Grounded Semantics

Berkeley

Jacob Andreas

What does the world look like?

HAL

open

∧

close

Bowman

podBayDoors

Today’s plan

1. How do we relate language to a richer representation of the world?

2. How do we learn meanings without annotated logical forms?

Today’s plan

Formal semantics: How do we learn the relationship between text and logical forms?

Three approaches

1. Learning with hardcoded predicates

2. Jointly learning parsers and classifiers

3. Learning a policy directly
Hard-coded predicates

Don’t forget:
the λ-calculus is a programming language!

final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
 ...
}

Hard-coded predicates

Given full supervision we can immediately execute output from our semantic parser.

final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
 ...
}

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors

open(HAL, podBayDoors)

1.0

incur loss

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors

open(HAL, podBayDoors)

0.0

incur loss
Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Now:

Open the pod bay doors

`close(HAL, podBayDoors)` predict LF

`doorsClosed = true` observe text

`doorsClosed = false` predicted outcome

1.0 incur loss

Recall our previous training procedure.

Structured perceptron update:

\[
\theta^{t+1} = \theta^t + \Phi(x, \hat{y}) - \Phi(x, \hat{y})
\]

where

\[
\hat{y} = \arg \max_y \theta^\top \Phi(x, y)
\]
Joint parsing and perception

What if the world doesn’t look like a database underneath?

Open the elevator doors, HAL

What’s a *door*?

Joint parsing and perception

What’s a *door*?

\[f(\text{podBayDoors}) = \text{true} \]

Joint parsing and perception

What’s a *door*?

\[f(\text{bathroomWindow}) = \text{false} \]

Joint parsing and perception

Fixed inventory of functions
Joint parsing and perception

Fixed inventory of functions

One function per word

door door': Image \mapsto Boolean
in in': (Image, Image) \mapsto Boolean

Joint parsing and perception

$p\left(\text{blue mug on the table}, \begin{array}{c}
1 \quad 2 \\
3 \quad 4
\end{array}\right)$

text \quad query

image \quad database \quad answer

Joint parsing and perception

Can even learn to compose these grounding functions:

- a blue eye
- a dark blue eye
- a dark pastel blue eye

The picture so far

Open the pod bay doors observe text
close(HAL, podBayDoors) predict LF
doorsClosed = true predicted outcome
doorsClosed = false desired outcome
1.0 incur loss

The picture so far

Open the pod bay doors observe text
doorsClosed = true predicted outcome
doorsClosed = false desired outcome
1.0 incur loss
Learning a conditional policy

Learn an intermediate meaning representation

\[p(\text{result}|\text{text}) = \sum_{\text{MR}} p(\text{result}|\text{MR}) p(\text{MR}|\text{text}) \]

Learn \(p(\text{result}|\text{text}) \) directly

MDP refresher

- Set \(S \) of states
- Set \(A \) of actions
- Transition function \(T : (S \times A) \rightarrow S \)
- Reward function \(R : (S \times A) \rightarrow \mathbb{R} \)

Lots of algorithms for learning a policy
\(\pi : S \rightarrow A \) given only black-box interaction

Reading as an MDP

Idea: augment base MDP state space with position in document.

Open the pod bay doors after making me a sandwich

\{sandwich=true, doorOpen=true\},
\{sandwich=true, doorOpen=false\},
...

\{sandwich=true, doorOpen=false
\text{text}=\text{Open the pod bay doors after making me a sandwich}\}

Reading as an MDP

Now just want to pick

\[f(\text{\{sandwich=true, doorOpen=false\}}) \in \{a_1, a_2, \ldots\} \]

maximizing reward.

Use your favorite policy learning technique!

(Vogel & Jurafsky 2010, Branavan et al. numerous)

Reading as an MDP

We get pragmatics for free: easy to learn that

Open the pod bay doors
I want you to open the pod bay doors
I’m ready to come inside now

prefer destination states with \{\text{doorOpen} = \text{true}\}

Reading as an MDP

But less clear how to handle composition (syntactic or semantic) in this framework:

Open the red door located between two small doors.

Need some way of handling structured action spaces that don’t correspond to syntax.
What else is hard?

Event compositionality and coreference:

1. Before disassembling your iPhone, be sure it is powered off
2. Remove the two 3.6mm Pentalobe or Phillips #000 screws next to the dock connector
27. Use the clear plastic pull tab to gently lift the battery out of the iPhone
59. De-route the digitizer and LCD cables through the steel inner frame, and remove the display from the iPhone
60. To reassemble your device, follow these instructions in reverse order.

Summary

• Grounding relates language to a model environment with more (or different) structure than formal calculus

• Lots of tools for using environment models to learn semantics without annotated logical forms

Question time