Lecture 15: PCFGs

Treebank PCFGs [Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn’t work well):

 (ROOT (S (NP (PRP He)) (VP (VBD was) (ADJP (JJ right))))

Model	F1
 Baseline | 72.0 |
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong

Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!
Grammar Refinement

- Example: PP attachment

```
They raised a point of order
```

Grammar Refinement

- Structure Annotation [Johnson ’98, Klein&Manning ’03]
- Lexicalization [Collins ’99, Charniak ’00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

- Corpus: Penn Treebank, WSJ
 - Training: sections 02-21
 - Development: section 22 (here, first 20 files)
 - Test: section 23

- Accuracy – F1: harmonic mean of per-node labeled precision and recall.
- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)

Horizontal Markovization
Vertical and Horizontal

- **Examples:**
 - Raw treebank: \(v=1, h=\infty \)
 - Johnson 98: \(v=2, h=\infty \)
 - Collins 99: \(v=2, h=2 \)
 - Best F1: \(v=3, h=2 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (v=h=2v)</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>

Unary Splits

- **Problem:** Unary rewrites used to transmute categories so a high-probability rule can be used.
- **Solution:** Mark unary rewrite sites with -U

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
<tr>
<td>UNARY</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
</tbody>
</table>
Tag Splits

- **Problem:** Treebank tags are too coarse.

- **Example:** Sentential, PP, and other prepositions are all marked IN.

- **Partial Solution:**
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>

Other Tag Splits

- **UNARY-DT:** mark demonstratives as DT^U (“the X” vs. “those”)

- **UNARY-RB:** mark phrasal adverbs as RB^U (“quickly” vs. “very”)

- **TAG-PA:** mark tags with non-canonical parents (“not” is an RB^VP)

- **SPLIT-AUX:** mark auxiliary verbs with –AUX [cf. Charniak 97]

- **SPLIT-CC:** separate “but” and “&” from other conjunctions

- **SPLIT-%:** “%” gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
A Fully Annotated (Unlex) Tree

Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP \: PP$
 - $NP \rightarrow NP \: PP$
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words
Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

- Another example of PCFG indifference
 - Left structure far more common
 - How to model this?
 - Really structural: “chicken with potatoes with gravy”
 - Lexical parsers model this effect, but not by virtue of being lexical
Lexicalized Trees

- Add “headwords” to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

 \[\text{VP(saw)} \rightarrow \text{VBD(saw)} \ 	ext{NP-CC} \text{her} \ 	ext{NP(today)} \]

- Never going to get these atomically off of a treebank

- Solution: break up derivation into smaller steps
Lexical Derivation Steps

- Derivation of a local tree [simplified Charniak 97]

- Another derivation of a local tree [Collins 99]
Naïve Lexicalized Parsing

- Can, in principle, use CKY on lexicalized PCFGs
 - $O(Rn^3)$ time and $O(Sn^2)$ memory
 - But $R = rV^2$ and $S = sV$
 - Result is completely impractical (why?)
 - Memory: 10K rules * 50K words * $(40 \text{ words})^2$ * 8 bytes ≈ 6TB

- Can modify CKY to exploit lexical sparsity
 - Lexicalized symbols are a base grammar symbol and a pointer into the input sentence, not any arbitrary word
 - Result: $O(n^5)$ time, $O(n^3)$
 - Memory: 10K rules * $(40 \text{ words})^3$ * 8 bytes ≈ 5GB

Lexicalized CKY

```
bestScore(X, i, j, h)
if (j = i+1)
    return tagScore(X, s[i])
else
    return max
        max
            score(X[h]-->Y[h] Z[h']) * bestScore(Y, i, k, h) * bestScore(Z, k, j, h')
        max
            score(X[h]-->Y[h'] Z[h]) * bestScore(Y, i, k, h') * bestScore(Z, k, j, h)
```
Quartic Parsing

- Turns out, you can do (a little) better [Eisner 99]
- Gives an $O(n^4)$ algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the $O(n^5)$ CKY
 - Remember only a few hypotheses for each span $<i,j>$.
 - If we keep K hypotheses at each span, then we do at most $O(nK^2)$ work per span (why?)
 - Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)
Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate \(P(X|\overline{i,j},s) \)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full \(O(n^5) \) CKY
 - Skip any \(X:[i,j] \) which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!

- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any “figure of merit” [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimality [Klein and Manning 03]
Projection-Based A^*

$\pi_{SYNTACTIC}$

$\pi_{SEMANTIC}$

A* Speedup

- Total time dominated by calculation of A^* tables in each projection… $O(n^3)$
Results

- **Some results**
 - Collins 99 – 88.6 F1 (generative lexical)
 - Charniak and Johnson 05 – 89.7 / 91.3 F1 (generative lexical / reranked)
 - Petrov et al 06 – 90.7 F1 (generative unlexical)
 - McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

- **However**
 - Bilexical counts rarely make a difference (why?)
 - Gildea 01 – Removing bilexical counts costs < 0.5 F1

- **Bilexical vs. monolexical vs. smart smoothing**

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation
 - Head lexicalization
 - Automatic clustering?
Latent Variable Grammars

```
Grammar G
S → NP VP
NP → NounPhrase
VP → VerbPhrase
ADJP → AdjectivePhrase
S1 → NP1 VP1
S2 → NP2 VP2
...
S9 → NP9 VP9
S10 → NP10 VP10

He was right.
```

Parse Tree

```
S
  |   
NP  VP
  |   
PRP VBD ADJP
```

Sentence \(T \)

```
He was right
```

Derivations \(t : T \)

Parameters \(\theta \)

Learning Latent Annotations

EM algorithm:
- Brackets are known
- Base categories are known
- Only induce subcategories

```
S[X1]
  |   
NP[X2] VP[X4] ADJP[X7]
He was right
```

Just like Forward-Backward for HMMs.
Refinement of the DT tag

Hierarchical refinement
Hierarchical Estimation Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Training</td>
<td>87.3</td>
</tr>
<tr>
<td>Hierarchical Training</td>
<td>88.4</td>
</tr>
</tbody>
</table>

Refinement of the , tag

- Splitting all categories equally is wasteful:
Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Adaptive Splitting Results

Model	F1
Previous | 88.4
With 50% Merging | 89.5
Number of Lexical Subcategories

Number of Phrasal Subcategories
Learned Splits

Proper Nouns (NNP):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP-12</td>
<td>John</td>
<td>Robert</td>
<td>James</td>
</tr>
<tr>
<td>NNP-2</td>
<td>J.</td>
<td>E.</td>
<td>L.</td>
</tr>
<tr>
<td>NNP-1</td>
<td>Bush</td>
<td>Noriega</td>
<td>Peters</td>
</tr>
<tr>
<td>NNP-15</td>
<td>New</td>
<td>San</td>
<td>Wall</td>
</tr>
<tr>
<td>NNP-3</td>
<td>York</td>
<td>Francisco</td>
<td>Street</td>
</tr>
</tbody>
</table>

Personal pronouns (PRP):

<table>
<thead>
<tr>
<th>PRP-0</th>
<th>It</th>
<th>He</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-1</td>
<td>it</td>
<td>he</td>
<td>they</td>
</tr>
<tr>
<td>PRP-2</td>
<td>it</td>
<td>them</td>
<td>him</td>
</tr>
</tbody>
</table>

Relative adverbs (RBR):

<table>
<thead>
<tr>
<th>RBR-0</th>
<th>further</th>
<th>lower</th>
<th>higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBR-1</td>
<td>more</td>
<td>less</td>
<td>More</td>
</tr>
<tr>
<td>RBR-2</td>
<td>earlier</td>
<td>Earlier</td>
<td>later</td>
</tr>
</tbody>
</table>

Cardinal Numbers (CD):

<table>
<thead>
<tr>
<th>CD-7</th>
<th>one</th>
<th>two</th>
<th>Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-4</td>
<td>1989</td>
<td>1990</td>
<td>1988</td>
</tr>
<tr>
<td>CD-11</td>
<td>million</td>
<td>billion</td>
<td>trillion</td>
</tr>
<tr>
<td>CD-0</td>
<td>1</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CD-3</td>
<td>1</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>CD-9</td>
<td>78</td>
<td>58</td>
<td>34</td>
</tr>
</tbody>
</table>
Coarse-to-Fine Inference

- Example: PP attachment

For each chart item $X[i,j]$, compute posterior probability:

$$\frac{P_{IN}(X, i, j) \cdot P_{OUT}(X, i, j)}{P_{IN}(\text{root}, 0, n)} < \text{threshold}$$

E.g. consider the span 5 to 12:

Prune?
Bracket Posteriors

Hierarchical Pruning

Coarse:

Split in two:

Split in four:

Split in eight:
Final Results (Accuracy)

<table>
<thead>
<tr>
<th>Language</th>
<th>Method</th>
<th>≤ 40 words</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Charniak&Johnson ’05 (generative)</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>90.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GER</td>
<td>Dubey ’05</td>
<td>76.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>80.8</td>
<td>80.1</td>
</tr>
<tr>
<td>CHN</td>
<td>Chiang et al. ’02</td>
<td>80.0</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>86.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Still higher numbers from reranking / self-training methods