

Today's plan

- 1. How do we relate language to a richer representation of the world?
- 2. How do we learn meanings without annotated logical forms?

1

Today's plan

Grounded
Formal semantics:

How do we learn the relationship between text and logical forms? the world

Three approaches

- 1. Learning with hardcoded predicates
- 2. Jointly learning parsers and classifiers
- 3. Learning a policy directly

Hard-coded predicates

Don't forget:

the λ -calculus is a programming language!

```
final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
    ...
}
```


Hard-coded predicates

Given full supervision we can immediately execute output from our semantic parser.

```
final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
    ...
}
```


Hard-coded predicates

Open the pod bay doors, HAL

open(HAL, podBayDoors)

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors

close(HAL, podBayDoors)

open(HAL, podBayDoors)

observe true LF

1.0

incur loss

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors
open(HAL, podBayDoors)
open(HAL, podBayDoors)
observe true LF
0.0 incur loss

Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Now:

Open the pod bay doors

close(HAL, podBayDoors)

doorsClosed = true

doorsClosed = false

1.0

observe text

predict LF

predicted outcome

desired outcome

incur loss

Distant supervision

Recall our previous training procedure.

Structured perceptron update:

$$\theta^{t+1} = \theta^t + \Phi(x, y) - \Phi(x, \hat{y})$$

where

$$\hat{y} = \underset{y}{\operatorname{arg\,max}} \ \theta^{\top} \Phi(x, y)$$

Distant supervision

Now only supervision is an outcome z.

Structured perceptron update:

$$\theta^{t+1} = \theta^t + \Phi(x, y^*) - \Phi(x, \hat{y})$$

where

$$\hat{y} = \underset{y}{\operatorname{arg \, max}} \ \theta^{\top} \Phi(x, y)$$
$$y^* = \underset{y: \underline{\operatorname{exec}(y) = z}}{\operatorname{arg \, max}} \ \theta^{\top} \Phi(x, y)$$

Distant supervision

close(HAL, podBayDoors) \hat{y} open(HAL, podBayDoors) y^* open(HAL, cockpitDoors) make(HAL, sandwich, Dave)

...

smash(HAL, podBayDoors, filingCabinet) y^*

Distant supervision

Open the pod bay doors, HAL

open(HAL, podBayDoors)

What can we do with this?

Learn to answer questions given only (question, answer) pairs and a database of facts [Liang et al. 2011 & various others]

Learn to follow directions given only (source, pairs) and a model environment [Chen & Mooney 2011, Artzi & Zettlemoyer 2013]

Learning a conditional policy

Learn an intermediate meaning representation $p(\text{result}|\text{text}) = \sum_{\text{MR}} p(\text{result}|\text{MR}) \ p(\text{MR}|\text{text})$

Learn p(result|text) directly

MDP refresher

- Set S of states
- Set A of actions
- Transition function T : (S x A) → S
- Reward function R : $(S \times A) \rightarrow \mathbb{R}$

Lots of algorithms for *learning* a policy $\pi: S \Rightarrow A$ given only black-box interaction

Reading as an MDP

Idea: augment base MDP state space with position in document.

Open the pod bay doors after making me a sandwich

{sandwich=true, doorOpen=true},
{sandwich=true, doorOpen=false},

{ sandwich=true, doorOpen=false
 text=Open the pod bay doors after making me a sandwich}

Reading as an MDP

Now just want to pick

```
f( \substack{ \mathsf{sandwich} = \mathsf{true}, \ \mathsf{doorOpen} = \mathsf{false} \\ \mathsf{text} = \underbrace{\mathsf{Open} \ \mathsf{the} \ \mathsf{pod} \ \mathsf{bay} \ \mathsf{doors} \ \mathsf{after} \ \mathsf{making} \ \mathsf{me} \ \mathsf{a} \ \mathsf{sandwich}}_{\mathsf{da1}, a_2, \ldots} } ) \in
```

maximizing reward.

Use your favorite policy learning technique!

[Vogel & Jurafsky 2010, Branavan et al. numerously]

Reading as an MDP

We get pragmatics for free: easy to learn that

Open the pod bay doors
I want you to open the pod bay doors
I'm ready to come inside now

prefer destination states with {doorOpen = true}

Reading as an MDP

But less clear how to handle composition (syntactic or semantic) in this framework:

Open the red door located between two small doors.

Need some way of handling structured action spaces that don't correspond to syntax.

What else is hard?

Event compositionality and coreference:

- Before disassembling your iPhone, be sure it is powered off Remove the two 3.6mm Pentalobe or Phillips #000 screws next to the dock connector
- 27. Use the clear plastic pull tab to gently lift the battery out of the iPhone
- 59. De-route the digitizer and LCD cables through the steel inner frame, and remove the display from the iPhone
 60. To reassemble your device, follow these instructions in reverse order.

Summary

- Grounding relates language to a model environment with more (or different) structure than formal calculus
- Lots of tools for using environment models to learn semantics without annotated logical forms

Question time

