>Sig</td>
<td>x</td>
<td>Xx</td>
</tr>
</tbody>
</table>

Feature Weights

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>PERS</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at</td>
<td>-0.73</td>
<td>0.94</td>
</tr>
<tr>
<td>Current word</td>
<td>Grace</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Beginning bigram</td>
<td><G</td>
<td>0.45</td>
<td>-0.04</td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN NNP</td>
<td>-0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Previous state</td>
<td>Other</td>
<td>-0.70</td>
<td>-0.92</td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx</td>
<td>0.80</td>
<td>0.46</td>
</tr>
<tr>
<td>Prev state, cur sig</td>
<td>O-Xx</td>
<td>0.68</td>
<td>0.37</td>
</tr>
<tr>
<td>Prev-cur-next sig</td>
<td>x-Xx-Xx</td>
<td>-0.69</td>
<td>0.37</td>
</tr>
<tr>
<td>P. state - p-cur sig</td>
<td>O-x-Xx</td>
<td>-0.20</td>
<td>0.82</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>-0.58</td>
<td>2.68</td>
<td></td>
</tr>
</tbody>
</table>

Derivative for Maximum Entropy

\[
L(w) = -k ||w||^2 + \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right)
\]

\[
\frac{\partial L(w)}{\partial w_i} = -2k w_i \sum_i \left(f_i(y^i)_n - \sum_y P(y|x_i) f_i(y)_n \right)
\]

Big weights are bad

Expected count of feature \(n\) in predicted candidates

Total count of feature \(n\) in correct candidates
Unconstrained Optimization

- The maxent objective is an unconstrained optimization problem

\[L(w) \]

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

Unconstrained Optimization

- Once we have a function \(f \), we can find a local optimum by iteratively following the gradient

- For convex functions, a local optimum will be global
- Basic gradient ascent isn’t very efficient, but there are simple enhancements which take into account previous gradients: conjugate gradient, L-BFGs
- There are special-purpose optimization techniques for maxent, like iterative scaling, but they aren’t better