Learning Models with EM

- Hard EM: E-step: Find best "completions" \(Y \) for fixed \(\theta \)
 M-step: Find best parameters \(\theta \) for fixed \(Y \)
- Example: K-Means

- Problem 3: Data likelihood (usually) isn’t the objective you really care about
- Problem 4: You can’t find global maxima anyway

Hard EM for Naïve-Bayes

- First we calculate hard completions:
 \[y^* = \arg \max_y P(y) \prod_i P(x_i | y) \]
- Then we re-estimate parameters \(P(y), P(x|y) \) from the relevant counts:
 \[c(w, y) = \sum_{x \in D, y' = y} [c(w \in x)] \]
- Can do this when some or none of the docs are labeled

Soft EM for Naïve-Bayes

- First we calculate posteriors (soft completions):
 \[P(y|x) = \frac{P(y) \prod_i P(x_i | y)}{\sum_y' P(y') \prod_i P(x_i | y')} \]
- Then we re-estimate parameters \(P(y), P(x|y) \) from the relevant expected counts:
 \[c(w, y) = \sum_{x \in D} \sum_y P(y|x) [c(w \in x)] \]
- Can do this when some or none of the docs are labeled

EM in General

- We’ll use EM over and over again to fill in missing data
 - Convenience Scenario: we want \(P(x) \), including \(y \) just makes the model simpler (e.g. mixing weights)
 - Induction Scenario: we actually want to know \(y \) (e.g. clustering)
 - NLP differs from much of machine learning in that we often want to interpret or use the induced variables (which is tricky at best)
 - General approach: alternately update \(y \) and \(\theta \)
 - E-step: compute posteriors \(P(y|x, \theta) \)
 - This means scoring all completions with the current parameters
 - Usually, we do this implicitly with dynamic programming
 - M-step: fit \(\theta \) to these completions
 - This is usually the easy part – treat the completions as (fractional) complete data
 - In general, we start with some noisy labelings and the noise adjusts into patterns based on the data and the model
 - We’ll see lots of examples in this course
 - EM is only locally optimal (why?)

Heuristic Clustering?

- Many methods of clustering have been developed
 - Most start with a pairwise distance function
 - Most can be interpreted probabilistically (with some effort)
 - Axes: flat / hierarchical, agglomerative / divisive, incremental / iterative, probabilistic / graph theoretic / linear algebraic

- Examples:
 - Single-link agglomerative clustering
 - Complete-link agglomerative clustering
 - Ward’s method
 - Hybrid divisive / agglomerative schemes
Document Clustering

- Typically want to cluster documents by topic
- Bag-of-words models usually do detect topic
 - It's detecting deeper structure, syntax, etc. where it gets really tricky!
- All kinds of games to focus the clustering
 - Stopword lists
 - Term weighting schemes (from IR, more later)
 - Dimensionality reduction (more later)

Word Senses

- Words have multiple distinct meanings, or senses:
 - Plant: living plant, manufacturing plant, ...
 - Title: name of a work, ownership document, form of address, material at the start of a film, ...
- Many levels of sense distinctions
 - Homonymy: totally unrelated meanings (river bank, money bank)
 - Polysemy: related meanings (star in sky, star on tv)
 - Systematic polysemy: productive meaning extensions (metonymy such as organizations to their buildings) or metaphor
 - Sense distinctions can be extremely subtle (or not)
- Granularity of senses needed depends a lot on the task
- Why is it important to model word senses?
 - Translation, parsing, information retrieval?

Word Sense Disambiguation

- Example: living plant vs. manufacturing plant
- How do we tell these senses apart?
 - “context”
 - The manufacturing plant which had previously sustained the town’s economy shut down after an extended labor strike.
 - Maybe it’s just text categorization
 - Each word sense represents a topic
 - Run the naive-bayes classifier from last class?
- Bag-of-words classification works ok for noun senses
 - 90% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns
 - 70% on senseval-1 verbs

Verb WSD

- Why are verbs harder?
 - Verbal senses less topical
 - More sensitive to structure, argument choice
- Verb Example: “Serve”
 - [function] The tree stump serves as a table
 - [enable] The scandal served to increase his popularity
 - [dish] We serve meals for the homeless
 - [enlist] She served her country
 - [jail] He served six years for embezzlement
 - [tennis] It was Agassi’s turn to serve
 - [legal] He was served by the sheriff

Various Approaches to WSD

- Unsupervised learning
 - Bootstrapping (Yarowsky 95)
 - Clustering
- Indirect supervision
 - From thesauri
 - From WordNet
 - From parallel corpora
- Supervised learning
 - Most systems do some kind of supervised learning
 - Many competing classification technologies perform about the same (it’s all about the knowledge sources you tap)
 - Problem: training data available for only a few words

Resources

- WordNet
 - Hand-build (but large) hierarchy of word senses
 - Basically a hierarchical thesaurus
- SensEval -> SemEval
 - A WSD competition, of which there have been 3+3 iterations
 - Training / test sets for a wide range of words, difficulties, and parts-of-speech
 - Bake-off where lots of labs tried lots of competing approaches
- SemCor
 - A big chunk of the Brown corpus annotated with WordNet senses
- OtherResources
 - The Open Mind Word Expert
 - Parallel texts
 - Flat thesauri

The manufacturing plant which had previously sustained the town’s economy shut down after an extended labor strike.
Knowledge Sources

- So what do we need to model to handle “serve”?
 - There are distant topical cues
 - ... point ... court serve game ...

\[
P(c, w_1, w_2, ..., w_n) = P(c) \prod_{i=1}^{n} P(w_i | c)
\]

Weighted Windows with NB

- Distance conditioning
 - Some words are important only when they are nearby
 - serve = court
 - serve = court

\[
P(c, w_1, w_2, ..., w_n, w_{n+1}, w_{n+2}, ..., w_k) = P(c) \prod_{i=0}^{k} P(w_i | c, bin(i))
\]

- Distance weighting
 - Nearby words should get a larger vote
 - ... court ... serve ... game ... point

\[
P(c, w_1, w_2, ..., w_n, w_{n+1}, w_{n+2}, ..., w_k) = P(c) \prod_{i=0}^{k} P(w_i | c)^{3 \bin(i)}
\]

Better Features

- There are smarter features:
 - Argument selectional preference:
 - serve NP(meal) vs. serve NP(paper) vs. serve NP(country)
 - Subcategorization:
 - [function] serve PP[as]
 - [enable] serve VP[to]
 - [tennis] serve <transitive>
 - [food] serve NP(PP[to])
 - Can capture poorly (but robustly) with local windows
 - ... but we can also use a parser and get these features explicitly
 - Other constraints (Yarowsky 95)
 - One-sense-per-discourse (only true for broad topical distinctions)
 - One-sense-per-collocation (pretty reliable when it kicks in: manufacturing plant, flowering plant)

Complex Features with NB?

- Example: Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.

- So we have a decision to make based on a set of cues:
 - context: jail, context: county, context: feeding, ...
 - local-context: jail, local-context: meals
 - subcat: NP, direct-object-head: meals

- Not clear how to build a generative derivation for these:
 - Choose topic, then decide on having a transitive usage, then pick “meals” to be the object’s head, then generate other words?
 - How about the words that appear in multiple features?
 - Hard to make this work (though maybe possible)
 - No real reason to try

A Discriminative Approach

- View WSD as a discrimination task (regression, really)

\[
P(\text{sense} | \text{context: jail, context: county, context: feeding, ...} \\
\text{local-context: jail, local-context: meals} \\
\text{subcat: NP, direct-object-head: meals, ...})
\]

- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / back-off problem

- Many feature-based classification techniques out there
- We tend to need ones that output distributions over classes (why?)

Feature Representations

\[
\{f_i(d)\}
\]

- Washington County jail served 11,166 meals last month - a figure that translates to feeding some 120 people three times daily for 31 days.

- Features are indicator functions \(f_i\) which count the occurrences of certain patterns in the input

- We map each input to a vector of feature predicate counts
Example: Text Classification

- We want to classify documents into categories

<table>
<thead>
<tr>
<th>DOCUMENT</th>
<th>CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>"... win the election ..."</td>
<td>POLITICS</td>
</tr>
<tr>
<td>"... win the game ..."</td>
<td>SPORTS</td>
</tr>
<tr>
<td>"... see a movie ..."</td>
<td>OTHER</td>
</tr>
</tbody>
</table>

- Classically, do this on the basis of words in the document, but other information sources are potentially relevant:
 - Document length
 - Average word length
 - Document's source
 - Document layout

Some Definitions

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>(x^i)</th>
<th>(\ldots) win the election (\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT SPACE</td>
<td>(y)</td>
<td>SPORTS, POLITICS, OTHER</td>
</tr>
<tr>
<td>OUTPUTS</td>
<td>(y)</td>
<td>SPORTS</td>
</tr>
<tr>
<td>TRUE OUTPUTS</td>
<td>(y^i)</td>
<td>POLITICS</td>
</tr>
<tr>
<td>FEATURE VECTORS</td>
<td>(f_i(y))</td>
<td>([0,0,0,0,1,0,1,0,0,0,0,0,0,0])</td>
</tr>
</tbody>
</table>

Block Feature Vectors

- Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

\[
\begin{align*}
 x & \quad \ldots \text{ win the election } \ldots \\
 \text{"}f_i(x)\text{"} & \Rightarrow [1,0,1,0] \quad \text{"election"}
\end{align*}
\]

\[
\begin{align*}
 f_i(\text{SPORTS}) & = [1,0,1,0,0,0,0,0,0,0,0,0,0,0] \\
 f_i(\text{POLITICS}) & = [0,0,0,0,1,0,0,0,0,0,0,0,0,0] \\
 f_i(\text{OTHER}) & = [0,0,0,0,0,0,0,1,0,1,0,0]
\end{align*}
\]

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way

- Example: a parse tree’s features may be the productions present in the tree

\[
\begin{align*}
 f_i(S, N_P, V_P) & = [1,0,1,0,1] \\
 f_i(S, N_P, V_P) & = [1,1,0,1,0]
\end{align*}
\]

- Different candidates will thus often share features
- We’ll return to the non-block case later

Linear Models: Scoring

- In a linear model, each feature gets a weight \(w \)

\[
\begin{align*}
 f_i(\text{POLITICS}) & = [0,0,0,0,1,0,1,0,0,0,0,0,0,0] \\
 f_i(\text{SPORTS}) & = [1,0,1,0,0,0,0,0,0,0,0,0,0,0] \\
 w & = [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
\end{align*}
\]

- We compare hypotheses on the basis of their linear scores:

\[
\begin{align*}
 \text{score}(x^i, y^i, w) & = w^T f_i(y) \\
 f_i(\text{POLITICS}) & = [0,0,0,0,1,0,1,0,0,0,0,0,0,0] \\
 w & = [1,1,1,1,1,1,1,1,1,1,1,1,1,1] \\
 \text{score}(x^i, \text{POLITICS}, w) & = 1 \times 1 + 1 \times 1 = 2
\end{align*}
\]

Linear Models: Prediction Rule

- The linear prediction rule:

\[
\text{predictions}(x^i, w) = \arg \max_y w^T f_i(y)
\]

\[
\begin{align*}
 \text{score}(x^i, \text{SPORTS}, w) & = 1 \times 1 + (-1) \times 1 = 0 \\
 \text{score}(x^i, \text{POLITICS}, w) & = 1 \times 1 + 1 \times 1 = 2 \\
 \text{score}(x^i, \text{OTHER}, w) & = (-2) \times 1 + (-1) \times 1 = -3
\end{align*}
\]

- We’ve said nothing about where weights come from!
Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

\[
\text{prediction}(x^i, w) = \text{arg max}_{y \in Y} w^T f_i(y)
\]

- There are other ways: e.g. reconcile pairwise decisions

Learning Classifier Weights

- Two broad approaches to learning weights

- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling

- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren’t the ones which best describe the data
 - We’ll mainly talk about the latter

How to pick weights?

- Goal: choose “best” vector w given training data
 - For now, we mean “best for classification”

 - The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don’t have the test set
 - Must compute weights from training set

- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

 Though, min-error training for MT does exactly this.

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error

- The (online) perceptron algorithm:
 - Start with zero weights
 - Visit training instances one by one
 - Try to classify
 \[
 y^* = \text{arg max}_{y \in Y} w^T f_i(y)
 \]
 - If correct, no change!
 - If wrong: adjust weights
 \[
 w \leftarrow w + f_i(y^*)
 \]
 \[
 w \leftarrow w - f_i(y^*)
 \]

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:
 \[
 P(y|x, w) = \frac{\exp(w^T f_i(y))}{\sum_y \exp(w^T f_i(y))}
 \]
 - Make positive
 - Normalize

 - Maximize the (log) conditional likelihood of training data
 \[
 L(w) = \log \prod_i P(y^i|x^i, w) = \sum_i \log \left(\frac{\exp(w^T f_i(y^i))}{\sum_y \exp(w^T f_i(y))} \right)
 \]
 \[
 = \sum_i \left(w^T f_i(y^i) - \log \sum_y \exp(w^T f_i(y)) \right)
 \]

Derivative for Maximum Entropy

\[
\frac{\partial L(w)}{\partial w_n} = \sum_i \left(f_i(y^i)_n - \sum_y P(y|x) f_i(y)_n \right)
\]

Total count of feature n in correct candidates

Expected count of feature n in predicted candidates
Expected Counts

\[
\frac{\partial L(w)}{\partial w_n} = \sum_y \left(f(y|x)_n - \sum_y P(y|x) f(y)_n \right)
\]

The weight for the "context-word: jail and cat prison" feature:
- actual = 1
- empirical = 1.2

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if features counts are from actual data).

Maximum Entropy II
- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked

- Regularization (smoothing)

\[
\max_w \sum_y \left(w^T f(y) - \log \sum_w w^T f(y) \right) - k ||w||^2
\]

Example: NER Smoothing

- Because of smoothing, the more common prefixes have larger weights even though entire-word features are more specific.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>at 0.73, 0.94</td>
</tr>
<tr>
<td>Current word</td>
<td>Grace 0.93, 0.93</td>
</tr>
<tr>
<td>Beginning</td>
<td><O 0.46, 0.54</td>
</tr>
<tr>
<td>Current POS tag</td>
<td>NNP 0.47, 0.49</td>
</tr>
<tr>
<td>Prev and cur tags</td>
<td>IN/NNP 0.10, 0.14</td>
</tr>
<tr>
<td>Previous state</td>
<td>Other 0.70, 0.52</td>
</tr>
<tr>
<td>Current signature</td>
<td>Xx 0.80, 0.96</td>
</tr>
<tr>
<td>Prev state, cur tag</td>
<td>O-Xx 0.66, 0.37</td>
</tr>
<tr>
<td>Prev current tag</td>
<td>NNP-NNP 0.89, 0.37</td>
</tr>
<tr>
<td>Prev tag - cur tag</td>
<td>O-Xx 0.23, 0.52</td>
</tr>
<tr>
<td>Total</td>
<td>6.58, 2.68</td>
</tr>
</tbody>
</table>

Unconstrained Optimization
- The maxent objective is an unconstrained optimization problem

\[
\nabla L(w) = 0
\]

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

Derivative for Maximum Entropy

\[
\frac{\partial L(w)}{\partial w_n} = -2 \lambda \sum_y \left(f(y|x)_n - \sum_y P(y|x) f(y)_n \right)
\]

Unconstrained Optimization
- Once we have a function \(f \), we can find a local optimum by iteratively following the gradient

- For convex functions, a local optimum will be global
- Basic gradient ascent isn’t very efficient, but there are simple enhancements which take into account previous gradients: conjugate gradient, L-BFGs
- There are special-purpose optimization techniques for maxent, like iterative scaling, but they aren’t better