
1

Statistical NLP
Spring 2009

Lecture 3: Language Models II

Dan Klein – UC Berkeley

Puzzle: Unknown Words

� Imagine we look at 1M words of text

� We’ll see many thousands of word types

� Some will be frequent, others rare

� Could turn into an empirical P(w)

� Questions:

� What fraction of the next 1M will be new words?

� How many total word types exist?

Language Models

� In general, we want to place a distribution over sentences
� Basic / classic solution: n-gram models

� Question: how to estimate conditional probabilities?

� Problems:
� Known words in unseen contexts

� Entirely unknown words
� Many systems ignore this – why?

� Often just lump all new words into a single UNK type

Smoothing: Add-One, Etc.
� With a uniform prior, get estimates of the form

� Add-one smoothing especially often talked about

� For a bigram distribution, can use a prior centered on the empirical
unigram:

� Can consider hierarchical formulations: trigram is recursively
centered on smoothed bigram estimate, etc [MacKay and Peto, 94]

� Basic idea of conjugacy is convenient: prior shape shows up as
pseudo-counts

� Problem: works quite poorly!

Linear Interpolation

� Problem: is supported by few counts

� Classic solution: mixtures of related, denser histories, e.g.:

� The mixture approach tends to work better than the Dirichlet
prior approach for several reasons

� Can flexibly include multiple back-off contexts, not just a chain

� Often multiple weights, depending on bucketed counts

� Good ways of learning the mixture weights with EM (later)

� Not entirely clear why it works so much better

� All the details you could ever want: [Chen and Goodman, 98]

Held-Out Data

� Important tool for calibrating how models generalize:

� Set a small number of hyperparameters that control the degree of
smoothing by maximizing the (log-)likelihood of held-out data

� Can use any optimization technique (line search or EM usually easiest)

� Examples:

Training Data
Held-Out
Data

Test
Data

k

L

2

Held-Out Reweighting

� What’s wrong with unigram-prior smoothing?
� Let’s look at some real bigram counts [Church and Gale 91]:

� Big things to notice:
� Add-one vastly overestimates the fraction of new bigrams
� Add-0.0000027 vastly underestimates the ratio 2*/1*

� One solution: use held-out data to predict the map of c to c*

Count in 22M Words Actual c* (Next 22M) Add-one’s c* Add-0.0000027’s c*

1 0.448 2/7e-10 ~1

2 1.25 3/7e-10 ~2

3 2.24 4/7e-10 ~3

4 3.23 5/7e-10 ~4

5 4.21 6/7e-10 ~5

Mass on New 9.2% ~100% 9.2%

Ratio of 2/1 2.8 1.5 ~2

Good-Turing Reweighting I

� We’d like to not need held-out data (why?)
� Idea: leave-one-out validation

� Nk: number of types which occur k times in the
entire corpus

� Take each of the c tokens out of corpus in turn
� c “training” sets of size c-1, “held-out” of size 1
� How many held-out tokens are unseen in
training?
� N1

� How many held-out tokens are seen k times in
training?
� (k+1)Nk+1

� There are Nk words with training count k
� Each should occur with expected count

� (k+1)Nk+1/Nk
� Each should occur with probability:

� (k+1)Nk+1/(cNk)

N1

2N2

3N3

4417 N4417

3511 N3511

.
.
.
.

/N0

/N1

/N2

/N4416

/N3510

.
.
.
.

“Training” “Held-Out”

Good-Turing Reweighting II

� Problem: what about “the”? (say k=4417)

� For small k, Nk > Nk+1
� For large k, too jumpy, zeros wreck estimates

� Simple Good-Turing [Gale and Sampson]:
replace empirical Nk with a best-fit power law
once count counts get unreliable

N1

N2

N3

N4417

N3511

.
.
.
.

N0

N1

N2

N4416

N3510

.
.
.
.

N1
N2 N3

N1
N2

Good-Turing Reweighting III

� Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

� Katz Smoothing
� Use GT discounted bigram counts (roughly – Katz left large counts alone)

� Whatever mass is left goes to empirical unigram

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

Mass on New 9.2% 9.2%

� Kneser-Ney smoothing: very successful but slightly ad hoc estimator

� Idea: observed n-grams occur more in training than they will later:

� Absolute Discounting

� Save ourselves some time and just subtract 0.75 (or some d)

� Maybe have a separate value of d for very low counts

Kneser-Ney: Discounting

3.23

2.24

1.25

0.448

Avg in Next 22M

3.244

2.243

1.262

0.4461

Good-Turing c*Count in 22M Words

Kneser-Ney: Continuation

� Something’s been very broken all this time

� Shannon game: There was an unexpected ____?

� delay?

� Francisco?

� “Francisco” is more common than “delay”

� … but “Francisco” always follows “San”

� Solution: Kneser-Ney smoothing

� In the back-off model, we don’t want the probability of w as a unigram

� Instead, want the probability that w is allowed in this novel context

� For each word, count the number of bigram types it completes

3

Kneser-Ney

� Kneser-Ney smoothing combines these two ideas

� Absolute discounting

� Lower order models take a special form

� KN smoothing repeatedly proven effective
� But we’ve never been quite sure why

� And therefore never known how to make it better

� [Teh, 2006] shows KN smoothing is a kind of approximate
inference in a hierarchical Pitman-Yor process (and better
approximations are superior to basic KN)

What Actually Works?
� Trigrams:

� Unigrams, bigrams too little
context

� Trigrams much better (when
there’s enough data)

� 4-, 5-grams often not worth
the cost (which is more than
it seems, due to how speech
recognizers are constructed)

� Note: for MT, 5+ often used!

� Good-Turing-like methods for
count adjustment
� Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell

� Kneser-Ney equalization for
lower-order models

� See [Chen+Goodman]
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?

� Having more data is better…

� … but so is using a better model
� Another issue: N > 3 has huge costs in speech recognizers

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
n
tr
o
p
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Beyond N-Gram LMs

� Lots of ideas we won’t have time to discuss:
� Caching models: recent words more likely to appear again
� Trigger models: recent words trigger other words
� Topic models

� A few recent ideas
� Syntactic models: use tree models to capture long-distance
syntactic effects [Chelba and Jelinek, 98]

� Discriminative models: set n-gram weights to improve final task
accuracy rather than fit training set density [Roark, 05, for ASR;
Liang et. al., 06, for MT]

� Structural zeros: some n-grams are syntactically forbidden, keep
estimates at zero [Mohri and Roark, 06]

� Bayesian document and IR models [Daume 06]

Overview

� So far: language models give P(s)
� Help model fluency for various noisy-channel processes (MT,
ASR, etc.)

� N-gram models don’t represent any deep variables involved in
language structure or meaning

� Usually we want to know something about the input other than
how likely it is (syntax, semantics, topic, etc)

� Next: Naïve-Bayes models
� We introduce a single new global variable

� Still a very simplistic model family

� Lets us model hidden properties of text, but only very non-local
ones…

� In particular, we can only model properties which are largely
invariant to word order (like topic)

Text Categorization

� Want to classify documents into broad semantic topics (e.g. politics,
sports, etc.)

� Which one is the politics document? (And how much deep
processing did that decision take?)

� One approach: bag-of-words and Naïve-Bayes models

� Another approach later…

� Usually begin with a labeled corpus containing examples of each
class

Obama is hoping to rally support
for his $825 billion stimulus
package on the eve of a crucial
House vote. Republicans have
expressed reservations about the
proposal, calling for more tax
cuts and less spending. GOP
representatives seemed doubtful
that any deals would be made.

California will open the 2009
season at home against
Maryland Sept. 5 and will play a
total of six games in Memorial
Stadium in the final football
schedule announced by the
Pacific-10 Conference Friday.
The original schedule called for
12 games over 12 weekends.

4

Naïve-Bayes Models

� Idea: pick a topic, then generate a document using a language
model for that topic.

� Naïve-Bayes assumption: all words are independent given the topic.

� Compare to a unigram language model:

c

w1 w2 wn. . .

∏=
i

in cwPcPwwwcP)|()(),,,(21 K

∏=
i

in wPwwwP)(),,(21 K

wn = STOP

We have to

smooth these!

Using NB for Classification

� We have a joint model of topics and documents

� Gives posterior likelihood of topic given a document

� What about totally unknown words?

� Can work shockingly well for textcat (especially in the wild)

� How can unigram models be so terrible for language modeling, but class-conditional
unigram models work for textcat?

� Numerical / speed issues

� How about NB for spam detection?

∏=
i

in cwPcPwwwcP)|()(),,,(21 K

∑ ∏

∏









=

'

21

)'|()'(

)|()(

),,|(

c i

i

i

i

n

cwPcP

cwPcP

wwwcP K

Two NB Formulations

� Two NB event models for text categorization
� The class-conditional unigram model, a.k.a. multinomial model

� One node per word in the document

� Driven by words which are present

� Multiple occurrences, multiple evidence

� Better overall – plus, know how to smooth

� The binominal (binary) model
� One node for each word in the vocabulary

� Incorporates explicit negative correlations

� Know how to do feature selection (e.g. keep words with high
mutual information with the class variable)

c

v1 v2 v|V|.

c

w1 w2 wn. . .

vocabulary

a
c
c
u
ra
c
y

Example: Barometers

NB FACTORS:

� P(s) = 1/2

� P(-|s) = 1/4

� P(-|r) = 3/4

Raining Sunny

P(+,+,r) = 1/8 P(+,+,s) = 3/8

Reality

P(-,-,r) = 3/8 P(-,-,s) = 1/8

Raining?

M1 M2

NB Model PREDICTIONS:
� P(r,-,-) = (½)(¾)(¾)

� P(s,-,-) = (½)(¼)(¼)

� P(r|-,-) = 9/10

� P(s|-,-) = 1/10

Overconfidence!

Example: Stoplights

Lights Working Lights Broken

P(g,r,w) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7

Working?

NS EW

NB Model

Reality

NB FACTORS:

� P(w) = 6/7

� P(r|w) = 1/2

� P(g|w) = 1/2

� P(b) = 1/7

� P(r|b) = 1

� P(g|b) = 0

P(b|r,r) = 4/10 (what happened?)

(Non-)Independence Issues

� Mild Non-Independence
� Evidence all points in the right direction

� Observations just not entirely independent

� Results
� Inflated Confidence

� Deflated Priors

� What to do? Boost priors or attenuate evidence

� Severe Non-Independence
� Words viewed independently are misleading

� Interactions have to be modeled

� What to do?
� Change your model!

∏ <>=
i

boost

i

boost

n cwPcPwwwcP 11

21)|()(""),,,(K

5

Language Identification

� How can we tell what language a document is in?

� How to tell the French from the English?
� Treat it as word-level textcat?

� Overkill, and requires a lot of training data

� You don’t actually need to know about words!

� Option: build a character-level language model

The 38th Parliament will meet on
Monday, October 4, 2004, at 11:00 a.m.
The first item of business will be the
election of the Speaker of the House of
Commons. Her Excellency the Governor
General will open the First Session of
the 38th Parliament on October 5, 2004,
with a Speech from the Throne.

La 38e législature se réunira à 11 heures le
lundi 4 octobre 2004, et la première affaire
à l'ordre du jour sera l’élection du président
de la Chambre des communes. Son
Excellence la Gouverneure générale
ouvrira la première session de la 38e
législature avec un discours du Trône le
mardi 5 octobre 2004.

Σύµφωνο σταθερότητας και ανάπτυξης

Patto di stabilità e di crescita

Class-Conditional LMs

� Can add a topic variable to other language models

� Could be characters instead of words, used for language ID (HW2)

� Could sum out the topic variable and use as a language model

� How might a class-conditional n-gram language model behave
differently from a standard n-gram model?

∏ −=
i

iin cwwPcPwwwcP),|()(),,,(121 K

c

w1 w2 wn. . .START

