

Maximum Marginal Relevance

Sя
S_{2}
S_{5}
$S_{1} S_{4}$
$\mathrm{S}_{7} \mathrm{~S}_{3}$
S_{8}

Bercley
NL

Berfley
Max Coverage

She stopped in France. In France she remained. (she, stopped)
(stopped, in) france)
(france, she) \quad (she, remained)

$\substack{\max _{s}^{\text {Berkley }}}$	Max Coverage
s.t. $\quad \sum_{b \in B(s)} \operatorname{length}(s) \leq L_{\text {max }}$	
value $(b)=\operatorname{freq}(b)$	

$\overbrace{\mathrm{NL}}^{\mathrm{Beckrec}}$	Max Coverage
	$\begin{aligned} & \max _{s} \sum_{b \in B(s)} \text { value }(b) \\ & \text { s.t. } \quad \text { length }(s) \leq L_{\text {max }} \\ & \text { value }(b)=\operatorname{freq}(b) \end{aligned}$
	[Gillick and Favre 2008]

$\underset{N L}{\text { Bentraty }}$ Joint Extractive / Compressive Model

Joint Extractive / Compressive Model

She stopped in France. In France she remained.

Bont Joint Extractive / Compressive Model

Joint Extractive / Compressive Model

$\underset{\substack{\text { Bat } \\ \text { Bercley }}}{ }$ Joint Extractive / Compressive Model

Benk Joint Extractive / Compressive Model

Joint Extractive / Compressive Model
$\max _{s}\left[\sum_{b \in B(s)} \operatorname{value}(b)+\sum_{c \in s} \operatorname{value}(c)\right]$

Joint Extractive / Compressive Model

Joint Extractive / Compressive Model
$\max _{s}\left[\sum_{b \in B(s)}\right.$ value(b)

Joint Extractive / Compressive Model
$\max _{s}\left[\sum_{b \in B(s)}\right.$ value $(b)+\sum_{c \in s}$ value $\left.(c)\right]$
Parameterize using features:
value $(b)=w^{\top} f(b)$
value $(c)=w^{\top} f(c)$

留者	
	Linear prediction: $\operatorname{score}(s)=w^{\top} f(s)$

Batacky	Learning
Structured SVM Training:	

Results

Linguistic Quality

Coarse-to-fine Decoding
승

Coarse-to-fine Decoding

Coarse-to-fine Decoding

Generative Model

Note Event Model

Note Event Model
(M_{n}

$\underset{\sim}{\substack{\text { Bentrect }}}$

Note Event Model

Note Event Model
M_{n}

$\overbrace{\text { NL }}^{\text {Berkcey }}$	Learning and Inference Note events update: Semi-Markov dynamic program

Backer	Resynthesized Examples
	Grieg input

	Resynthesized Examples
	Grieg input
	Grieg resynth piano

