Statistical NLP
Spring 2009
University of California
Berkeley

Lecture 15: PCFGs
Dan Klein – UC Berkeley

Treebank PCFGs
[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>72.0</td>
</tr>
</tbody>
</table>

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

- Independence assumptions are often too strong.

<table>
<thead>
<tr>
<th></th>
<th>All NPs</th>
<th>NPs under S</th>
<th>NPs under VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP PP</td>
<td>11%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>DT NN</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>PRP</td>
<td>6%</td>
<td>6%</td>
<td>21%</td>
</tr>
<tr>
<td>NP PP</td>
<td>6%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>DT NN</td>
<td>9%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>PRP</td>
<td>5%</td>
<td>4%</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

- Example: PP attachment

```
They raised a point of order.
```

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. '05, Petrov et al. '06]
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

- Corpus: Penn Treebank, WSJ
 - Training: sections 02-21
 - Development: section 22 (here, first 20 files)
 - Test: section 23
- Accuracy – F1: harmonic mean of per-node labeled precision and recall.
- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC

Vertical Markovization

- Vertical Markov order: rewrites depend on past & ancestor nodes.
 - (cf. parent annotation)
 - Examples:
 - Raw treebank: v=1, h=∞
 - Johnson 98: v=2, h=∞
 - Collins 99: v=2, h=2
 - Best F1: v=3, h=2v

Horizontal Markovization

- Models:
 - Base: v=h=2v
 - Base: v=h=2v
 - UNARY: v=3, h=2v

Vertical and Horizontal

- Examples:
 - Raw treebank: v=1, h=∞
 - Johnson 98: v=2, h=∞
 - Collins 99: v=2, h=2
 - Best F1: v=3, h=2v

Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark unary rewrite sites with -U

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
<tr>
<td>UNARY</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
</tbody>
</table>
Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U (“the X” vs. “those”)
- UNARY-RB: mark phrasal adverbs as RB^U (“quickly” vs. “very”)
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^V^P)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate “but” and “&” from other conjunctions
- SPLIT-%: “%” gets its own tag.

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td></td>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td></td>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td></td>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td></td>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>

A Fully Annotated (Unlex) Tree

Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson ’98, Klein and Manning 03]
 - Head lexicalization [Collins ’99, Charniak ’00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words
Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add “headwords” to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N
 - Take right child
 - VP:
 - Take leftmost VB
 - Take leftmost VP
 - Take left child

Lexical Derivation Steps

- Derivation of a local tree [simplified Charniak 97]

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like
 \[VP(saw) \rightarrow VBD(saw) \rightarrow \text{NP/VP} \]
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

- Another derivation of a local tree [Collins 99]
Naïve Lexicalized Parsing

- Can, in principle, use CKY on lexicalized PCFGs
 - $O(n^2)$ time and $O(n^3)$ memory
 - But $R = n^2$ and $S = 6V$
 - Result is completely impractical (why?)
 - Memory: 10K rules * 50K words * (40 words)2 8 bytes = 6TB

- Can modify CKY to exploit lexical sparsity
 - Lexicalized symbols are a base grammar symbol and a pointer into the input sentence, not an arbitrary word
 - Result: $O(n^2)$ time, $O(n^3)$
 - Memory: 10K rules * (40 words)2 8 bytes = 5GB

Lexicalized CKY

```
if (j = i+1)
    return max max
        bestScore(Z,k,j,h)
    bestScore(Y,i,k,h') *
        bestScore(Y,i,k,h)
else
    return max max
        bestScore(X[i,j,h])
        bestScore(Y[i,k,h])
        bestScore(Z[k,j,h])
```

Quartic Parsing

- Turns out, you can do a (little) better [Eisner 99]

```
Y|h
Z|i h k j
```

- Gives an $O(n^3)$ algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the $O(n^3)$ CKY
 - Remember only a few hypotheses for each span $<i,j>$.
 - If we keep K hypotheses at each span, then we do at most $O(nK^2)$ work per span (why?)
 - Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
 - First, parse with the base grammar
 - For each $X[i,j]$ calculate $P(X[i,j],s)$
 - This isn’t trivial, and there are clever speed ups
 - Second, do the full $O(n^3)$ CKY
 - Skip any $X[i,j]$ which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!

- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Pruning with A*

- You can also speed up the search without sacrificing optimality
 - For agenda-based parsers:
 - Can select which items to process first
 - Can do with any “figure of merit” [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimality [Klein and Manning 03]
Projection-Based A*

Results

- Some results
 - Collins 99 – 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 – 90.7 F1 (generative unlexical)
 - McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

- However
 - Bilexical counts rarely make a difference (why?)
 - Gildea 01 – Removing bilexical counts costs < 0.5 F1
 - Bilexical vs. monolexical vs. smart smoothing

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation
 - Head lexicalization
 - Automatic clustering?

Learning Latent Annotations

EM algorithm:
- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.
Refinement of the DT tag

Hierarchical refinement

Hierarchical Estimation Results

Refinement of the , tag

Adaptive Splitting

Adaptive Splitting Results
Learned Splits

Proper Nouns (NNP):
- NNP-12: John, Robert, James
- NNP-2: J., E., L.
- NNP-1: Bush, Noriega, Peters
- NNP-15: New, San, Wall
- NNP-3: York, Francisco, Street

Personal pronouns (PRP):
- PRP-0: It, He, I
- PRP-1: It, he, they
- PRP-2: It, them, him

Coarse-to-Fine Inference

Example: PP attachment

For each chart item $X[i,j]$, compute posterior probability:

$$\frac{P_{ct}(X, i, j) \cdot P_{act}(X, i, j)}{P_{ct}(\text{root}, 0, n)} < \text{threshold}$$

E.g. consider the span 5 to 12:

Prune?
Bracket Posteriors

Hierarchical Pruning

Final Results (Accuracy)

<table>
<thead>
<tr>
<th></th>
<th>≤ 40 words</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charniak&Johnson '05 (generative)</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td>Split / Merge</td>
<td>90.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubey '05</td>
<td>76.3</td>
<td>-</td>
</tr>
<tr>
<td>Split / Merge</td>
<td>80.8</td>
<td>80.1</td>
</tr>
<tr>
<td>CHN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiang et al. '02</td>
<td>80.0</td>
<td>76.6</td>
</tr>
<tr>
<td>Split / Merge</td>
<td>86.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Still higher numbers from reranking / self-training methods