Supervised Learning

- Systems duplicate correct analyses from training data
- Hand-annotation of data
 - Time-consuming
 - Expensive
 - Hard to adapt for new purposes (tasks, languages, domains, etc)
 - Corpus availability drives research, not tasks
- Example: Penn Treebank
 - 50K Sentences
 - Hand-parsed over several years
Unsupervised Learning

- Systems take raw data and automatically detect patterns
- Why unsupervised learning?
 - More data than annotation
 - Insights into machine learning, clustering
 - Kids learn some aspects of language entirely without supervision
- Here: unsupervised learning
 - Work purely from the forms of the utterances
 - Neither assume nor exploit prior meaning or grounding [cf. Feldman et al.]

Unsupervised Parsing?

- Start with raw text, learn syntactic structure
- Some have argued that learning syntax from positive data alone is impossible:
 - Gold, 1967: Non-identifiability in the limit
 - Chomsky, 1980: The poverty of the stimulus
- Many others have felt it should be possible:
 - Lari and Young, 1990
 - Carroll and Charniak, 1992
 - Alex Clark, 2001
 - Mark Paskin, 2001
 - … and many more, but it didn’t work well (or at all) until the past few years
- Surprising result: it’s possible to get entirely unsupervised parsing to (reasonably) work well!
Learnability

- Learnability: formal conditions under which a class of languages can be learned in some sense

- Setup:
 - Class of languages is \mathcal{L}
 - Learner is some algorithm H
 - Learner sees a sequence X of strings $x_1 \ldots x_n$
 - H maps sequences X to languages L in \mathcal{L}

- Question: for what classes do learners exist?

Learnability: [Gold 67]

- Criterion: identification in the limit
 - A presentation of L is an infinite sequence of x's from L in which each x occurs at least once
 - A learner H identifies L in the limit if for any presentation of L, from some point n onward, H always outputs L
 - A class \mathcal{L} is identifiable in the limit if there is some single H which correctly identifies in the limit any L in \mathcal{L}

- Example: $L = \{\{a\}, \{a,b\}\}$ is learnable in the limit

- Theorem [Gold 67]: Any \mathcal{L} which contains all finite languages and at least one infinite language (i.e. is superfinite) is unlearnable in this sense
Learnability: [Gold 67]

- Proof sketch
 - Assume \mathcal{F} is superfinite
 - There exists a chain $L_1 \subseteq L_2 \subseteq \ldots L_\infty$
 - Take any learner H assumed to identify \mathcal{F}
 - Construct the following misleading sequence
 - Present strings from L_1 until it outputs L_1
 - Present strings from L_2 until it outputs L_2
 - ...
 - This is a presentation of L_∞, but H won’t identify L_∞

Learnability: [Horning 69]

- Problem: IIL requires that H succeed on each presentation, even the weird ones

- Another criterion: **measure one identification**
 - Assume a distribution $P_L(x)$ for each L
 - Assume $P_L(x)$ puts non-zero mass on all and only x in L
 - Assume infinite presentation X drawn i.i.d. from $P_L(x)$
 - H measure-one identifies L if probability of drawing an X from which H identifies L is 1

- [Horning 69]: PCFGs can be identified in this sense
 - Note: there can be misleading sequences, they just have to be (infinitely) unlikely
Learnability: [Horning 69]

- Proof sketch
 - Assume \(\mathcal{L} \) is a recursively enumerable set of recursive languages (e.g. the set of PCFGs)
 - Assume an ordering on all strings \(x_1 < x_2 < \ldots \)
 - Define: two sequences \(A \) and \(B \) agree through \(n \) if for all \(x < x_n \), \(x \) in \(A \) ⇔ \(x \) in \(B \)
 - Define the error set \(E(L,n,m) \):
 - All sequences such that the first \(m \) elements do not agree with \(L \) through \(n \)
 - These are the sequences which contain early strings outside of \(L \) (can’t happen) or fail to contain all the early strings in \(L \) (happens less as \(m \) increases)
 - Claim: \(P(E(L,n,m)) \) goes to 0 as \(m \) goes to \(\infty \)
 - Let \(d_e(n) \) be the smallest \(m \) such that \(P(E) < 2^{-n} \)
 - Let \(d(n) \) be the largest \(d_e(n) \) in first \(n \) languages
 - Learner: after \(d(n) \) pick first \(L \) that agrees with evidence through \(n \)
 - Can only fail for sequence \(X \) if \(X \) keeps showing up in \(E(L,n,d(n)) \), which happens infinitely often with probability zero (we skipped some details)

Learnability

- Gold’s result says little about real learners (requirements of IIL are way too strong)

- Horning’s algorithm is completely impractical (needs astronomical amounts of data)

- Even measure-one identification doesn’t say anything about tree structures (or even density over strings)
 - Only talks about learning grammatical sets
 - Strong generative vs weak generative capacity
Unsupervised Tagging?

- AKA part-of-speech induction

- Task:
 - Raw sentences in
 - Tagged sentences out

- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

\[
\text{count}(w, s) = \sum_{i, w_i = w} P(t_i = s|w)
\]

\[
\text{count}(s \rightarrow s') = \sum_{i} P(t_{i-1} = s, t_i = s'|w)
\]

- Same quantities we needed to train a CRF!
Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]

- Setup:
 - You know the set of allowable tags for each word
 - Learn a supervised model on k training sentences
 - Learn $P(w|t)$ on these examples
 - Learn $P(t|t_1,t_2)$ on these examples
 - On $n > k$ sentences, re-estimate with EM

- Note: we know allowed tags but not frequencies

Merialdo: Results

<table>
<thead>
<tr>
<th>Number of tagged sentences used for the initial model</th>
<th>0</th>
<th>100</th>
<th>2000</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iter</td>
<td>Correct tags (% words) after ML on 1M words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>77.0</td>
<td>90.0</td>
<td>95.4</td>
<td>96.2</td>
<td>96.6</td>
<td>96.9</td>
<td>97.0</td>
</tr>
<tr>
<td>1</td>
<td>80.5</td>
<td>92.6</td>
<td>95.8</td>
<td>96.3</td>
<td>96.6</td>
<td>96.7</td>
<td>96.8</td>
</tr>
<tr>
<td>2</td>
<td>81.8</td>
<td>93.0</td>
<td>95.7</td>
<td>96.1</td>
<td>96.3</td>
<td>96.4</td>
<td>96.4</td>
</tr>
<tr>
<td>3</td>
<td>83.0</td>
<td>93.1</td>
<td>95.4</td>
<td>95.8</td>
<td>96.1</td>
<td>96.2</td>
<td>96.2</td>
</tr>
<tr>
<td>4</td>
<td>84.0</td>
<td>93.0</td>
<td>95.2</td>
<td>95.5</td>
<td>95.8</td>
<td>96.0</td>
<td>96.0</td>
</tr>
<tr>
<td>5</td>
<td>84.8</td>
<td>92.9</td>
<td>95.1</td>
<td>95.4</td>
<td>95.6</td>
<td>95.8</td>
<td>95.8</td>
</tr>
<tr>
<td>6</td>
<td>85.3</td>
<td>92.8</td>
<td>94.9</td>
<td>95.2</td>
<td>95.5</td>
<td>95.6</td>
<td>95.7</td>
</tr>
<tr>
<td>7</td>
<td>85.8</td>
<td>92.8</td>
<td>94.7</td>
<td>95.1</td>
<td>95.3</td>
<td>95.5</td>
<td>95.5</td>
</tr>
<tr>
<td>8</td>
<td>86.1</td>
<td>92.7</td>
<td>94.6</td>
<td>95.0</td>
<td>95.2</td>
<td>95.4</td>
<td>95.4</td>
</tr>
<tr>
<td>9</td>
<td>86.3</td>
<td>92.6</td>
<td>94.5</td>
<td>94.9</td>
<td>95.1</td>
<td>95.3</td>
<td>95.3</td>
</tr>
<tr>
<td>10</td>
<td>86.6</td>
<td>92.6</td>
<td>94.4</td>
<td>94.8</td>
<td>95.0</td>
<td>95.2</td>
<td>95.2</td>
</tr>
</tbody>
</table>
Distributional Clustering

- The president said that the downturn was over

<table>
<thead>
<tr>
<th>The president</th>
<th>the __ of</th>
</tr>
</thead>
<tbody>
<tr>
<td>president</td>
<td>the __ said</td>
</tr>
<tr>
<td>governor</td>
<td>the __ of</td>
</tr>
<tr>
<td>governor</td>
<td>the __ appointed</td>
</tr>
<tr>
<td>said</td>
<td>sources __</td>
</tr>
<tr>
<td>said</td>
<td>president __ that</td>
</tr>
<tr>
<td>reported</td>
<td>sources __</td>
</tr>
</tbody>
</table>

[Finch and Chater 92, Shuetze 93, many others]

Distributional Clustering

- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuetze 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]
Nearest Neighbors

<table>
<thead>
<tr>
<th>word</th>
<th>nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>accompanied</td>
<td>submitted banned financed developed authorized headed canceled awarded barred</td>
</tr>
<tr>
<td>almost</td>
<td>virtually merely formally fully quite officially just nearly only less</td>
</tr>
<tr>
<td>causing</td>
<td>reflecting forcing providing creating producing becoming carrying particularly</td>
</tr>
<tr>
<td>classes</td>
<td>elections courses payments losses computers performances violations levels pictures</td>
</tr>
<tr>
<td>directors</td>
<td>professionals investigations materials competitors agreements papers transactions</td>
</tr>
<tr>
<td>goal</td>
<td>mood roof eye image tool song pool scene gap voice</td>
</tr>
<tr>
<td>japanese</td>
<td>chinese iraqi american western arab foreign european federal soviet indian</td>
</tr>
<tr>
<td>represnet</td>
<td>reveal attend deliver reflect choose contain impose manage establish retain</td>
</tr>
<tr>
<td>think</td>
<td>believe wish know realize wonder assume feel say mean bet</td>
</tr>
<tr>
<td>work</td>
<td>angels francisco sex rouge long diego zone vegas inning layer</td>
</tr>
<tr>
<td>on</td>
<td>through in at over into with from for by across</td>
</tr>
<tr>
<td>must</td>
<td>might would could cannot will should can may does helps</td>
</tr>
<tr>
<td>they</td>
<td>we you i be she nobody who it everybody there</td>
</tr>
</tbody>
</table>

Dendrograms

![Dendrograms Image](image)
A Probabilistic Version?

$$P(S, C) = \prod_i P(c_i) P(w_i \mid c_i) P(w_{i-1}, w_{i+1} \mid c_i)$$

- the president said that the downturn was over

Weakly Supervised Learning

Newly remodeled 2 Bdrms/1 Bath, spacious upper unit, located in Hilltop Mall area. Walking distance to shopping, public transportation, schools and park. Paid water and garbage. No dogs allowed.

Prototype Lists

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>kitchen, laundry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>near, close</td>
</tr>
<tr>
<td>TERMS</td>
<td>paid, utilities</td>
</tr>
<tr>
<td>SIZE</td>
<td>large, feet</td>
</tr>
<tr>
<td>RESTRICT</td>
<td>cat, smoking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NN</th>
<th>president</th>
<th>IN</th>
<th>of</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBD</td>
<td>said</td>
<td>NNS</td>
<td>shares</td>
</tr>
<tr>
<td>CC</td>
<td>and</td>
<td>TO</td>
<td>to</td>
</tr>
<tr>
<td>NNP</td>
<td>Mr.</td>
<td>PUNC</td>
<td>.</td>
</tr>
<tr>
<td>JJ</td>
<td>new</td>
<td>CD</td>
<td>million</td>
</tr>
<tr>
<td>DET</td>
<td>the</td>
<td>VBP</td>
<td>are</td>
</tr>
</tbody>
</table>

Information Extraction

English POS

From [Haghighi and Klein 06]
Context-Free Grammars

- Looks like a context-free grammar.
- Can model a tree as a collection of context-free rewrites (with probabilities attached).

\[
P(S | NP \text{ VERB NP PP}) = 0.1
\]

Early Approaches: Structure Search

- Incremental grammar learning, chunking [Wolff 88, Langley 82, many others]
 - Can recover synthetic grammars
 - An (extremely good / lucky) result of incremental structure search:

- Looks good, … but can’t parse in the wild.
Idea: Learn PCFGs with EM

- Classic experiments on learning PCFGs with Expectation-Maximization [Lari and Young, 1990]
 \[
 \{ X_1, X_2, \ldots, X_n \} \quad \xymatrix{ X_i \ar[r] & X_j \ar[r] & X_k }
 \]
 - Full binary grammar over \(n \) symbols
 - Parse uniformly/randomly at first
 - Re-estimate rule expectations off of parses
 - Repeat

- Their conclusion: it doesn’t really work.

Problem: Model Symmetries

- Symmetries

- How does this relate to trees
Other Approaches

- Evaluation: fraction of nodes in gold trees correctly posited in proposed trees (unlabeled recall)
- Some recent work in learning constituency:
 - [Adrians, 99] Language grammars aren’t general PCFGs
 - [Clark, 01] Mutual-information filters detect constituents, then an MDL-guided search assembles them
 - [van Zaanen, 00] Finds low edit-distance sentence pairs and extracts their differences

Right-Branching Baseline

- English trees tend to be right-branching, not balanced
- A simple (English-specific) baseline is to choose the right chain structure for each sentence

 | van Zaanen, 00 | 35.6 |

they were unwilling to agree to new terms
Idea: Distributional Syntax?

- Can we use distributional clustering for learning syntax? [Harris, 51]

<table>
<thead>
<tr>
<th>Span</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>fell in september</td>
<td>payrolls__♦</td>
</tr>
<tr>
<td>payrolls fell in</td>
<td>factory__sept</td>
</tr>
</tbody>
</table>

Problem: Identifying Constituents

Distributional classes are easy to find...

... but figuring out which are constituents is hard.
A Nested Distributional Model

- We’d like a model that:
 - Ties spans to linear contexts (like distributional clustering)
 - Considers only proper tree structures (like a PCFG model)
 - Has no symmetries to break (like a dependency model)

Constituent-Context Model (CCM)

\[
P(S|T) = \prod_{(i,j) \in T} \frac{P(\text{\textbullet}_{\text{\textbullet}}|\text{\textbullet}_{\text{\textbullet}})}{P(\text{\textbullet}_{\text{\textbullet}}|\text{\textbullet}_{\text{\textbullet}})} P(\text{\textbullet}_{\text{\textbullet}}|\text{\textbullet}_{\text{\textbullet}}) P(\text{\textbullet}_{\text{\textbullet}}|\text{\textbullet}_{\text{\textbullet}}) P(\text{\textbullet}_{\text{\textbullet}}|\text{\textbullet}_{\text{\textbullet}})
\]

- factory payrolls fell in september
Results: Constituency

<table>
<thead>
<tr>
<th>Constituency</th>
<th>Right-Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCM</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Treebank Parse | CCM Parse

Spectrum of Systematic Errors

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Inside NPs</th>
<th>Possessives</th>
<th>Verb groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCM</td>
<td>the [lazy cat]</td>
<td>John ['s cat]</td>
<td>[will be] there</td>
</tr>
<tr>
<td>Treebank</td>
<td>the lazy cat</td>
<td>[John 's] cat</td>
<td>will [be there]</td>
</tr>
<tr>
<td>CCM Right?</td>
<td>Yes</td>
<td>Maybe</td>
<td>No</td>
</tr>
</tbody>
</table>

But the worst errors are the non-systematic ones (~25%)
Syntactic Parsing

- Parsing assigns structures to sentences.

- Dependency structure gives attachments.

Idea: Lexical Affinity Models

- Words select other words on syntactic grounds

- Link up pairs with high mutual information
 - [Yuret, 1998]: Greedy linkage
 - [Paskin, 2001]: Iterative re-estimation with EM

- Evaluation: compare linked pairs to a gold standard

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paskin, 2001</td>
<td>39.7</td>
</tr>
</tbody>
</table>
Problem: Non-Syntactic Affinity

- Mutual information between words does not necessarily indicate syntactic selection.

Idea: Word Classes

- Individual words like congress are entwined with semantic facts about the world.
- Syntactic classes, like NOUN and ADVERB are bleached of word-specific semantics.
- Automatic word classes more likely to look like DAYS-OF-WEEK or PERSON-NAME.
- We could build dependency models over word classes. [cf. Carroll and Charniak, 1992]
Problems: Word Class Models

<table>
<thead>
<tr>
<th></th>
<th>Classes?</th>
<th>Distance</th>
<th>Local Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paskin 01</td>
<td>X</td>
<td>X</td>
<td>P(a</td>
</tr>
</tbody>
</table>

Issues:
- Too simple a model – doesn’t work much better supervised
- No representation of valence (number of arguments)

Local Representations

Congress narrowly passed the amended bill

```
NOUN NOUN VERB
```

```
NOUN NOUN VERB
```

```
stock prices fell
```

```
stock prices fell
```
Situation so far:
- Task: unstructured text in, word pairs out
- Previous results were below baseline
- We modeled word classes [*cf. Carroll & Charniak 92*]
- We added a model of distance [*cf. Collins 99*]
- Resulting model is substantially over baseline
- … but we can do much better
Results: Combined Models

Dependency Evaluation (Undir. Dep. Acc.)

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>45.6</td>
</tr>
<tr>
<td>DMV</td>
<td>62.7</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>64.7</td>
</tr>
</tbody>
</table>

Constituency Evaluation (Unlabeled Recall)

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>39.4</td>
</tr>
<tr>
<td>CCM</td>
<td>81.0</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>88.0</td>
</tr>
</tbody>
</table>

- Supervised PCFG constituency recall is at 92.8
- Qualitative improvements
 - Subject-verb groups gone, modifier placement improved

How General is This?

English (7422 sentences)

<table>
<thead>
<tr>
<th></th>
<th>Constituency Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>39.4</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>88.0</td>
</tr>
</tbody>
</table>

German (2175 sentences)

<table>
<thead>
<tr>
<th></th>
<th>Constituency Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>49.6</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>89.7</td>
</tr>
</tbody>
</table>

Chinese (2473 sentences)

<table>
<thead>
<tr>
<th></th>
<th>Constituency Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>35.5</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>46.7</td>
</tr>
</tbody>
</table>

Dependency Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMV</td>
<td>54.2</td>
</tr>
<tr>
<td>CCM + DMV</td>
<td>60.0</td>
</tr>
</tbody>
</table>