Natural Language Processing

Classification I

Dan Klein – UC Berkeley

Classification

Classification

- Automatically make a decision about inputs
 - $\blacksquare \quad \mathsf{Example: document} \to \mathsf{category}$
 - Example: image of digit \rightarrow digit
 - Example: image of object \rightarrow object type
 - $\blacksquare \quad \text{Example: query + webpages} \rightarrow \text{best match}$
 - $\blacksquare \quad \text{Example: symptoms} \rightarrow \text{diagnosis}$
 - ...
- Three main ideas
 - Representation as feature vectors / kernel functions
 - Scoring by linear functions
 - Learning by optimization

Features

Block Feature Vectors

 Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree's features may be the productions by the present in the tree

$$f\left(\begin{array}{c} \frac{S}{NP} & \frac{S}{NP} \\ \frac{S}{N} & \frac{VP}{N} \end{array}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$f\left(\begin{array}{c} \frac{S}{NP} & \frac{VP}{N} \\ \frac{S}{N} & \frac{VP}{N} \end{array}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$$

- Different candidates will thus often share features
- We'll return to the non-block case later

Linear Models

Linear Models: Decision Rule

The linear decision rule:

$$\begin{aligned} \mathit{prediction}(....\mathit{win the election}...,\mathbf{w}) &= \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\text{arg max}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}) \\ \mathit{score}(\underbrace{SPORTS}_{PORTS}, \mathbf{w}) &= 1 \times 1 + (-1) \times 1 = 0 \\ \mathit{score}(\underbrace{POLITICS}_{N}, \mathbf{w}) &= 1 \times 1 + 1 \times 1 = 2 \\ \mathit{score}(\underbrace{OTHER}_{N}, \mathbf{w}) &= (-2) \times 1 + (-1) \times 1 = -3 \end{aligned}$$

We've said nothing about where weights come from

Binary Classification

- Important special case: binary classification
 - Classes are y=+1/-1

$$f(x,-1) = -f(x,+1)$$

 $f(x) = 2f(x,+1)$

Decision boundary is a hyperplane

BIAS

Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

$$prediction(\mathbf{x}_i, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}}{\arg\max} \, \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

• There are other ways: e.g. reconcile pairwise decisions

Learning

Learning Classifier Weights

- Two broad approaches to learning weights
- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling
- Discriminative: set weights based on some error-related
 - · Advantages: error-driven, often weights which are good for classification aren't the ones which best describe the data
- We'll mainly talk about the latter for now

How to pick weights?

- Goal: choose "best" vector w given training data
 - For now, we mean "best for classification"
- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don't have the test set
 - Must compute weights from training set
- Maybe we want weights which give best training set
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT

Minimize Training Error?

• A loss function declares how costly each mistake is

$$\ell_i(\mathbf{y}) = \ell(\mathbf{y}, \mathbf{y}_i^*)$$

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)
- We could, in principle, minimize training loss:

$$\min_{\mathbf{w}} \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

• This is a hard, discontinuous optimization problem

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights w
 - Visit training instances one by one Try to classify

$$\hat{\mathbf{y}} = \operatorname{arg\,max} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

- If correct, no change!
- If wrong: adjust weights

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*)$$

 $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\hat{\mathbf{y}})$

Margin

Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:

$$\sum_{i} step \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

- This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway
- Maximum entropy and SVMs have other objectives related to zero-one loss

Linear Separators

Which of these linear separators is optimal?

27

Classification Margin (Binary)

- Distance of \mathbf{x}_i to separator is its margin, \mathbf{m}_i
- Examples closest to the hyperplane are support vectors
- Margin γ of the separator is the minimum m

Classification Margin

• For each example \mathbf{x}_i and possible mistaken candidate \mathbf{y} , we avoid that mistake by a margin $m_i(\mathbf{y})$ (with zero-one loss)

$$m_i(\mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

• Margin γ of the entire separator is the minimum m

$$\gamma = \min_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

• It is also the largest γ for which the following constraints hold

$$\forall i, \forall y \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

Maximum Margin

Separable SVMs: find the max-margin w

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) \geq \mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y}) + \gamma \ell_{i}(\mathbf{y})$$

- Can stick this into Matlab and (slowly) get an SVM
- Won't work (well) if non-separable

Max Margin / Small Norm

Reformulation: find the smallest w which separates data

 γ scales linearly in w, so if ||w|| isn't constrained, we can take any separating w and scale up our margin

$$\gamma = \min_{i, \mathbf{y} \neq \mathbf{y}_i^*} [\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})] / \ell_i(\mathbf{y})$$

• Instead of fixing the scale of w, we can fix $\gamma = 1$

$$\begin{aligned} \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 \\ \forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + 1\ell_i(\mathbf{y}) \end{aligned}$$

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

$$\mathsf{P}(y|x,w) = \frac{\exp(w^\top f(y))}{\sum_{y'} \exp(w^\top f(y'))} \quad \begin{matrix} \longleftarrow & \text{Make} \\ \hline & & \text{Nositivitize} \end{matrix}$$

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_i \mathsf{P}(\mathbf{y}_i^* | \mathbf{x}_i, \mathbf{w}) = \sum_i \log \left(\frac{\exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))} \right)$$

$$=\sum_i \left(\mathbf{w}^{ op} \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{ op} \mathbf{f}_i(\mathbf{y})) \right)$$

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked
- Regularization (smoothing)

$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - \mathbf{k} ||\mathbf{w}||^{2}$$

$$\min_{\mathbf{w}} \ \frac{\mathbf{k} ||\mathbf{w}||^2}{|\mathbf{k}|^2} - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y})) \right)$$

Maximum Entropy

Loss Comparison

Log-Loss

• If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} \ k ||\mathbf{w}||^2 + \sum_i - \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{v}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y})) \right)$$

• This minimizes the "log loss" on each example

$$\begin{split} -\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right) &= -\log \mathbf{P}(\mathbf{y}_{i}^{*}|\mathbf{x}_{i}, \mathbf{w}) \\ step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right) \end{split}$$

• One view: log loss is an *upper bound* on zero-one loss

Remember SVMs...

• We had a constrained minimization

$$\begin{aligned} & \min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ \forall i, \mathbf{y}, & \mathbf{w}^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \geq \mathbf{w}^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \end{aligned}$$

• ...but we can solve for ξ_i

$$\begin{split} &\forall i, \mathbf{y}, \quad \xi_i \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \\ &\forall i, \quad \xi_i = \max_{\mathbf{y}} \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \end{split}$$

Giving

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \left(\max_{\mathbf{y}} \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

Conditional vs Joint Likelihood

Example: Stoplights

- What does the model say when both lights are red?
 - P(b,r,r) = (1/7)(1)(1)= 1/7 = 4/28 = 6/28
 - P(w,r,r) = (6/7)(1/2)(1/2)= 6/28
 - P(w|r,r) = 6/10!
- We'll guess that (r,r) indicates lights are working!
- Imagine if P(b) were boosted higher, to 1/2:
 - P(b,r,r) = (1/2)(1)(1)= 1/2
 - P(w,r,r) = (1/2)(1/2)(1/2)= 1/8 = 1/8
 - P(w|r,r) = 1/5!
- Changing the parameters bought accuracy at the expense of data likelihood