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Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.
Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and warned
that if Lohan was accused of
breaking the law while free he
would have her held without bail.
The Mean Girls star is due back
in court on Feb. 23 an important
hearing in which Lohan could opt
to end the case early.
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argmax |\ - sim(S;, D) — (1 — A) - max (sim(S;, S;))
i€D\S J

[Carbonell and Goldstein, 1998]
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Parameterize using features:

value(b) = w' f(b)

Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.
Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and warned
that if Lohan was accused of
breaking the law while free he
would have her held without bail.
The Mean Girls star is due back
in court on Feb. 23 an important
hearing in which Lohan could opt
to end the case early.
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beB(s)
s.t. length(s) < Liax
value(b) = freq(b)
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Lindsay Lohan pleaded not guilty
to felony grand theft

of a 2,500 necklace,

~could—return-the—troubled-starlet

toaibratherchanthe binscroca.
Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 ard—warned

The Mean Girls star is due back
in court on Feb. 23 an-important

to-end-the-case-early:

[Martins and Smith 2009]
[Woodsend and Lapata 2010]
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Parameterize using features:
value(b) = w' f(b)
value(c) = w' f(c)
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Feature function factors:

Fl) =2 FO) + 3 f(@)
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Bigram Features f(b) Cut Features f(c)
Lindsay Lohan pleaded not guilty
COUNT:  Bucketed document counts COORD: Coordinated phrase, four to felony grand theft
versions: NP, VP, S, SBAR of 2 2,500 necklace,
STOP: Stop word indicators ~could-ratnthe wroubled-starler
. » S-ADJUNCT:  Adjunct to matrix verb, tojairatherthanthe big screen.
POSITION: First document position four versions: CC, PP, Saying it appeared that Lohan had
indicators ADVP, SBAR violated her probation in a 2007
) o - drunken driving case the judge
CONJ: All two- and three-way REL-C: Relative clause indicator . J 1ucg
conjunctions of above o o ] set bail at $40,000 ene-warned
ATTR-C: Attribution clause indicator -that—f—Lehan—was—aceused—ef
BIAS: Always one ATTR-PP: PP actribution indicator brealing —the—law—while—ree—he
would-baveterheld-withowtbatk
TEMP-PP: Temporal PP indicator The Mean Girls star is due back
TEMP-NP  Temporal NP indicator in court on Feb. 23 animpociant
-hearing-inwhich-tohan-—could-opt
BIAS: Always one to-end-the-ease-early:
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s.t. for all possible guess summaries: s.t. for all possible guess summaries:
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quality Exponentially many constraints!
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