What does the world look like?

HAL'

\land

close'

podBayDoors'

open'

Bowman'
Today’s plan

1. How do we relate language to a richer representation of the world?

2. How do we learn meanings without annotated logical forms?
Today’s plan

Open the pod bay doors, HAL

open(HAL, podBayDoors)
Today’s plan

Grounded

Formal semantics:

How do we learn the relationship between text and logical forms? the world
Three approaches

1. Learning with hardcoded predicates
2. Jointly learning parsers and classifiers
3. Learning a policy directly
Don’t forget:

the λ-calculus is a programming language!

```java
final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
    ...
}
```
Hard-coded predicates

Given full supervision we can immediately execute output from our semantic parser.

```java
final Entity HAL = ...
Entity podBayDoors = ...
void open(Entity opener, Entity opened) {
    ...
}
```
Hard-coded predicates

Open the pod bay doors, HAL

open(HAL, podBayDoors)
Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?
Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors

close(HAL, podBayDoors)

one(HAL, podBayDoors)

1.0
Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Before:

Open the pod bay doors

`open(HAL, podBayDoors)`

`open(HAL, podBayDoors)`

0.0
Distant supervision

Can we use the ability to execute predicted parses to learn with weaker supervision?

Now:

Open the pod bay doors

close(HAL, podBayDoors)

doorsClosed = true

doorsClosed = false

1.0
Distant supervision

Recall our previous training procedure.

Structured perceptron update:

\[
\theta^{t+1} = \theta^t + \Phi(x, y) - \Phi(x, \hat{y})
\]

where

\[
\hat{y} = \arg \max_y \theta^\top \Phi(x, y)
\]
Distant supervision

Now only supervision is an outcome z.

Structured perceptron update:

$$\theta^{t+1} = \theta^t + \Phi(x, y^*) - \Phi(x, \hat{y})$$

where

$$\hat{y} = \arg \max_y \theta^\top \Phi(x, y)$$

$$y^* = \arg \max_{y: \text{exec}(y) = z} \theta^\top \Phi(x, y)$$
Distant supervision

close(HAL, podBayDoors) \hat{y}
open(HAL, podBayDoors) y^*
open(HAL, cockpitDoors)
make(HAL, sandwich, Dave)
...
smash(HAL, podBayDoors, filingCabinet) y^*
Distant supervision

Open the pod bay doors, HAL

open(HAL, podBayDoors)
What can we do with this?

Learn to answer questions given only (question, answer) pairs and a database of facts
[Liang et al. 2011 & various others]

Learn to follow directions given only (source, pairs) and a model environment
[Chen & Mooney 2011, Artzi & Zettlemoyer 2013]
Joint parsing and perception

What if the world doesn’t look like a database underneath?

Open the elevator doors, HAL

What’s a *door*?
Joint parsing and perception

What’s a door?

\[f(podBayDoors) = \text{true} \]

<table>
<thead>
<tr>
<th></th>
<th>podBayDoor, elevatorDoor1, cockpitDoor, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>door</td>
<td></td>
</tr>
<tr>
<td>window</td>
<td>bridgeWindow, bathroomWindow, ...</td>
</tr>
<tr>
<td>isOpen</td>
<td>podBayDoor, bathroomWindow</td>
</tr>
</tbody>
</table>
Joint parsing and perception

What’s a door?

$f(\text{door}) = \text{true}$
Joint parsing and perception

What’s a door?

$$f() = \text{true}$$
Joint parsing and perception

What’s a door?

\[f(____________) = \text{false} \]
Joint parsing and perception

Fixed inventory of functions
Joint parsing and perception

Fixed inventory of functions

One function per word

door door': Image \leftrightarrow Boolean

in in': (Image, Image) \leftrightarrow Boolean
Joint parsing and perception

blue mug on the table

\[\lambda x. \exists y. \text{blue}(x) \land \text{table}(y) \land \text{on}(x, y) \]

[Krishnamurthy et al. 2013]
Joint parsing and perception

\[p \left(\begin{array}{c}
\text{blue mug on the table}\n\end{array} \right) \]
Joint parsing and perception

Can even learn to compose these grounding functions:

- a blue eye
- a dark blue eye
- a dark pastel blue eye

[Andreas et al. 2013]
The picture so far

Open the pod bay doors

close(HAL, podBayDoors)

doorsClosed = true

doorsClosed = false

1.0
The picture so far

Open the pod bay doors

doorsClosed = true

doorsClosed = false

1.0
Learning a conditional policy

Learn an intermediate meaning representation

\[p(\text{result} | \text{text}) = \sum_{\text{MR}} p(\text{result} | \text{MR}) \ p(\text{MR} | \text{text}) \]

Learn \(p(\text{result} | \text{text}) \) directly
MDP refresher

- Set S of states
- Set A of actions
- Transition function $T : (S \times A) \rightarrow S$
- Reward function $R : (S \times A) \rightarrow \mathbb{R}$

Lots of algorithms for learning a policy $\pi : S \rightarrow A$ given only black-box interaction
Reading as an MDP

Idea: augment base MDP state space with position in document.

Open the pod bay doors after making me a sandwich

\{sandwich=true, \text{doorOpen}=true\},
\{sandwich=true, \text{doorOpen}=false\},
...

\{sandwich=true, \text{doorOpen}=false,
 \text{text=Open the pod bay doors after making me a sandwich}\}
Reading as an MDP

Now just want to pick

\[
f\left(\text{sandwich=true, doorOpen=false, text=Open the pod bay doors after making me a sandwich}\right) \in \{a_1, a_2, \ldots\}
\]

maximizing reward.

Use your favorite policy learning technique!

[Vogel & Jurafsky 2010, Branavan et al. numerous]
We get pragmatics for free: easy to learn that

Open the pod bay doors
I want you to open the pod bay doors
I’m ready to come inside now

prefer destination states with \{\text{doorOpen} = \text{true}\}
Reading as an MDP

But less clear how to handle composition (syntactic or semantic) in this framework:

Open the red door located between two small doors.

Need some way of handling structured action spaces that don’t correspond to syntax.
What else is hard?

Event compositionality and coreference:

1. Before disassembling your iPhone, be sure it is powered off
2. Remove the two 3.6mm Pentalobe or Phillips #000 screws next to the dock connector
27. Use the clear plastic pull tab to gently lift the battery out of the iPhone
59. De-route the digitizer and LCD cables through the steel inner frame, and remove the display from the iPhone
60. To reassemble your device, follow these instructions in reverse order.
Summary

- **Grounding** relates language to a model environment with more (or different) structure than formal calculus

- Lots of tools for using environment models to learn semantics *without annotated logical forms*
Question time