Natural Language Processing

Acoustic Models
Dan Klein – UC Berkeley

The Noisy Channel Model

Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions
Language model: Distributions over sequences of words (sentences)

Speech Recognition Architecture

Feature Extraction

Digitizing Speech

Frame Extraction

- A frame (25 ms wide) extracted every 10 ms

Figure: Bryan Pellom

Figure: Simon Arnfield
Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
 - Like the spectrogram we saw earlier
- Apply Mel scaling
 - Models human ear; more sensitivity in lower freqs
 - Approx linear below 1kHz, log above, equal samples above and below 1kHz
- Plus discrete cosine transform

Final Feature Vector

- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 delta MFCC features
 - 12 delta-delta MFCC features
 - 1 (log) frame energy
 - 1 delta (log) frame energy
 - 1 delta-delta (log frame energy)

 So each frame is represented by a 39D vector

Emission Model

HMMs for Continuous Observations

- Before: discrete set of observations
- Now: feature vectors are real-valued
- Solution 1: discretization
- Solution 2: continuous emissions
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of multivariate Gaussians

- A state is progressively
 - Context independent subphone (~3 per phone)
 - Context dependent phone (triphones)
 - State tying of CD phone

Vector Quantization

- Idea: discretization
 - Map MFCC vectors onto discrete symbols
 - Compute probabilities just by counting

 This is called vector quantization or VQ

- Not used for ASR any more
- But: useful to consider as a starting point

Gaussian Emissions

- VQ is insufficient for top-quality ASR
 - Hard to cover high-dimensional space with codebook
 - Moves ambiguity from the model to the preprocessing

- Instead: assume the possible values of the observation vectors are normally distributed.
 - Represent the observation likelihood function as a Gaussian?
Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

\[P(x|\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \]

- **P(x)**:
 - \(P(x) \) is highest here at mean
 - \(P(x) \) is low here, far from mean

Multivariate Gaussians

- Instead of a single mean \(\mu \) and variance \(\sigma^2 \):
 \[P(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu) \right) \]
- Vector of means \(\mu \) and covariance matrix \(\Sigma \): **P(x)**
- Usually assume diagonal covariance (!)
 - This isn't very true for FFT features, but is less bad for MFCC features

Gaussians: Size of \(\Sigma \)

- \(\mu = [0 \ 0] \)
- \(\Sigma = I \)
- As \(\Sigma \) becomes larger, Gaussian becomes more spread out; as \(\Sigma \) becomes smaller, Gaussian more compressed

Gaussians: Shape of \(\Sigma \)

- \(\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
- \(\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \)
- \(\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix} \)
- As we increase the off diagonal entries, more correlation between value of \(x \) and value of \(y \)

But we’re not there yet

- Single Gaussians may do a bad job of modeling a complex distribution in any dimension
- Even worse for diagonal covariances
- Solution: mixtures of Gaussians

Mixtures of Gaussians

- Mixtures of Gaussians:
 \[P(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{d/2}|\Sigma_i|^{1/2}} \exp \left(-\frac{1}{2}(x-\mu_i)^\top \Sigma_i^{-1}(x-\mu_i) \right) \]
 \[P(x|\mu, \Sigma, c) = \sum_i c_i P(x|\mu_i, \Sigma_i) \]
GMMs

- Summary: each state has an emission distribution $P(x|s)$ (likelihood function) parameterized by:
 - M mixture weights
 - M mean vectors of dimensionality D
 - Either M covariance matrices of $D \times D$ or M $D \times 1$ diagonal variance vectors

- Like soft vector quantization after all:
 - Think of the mixture means as being learned codebook entries
 - Think of the Gaussian densities as a learned codebook distance function
 - Think of the mixture of Gaussians like a multinomial over codes
 - (Even more true given shared Gaussian inventories, cf next week)

State Transition Diagrams

- Bayes Net: HMM as a Graphical Model

- State Transition Diagram: Markov Model as a Weighted FSA

Lexical State Structure

ASR Lexicon

Adding an LM

Figure: J & M
State Space

- State space must include
 - Current word ($|V|$ on order of 20K+)
 - Index within current word ($|L|$ on order of 5)

- Acoustic probabilities only depend on phone type
 - E.g. $P(x|\text{lecture}) = P(x|t)$

- From a state sequence, can read a word sequence

State Refinement

Phones Aren’t Homogeneous

Need to Use Subphones

A Word with Subphones

Modeling phonetic context

“Need” with triphone models

Lots of Triphones

- Possible triphones: 50x50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
 - Word internal models: need 14,300 triphones
 - Cross word models: need 54,400 triphones
- Need to generalize models, tie triphones

State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or “broad phonetic classes”)
 - Stop
 - Nasal
 - Fricative
 - Sibilant
 - Vowel
 - lateral

State Space

- State space now includes
 - Current word: |W| is order 20K
 - Index in current word: |L| is order 5
 - Subphone position: 3
- Acoustic model depends on clustered phone context
 - But this doesn’t grow the state space

Decoding

Inference Tasks

Most likely word sequence:

Most likely state sequence:

\[d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10}, d_{11}, d_{12}, d_{13} \]
Emission Caching
- **Problem:** scoring all the P(x|s) values is too slow
- **Idea:** many states share tied emission models, so cache them

Prefix Trie Encodings
- **Problem:** many partial-word states are indistinguishable
- **Solution:** encode word production as a prefix trie (with pushed weights)

Beam Search
- **Problem:** trellis is too big to compute v(s) vectors
- **Idea:** most states are terrible, keep v(s) only for top states at each time
- **Important:** still dynamic programming; collapse equiv states

LM Factoring
- **Problem:** Higher-order n-grams explode the state space
- **(One) Solution:**
 - Factor state space into (word index, lm history)
 - Score unigram prefix costs while inside a word
 - Subtract unigram cost and add trigram cost once word is complete
LM Reweighting

- Noisy channel suggests
 \[P(x|w)P(w) \]
- In practice, want to boost LM
 \[P(x|w)P(w)^\alpha \]
- Also, good to have a “word bonus” to offset LM costs
 \[P(x|w)P(w)^\alpha P(w)^\beta \]
- These are both consequences of broken independence assumptions in the model