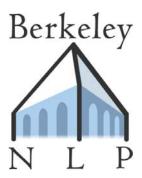
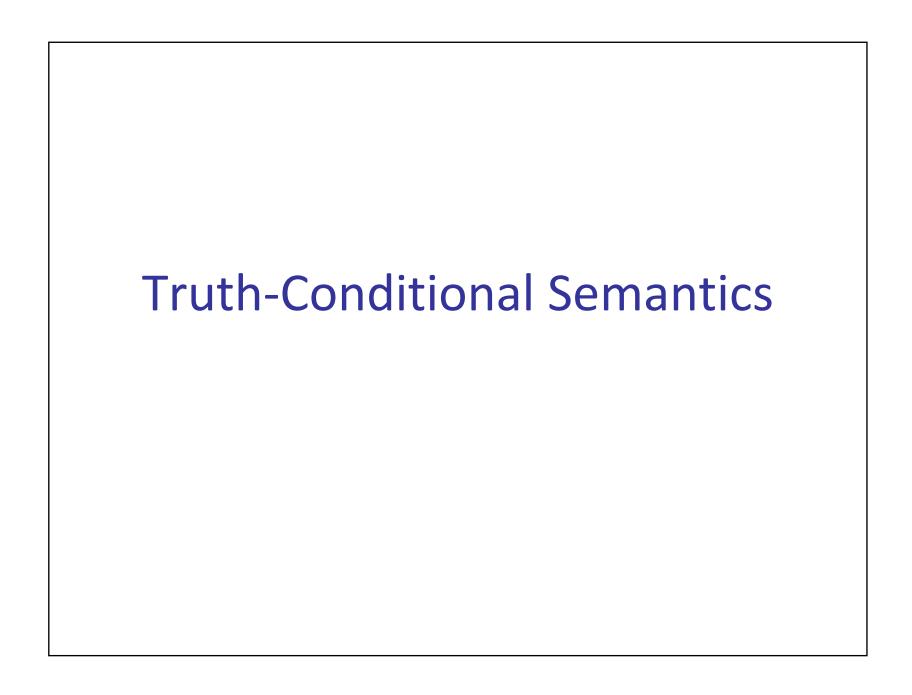
Natural Language Processing



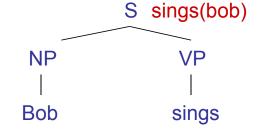
Compositional Semantics

Dan Klein – UC Berkeley



Truth-Conditional Semantics

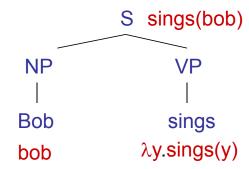
- Linguistic expressions:
 - "Bob sings"
- Logical translations:
 - sings(bob)
 - Could be p_1218(e_397)



- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob): t (for truth-value)

Truth-Conditional Semantics

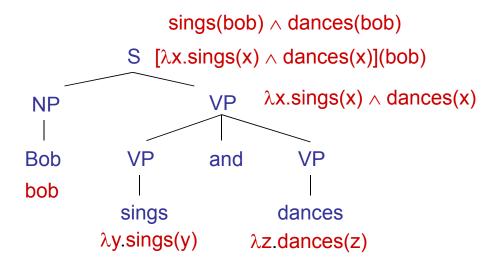
- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob $[[bob]]^{W} \rightarrow ???$
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)



- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ -calculus is a notation for functions whose arguments are not yet filled.
 - sings: λx .sings(x)
 - This is predicate a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
 - Adjectives?

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: β(α) \rightarrow NP: α VP: β$ (function application)
 - VP: $\lambda x \cdot \alpha(x) \wedge \beta(x) \rightarrow VP : \alpha$ and $: \emptyset$ VP: β (intersection)
- Example:

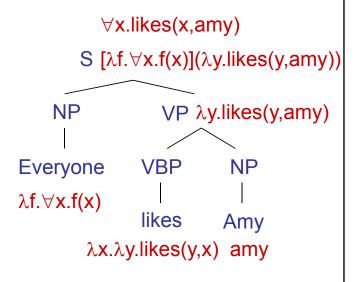


Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - Denotation ("evaluation") calculated using the database
 - More usefully: assert truth and modify a database
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - "Bob sings and dances" → "Who sings?" + "Bob"
 - Chain together facts and use them for comprehension

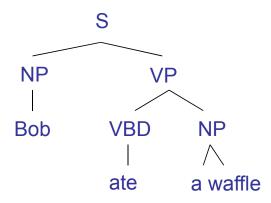
Other Cases

- Transitive verbs:
 - likes : λx.λy.likes(y,x)
 - Two-place predicates of type $e \rightarrow (e \rightarrow t)$.
 - likes Amy : λy.likes(y,Amy) is just like a one-place predicate.
- Quantifiers:
 - What does "Everyone" mean here?
 - Everyone : $\lambda f. \forall x. f(x)$
 - Mostly works, but some problems
 - Have to change our NP/VP rule.
 - Won't work for "Amy likes everyone."
 - "Everyone likes someone."
 - This gets tricky quickly!



Indefinites

- First try
 - "Bob ate a waffle" : ate(bob,waffle)
 - "Amy ate a waffle" : ate(amy,waffle)
- Can't be right!
 - $\exists x : waffle(x) \land ate(bob,x)$
 - What does the translation of "a" have to be?
 - What about "the"?
 - What about "every"?



Grounding

Grounding

- So why does the translation likes : $\lambda x. \lambda y. likes(y,x)$ have anything to do with actual liking?
- It doesn't (unless the denotation model says so)
- Sometimes that's enough: wire up bought to the appropriate entry in a database
- Meaning postulates
 - Insist, e.g $\forall x,y.likes(y,x) \rightarrow knows(y,x)$
 - This gets into lexical semantics issues
- Statistical version?

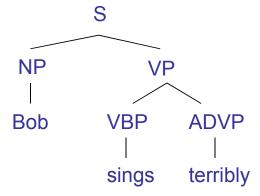
Tense and Events

- In general, you don't get far with verbs as predicates
- Better to have event variables e
 - "Alice danced" : danced(alice)
 - \exists e : dance(e) \land agent(e,alice) \land (time(e) < now)
- Event variables let you talk about non-trivial tense / aspect structures
 - "Alice had been dancing when Bob sneezed"

```
■ ∃ e, e' : dance(e) ∧ agent(e,alice) ∧
sneeze(e') ∧ agent(e',bob) ∧
(start(e) < start(e') ∧ end(e) = end(e')) ∧
(time(e') < now)</pre>
```


Adverbs

- What about adverbs?
 - "Bob sings terribly"
 - terribly(sings(bob))?
 - (terribly(sings))(bob)?
 - ∃e present(e) ∧ type(e, singing) ∧ agent(e,bob)
 ∧ manner(e, terrible) ?
 - It's really not this simple...



Propositional Attitudes

- "Bob thinks that I am a gummi bear"
 - thinks(bob, gummi(me)) ?
 - thinks(bob, "I am a gummi bear") ?
 - thinks(bob, ^gummi(me)) ?
- Usual solution involves intensions (^X) which are, roughly, the set of possible worlds (or conditions) in which X is true
- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - green ball : λx .[green(x) \wedge ball(x)]
 - fake diamond : λx .[fake(x) \wedge diamond(x)] ? $\longrightarrow \lambda x$.[fake(diamond(x))
- Generalized Quantifiers
 - the : λf .[unique-member(f)]
 - all : λf . λg [$\forall x.f(x) \rightarrow g(x)$]
 - most?
 - Could do with more general second order predicates, too (why worse?)
 - the(cat, meows), all(cat, meows)
- Generics
 - "Cats like naps"
 - "The players scored a goal"
- Pronouns (and bound anaphora)
 - "If you have a dime, put it in the meter."
- ... the list goes on and on!

Multiple Quantifiers

- Quantifier scope
 - Groucho Marx celebrates quantifier order ambiguity:

"In this country <u>a woman</u> gives birth <u>every 15 min</u>. Our job is to find that woman and stop her."

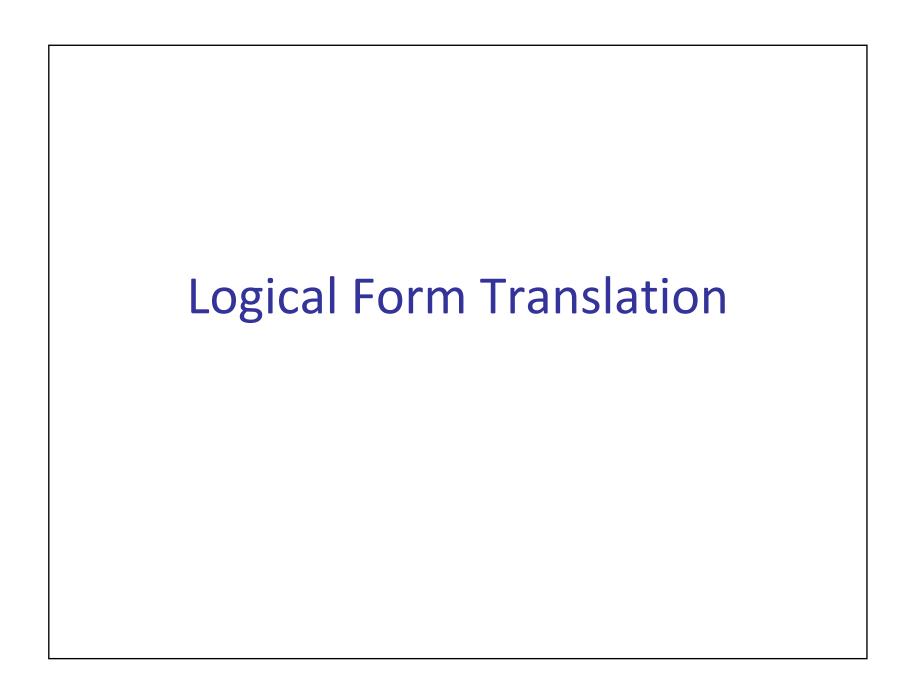
- Deciding between readings
 - "Bob bought a pumpkin every Halloween"
 - "Bob uses a phone as an alarm each morning"
 - Multiple ways to work this out
 - Make it syntactic (movement)
 - Make it lexical (type-shifting)

Modeling Uncertainty

 Big difference between statistical disambiguation and statistical reasoning.

The scout saw the enemy soldiers with night goggles.

- With probabilistic parsers, can say things like "72% belief that the PP attaches to the NP."
- That means that *probably* the enemy has night vision goggles.
- However, you can't throw a logical assertion into a theorem prover with 72% confidence.
- Use this to decide the expected utility of calling reinforcements?
- In short, we need probabilistic reasoning, not just probabilistic disambiguation followed by symbolic reasoning



CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus
 - Can have spurious ambiguities (why?)

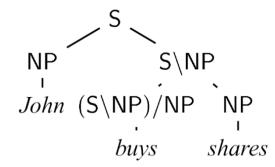
 $John \vdash NP : john'$

 $shares \vdash NP : shares'$

 $buys \vdash (S \setminus NP) / NP : \lambda x. \lambda y. buys' xy$

 $sleeps \vdash S \setminus NP : \lambda x.sleeps'x$

 $well \vdash (S\NP)\(S\NP) : \lambda f.\lambda x.well'(fx)$



Mapping to LF: Zettlemoyer & Collins 05/07

The task:

Input: List one way flights to Prague.

Output: $\lambda x.flight(x) \land one_way(x) \land to(x,PRG)$

Challenging learning problem:

- Derivations (or parses) are not annotated
- Approach: [Zettlemoyer & Collins 2005]
- Learn a lexicon and parameters for a weighted Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

- Combinatory Categorial Grammar (CCG)
- Weighted CCGs
- Learning lexical entries: GENLEX

CCG Lexicon

Words	Category		
flights	$N : \lambda x.flight(x)$		
to	$(N\N)/NP : \lambda x. \lambda f. \lambda y. f(x) \wedge to(y,x)$		
Prague	NP : PRG		
New York city	NP : NYC		
•••	•••		

Parsing Rules (Combinators)

Application

Composition

```
• X/Y: f Y/Z: g => X/Z: \lambda x.f(g(x))
• Y/Z: f X/Y: g => X/Z: \lambda x.f(g(x))
```

Additional rules:

- Type Raising
- Crossed Composition

CCG Parsing

Show me	flights	flights to			
S/N	N	(N\N)/NP	NP		
λ£.f	λx .flight(x)	$\lambda y \cdot \lambda f \cdot \lambda x \cdot f(y) \wedge to(x,y)$	PRG		
	$\lambda f.\lambda x.f(x) \wedge to(x,PRG)$				
		N			
		$\lambda x.flight(x) \land to(x,PRG)$			

S $\lambda x.flight(x) \wedge to(x,PRG)$

Weighted CCG

Given a log-linear model with a CCG lexicon Λ , a feature vector f, and weights w.

The best parse is:

$$y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x, y)$$

Where we consider all possible parses y for the sentence x given the lexicon Λ .

Lexical Generation

Input Training Example

Sentence: Show me flights to Prague. Logic Form: $\lambda x.flight(x) \wedge to(x,PRG)$

Output Lexicon

Words	Category	
Show me	$S/N: \lambda f.f$	
flights	$N : \lambda x.flight(x)$	
to	$(N\N)/NP : \lambda x. \lambda f. \lambda y. f(x) \wedge to(y,x)$	
Prague	NP : PRG	
• • •	• • •	

GENLEX: Substrings X Categories

Input Training Example

Sentence: Show me flights to Prague. Logic Form: $\lambda x.flight(x) \wedge to(x,PRG)$

Output Lexicon

All possible substrings:

```
Show
me
flights
...
Show me
Show me flights
Show me flights to
```

Categories created by rules that trigger on the logical form:

```
 \begin{array}{c} \mathrm{NP} \; : \; \mathit{PRG} \\ \\ \mathrm{N} \; : \; \lambda x. \mathit{flight}(x) \\ \\ (\mathrm{S}\backslash \mathrm{NP})/\mathrm{NP} \; : \; \lambda x. \lambda y. \mathit{to}(y,x) \\ \\ (\mathrm{N}\backslash \mathrm{N})/\mathrm{NP} \; : \; \lambda y. \lambda \mathit{f}. \lambda x. \; \dots \\ \\ \bullet \bullet \bullet \end{array}
```

[Zettlemoyer & Collins 2005]

Robustness

The lexical entries that work for:

Will not parse:

```
Boston to Prague the latest on Friday

NP N\N NP/N N\N
```


Relaxed Parsing Rules

Two changes

- Add application and composition rules that relax word order
- Add type shifting rules to recover missing words

These rules significantly relax the grammar

 Introduce features to count the number of times each new rule is used in a parse

Review: Application

Disharmonic Application

Reverse the direction of the principal category:

```
\begin{array}{c|c} \text{flights} & \text{one way} \\ \hline & \text{N} \\ \lambda x. \textit{flight}(x) & \lambda f. \lambda x. f(x) \land \textit{one\_way}(x) \\ \hline & \text{N} \end{array}
```

 $\lambda x.flight(x) \land one_way(x)$

Missing content words

Insert missing semantic content

■ NP : c => N\N : $\lambda f.\lambda x.f(x) \wedge p(x,c)$

flights	Boston	to Prague
N $\lambda x.flight(x)$	NP BOS	$N \setminus N$ $\lambda f \cdot \lambda x \cdot f(x) \wedge to(x, PRG)$
	$N \setminus N$ $\lambda f. \lambda x. f(x) \land from(x, BOS)$	
λx.flig	N $ht(x) \land from(x, BOS)$	
	N	
	$\lambda x.flight(x) \land from(x, BOS)$	$\wedge to(X, PRG)$

Missing content-free words

Bypass missing nouns

• $N \setminus N$: $f \Rightarrow N$: $f(\lambda x.true)$

Northwest Air to Prague N/N $\lambda f. \lambda x. f(x) \land airline(x, NWA)$ $\lambda f. \lambda x. f(x) \land to(x, PRG)$ $\lambda f. \lambda x. f(x) \land to(x, PRG)$ $\lambda f. \lambda x. to(x, PRG)$

N $\lambda x.airline(x,NWA) \wedge to(x,PRG)$

Inputs: Training set $\{(x_i, z_i) \mid i=1...n\}$ of sentences and logical forms. Initial lexicon Λ . Initial parameters w. Number of iterations T.

Training: For t = 1...T, i = 1...n:

Step 1: Check Correctness

- Let $y^* = \underset{y}{\operatorname{argmax}} w \cdot f(x_i, y)$
- If $L(y^*) = z_i$, go to the next example

Step 2: Lexical Generation

- Set $\lambda = \Lambda \cup GENLEX(x_i, z_i)$
- Let $\hat{y} = \arg \max_{y \text{ s.t. } L(y)=z_i} w \cdot f(x_i, y)$
- Define λ_i to be the lexical entries in y^{\wedge}
- Set lexicon to $\Lambda = \Lambda \cup \lambda_i$

Step 3: Update Parameters

- Let $y' = \operatorname{argmax} w \cdot f(x_i, y)$
- If $L(y') \neq z_i$
 - Set $w = w + f(x_i, \hat{y}) f(x_i, y')$

Output: Lexicon Λ and parameters w.

Related Work for Evaluation

Hidden Vector State Model: He and Young 2006

- Learns a probabilistic push-down automaton with EM
- Is integrated with speech recognition

λ-WASP: Wong & Mooney 2007

- Builds a synchronous CFG with statistical machine translation techniques
- Easily applied to different languages

Zettlemoyer and Collins 2005

 Uses GENLEX with maximum likelihood batch training and stricter grammar

Two Natural Language Interfaces

ATIS (travel planning)

- Manually-transcribed speech queries
- 4500 training examples
- 500 example development set
- 500 test examples

Geo880 (geography)

- Edited sentences
- 600 training examples
- 280 test examples

Evaluation Metrics

Precision, Recall, and F-measure for:

- Completely correct logical forms
- Attribute / value partial credit

```
\lambda x.flight(x) \land from(x,BOS) \land to(x,PRG)
```

is represented as:

```
\{from = BOS, to = PRG \}
```


Two-Pass Parsing

Simple method to improve recall:

- For each test sentence that can not be parsed:
 - Reparse with word skipping
 - Every skipped word adds a constant penalty
 - Output the highest scoring new parse

ATIS Test Set [Z+C 2007]

Exact Match Accuracy:

	Precision	Recall	F1
Single-Pass	90.61	81.92	86.05
Two-Pass	85.75	84.60	85.16

Geo880 Test Set

Exact Match Accuracy:

	Precision	Recall	F1
Single-Pass	95.49	83.20	88.93
Two-Pass	91.63	86.07	88.76
Zettlemoyer & Collins 2005	96.25	79.29	86.95
Wong & Mooney 2007	93.72	80.00	86.31