Classification

- Automatically make a decision about inputs
 - Example: document → category
 - Example: image of digit → digit
 - Example: image of object → object type
 - Example: query + webpages → best match
 - Example: symptoms → diagnosis

- Three main ideas
 - Representation as feature vectors / kernel functions
 - Scoring by linear functions
 - Learning by optimization

Some Definitions

- Inputs: \(\mathbf{x}_i \) (close the ____)
- Candidate set: \(\mathcal{Y}(\mathbf{x}) \) (door, table, ...)
- Candidates: \(\mathbf{y} \) (table)
- True outputs: \(\mathbf{y}_i^* \) (door)
- Feature vectors: \(f(x, y) \) \([0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]\)

Feature Vectors

- Example: web page ranking (not actually classification)
 - \(x_i = \text{“Apple Computers”} \)
 - \(f_i(\text{Apple Computers}) = [0.3 \ 5 \ 0 \ 0 \ 0 \ 0 \ 0] \)
 - \(f_i(\text{Apple Logo}) = [0.8 \ 4 \ 2 \ 1 \ 0 \ 0 \ 0] \)
Block Feature Vectors

- Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates.

\[x \quad \rightarrow \quad \text{...win the election...} \]

\[f(x) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \]

\[f(\text{SPORTS}) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]
\[f(\text{POLITICS}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \]
\[f(\text{OTHER}) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \]

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way.

Example: a parse tree's features may be the productions present in the tree:

\[f(\text{SPORTS}) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \]
\[f(\text{POLITICS}) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \]

- Different candidates will thus often share features.
- We'll return to the non-block case later.

Linear Models

In a linear model, each feature gets a weight \(w \).

\[f(\text{POLITICS}) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \]
\[w = \begin{bmatrix} 1 & 1 & -1 & -2 & 1 & -1 & 1 & -2 & -1 & -1 \end{bmatrix} \]

We score hypotheses by multiplying features and weights:

\[\text{score}(y, w) = w^T f(y) \]

\[\text{score}(\text{SPORTS}, w) = 1 \times 1 + 1 \times 1 = 2 \]

Linear Models: Decision Rule

- The linear decision rule:

\[\text{prediction}(x) = \arg \max_{y \in Y(x)} w^T f(y) \]

\[\text{score}(\text{SPORTS}, w) = 1 \times 1 + 1 \times 1 = 2 \]
\[\text{score}(\text{POLITICS}, w) = (-2) \times 1 + (-1) \times 1 = -3 \]

\[\text{prediction}(x) = \text{POLITICS} \]

- We've said nothing about where weights come from.

Binary Classification

Important special case: binary classification

- Classes are \(y = +1/-1 \)

\[f(x, -1) = -f(x, +1) \]
\[f(x) = 2f(x, +1) \]

- Decision boundary is a hyperplane

\[w^T f(x) = 0 \]

\[+1 = \text{SPAM} \]

\[-1 = \text{HAM} \]
Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

\[\text{prediction}(x_i, w) = \arg \max_{y \in \mathcal{Y}} w^T f_i(y) \]
- There are other ways: e.g. reconcile pairwise decisions

Learning Classifier Weights

- Two broad approaches to learning weights
- Generative: work with a probabilistic model of the data, weights are \(\log \) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling
- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren’t the ones which best describe the data

We’ll mainly talk about the latter for now

How to pick weights?

- Goal: choose “best” vector \(w \) given training data
 - For now, we mean “best for classification”
- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don’t have the test set
 - Must compute weights from training set
- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT does exactly this.

Minimize Training Error?

- A loss function declares how costly each mistake is
 \[l_i(y) = l(x, y_i) \]
 - E.g. 0 loss for correct label, 1 loss for wrong label
 - Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)

We could, in principle, minimize training loss:

\[\min_w \sum_i l_i \left(\arg \max_{y \in \mathcal{Y}} w^T f_i(y) \right) \]
- This is a hard, discontinuous optimization problem

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights \(w \)
 - Visit training instances one by one
 - Try to classify
 - If correct, no change!
 - If wrong: adjust weights
 \[w_i \leftarrow w + f_i(y_i) \]
 \[w_i \leftarrow w - f_i(y_i) \]
Example: “Best” Web Page

\[w = [1 \ 2 \ 0 \ 0 \ \ldots] \]
\[x_i = "Apple Computers" \]
\[f_i(x) = [0.3 \ 5 \ 0 \ 0 \ \ldots] \quad w^T f = 10.3 \]
\[f_i(x) = [0.6 \ 4 \ 2 \ 1 \ \ldots] \quad w^T f = 8.8 \]
\[w \leftarrow w + f(x_i^*) - f(\hat{y}) \]
\[w = [1.5 \ 1 \ 2 \ 1 \ \ldots] \]

Perceptrons and Separability

- A data set is separable if some parameters classify it perfectly
- Convergence: if training data separable, perceptron will separate (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

Examples: Perceptron

- Separable Case

\[\text{Examples: Perceptron} \]

- Non-Separable Case

Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn’t the typically discussed source of overfitting, but it can be important
- Regularization: if the data isn’t separable, weights often thrash around
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a “barely” separating solution

Problems with Perceptrons

- Perceptron “goal”: separate the training data
 \[\forall i, y_i \neq y^i \quad w^T f_i(y^i) \geq w^T f_i(y) \]
 - This may be an entire feasible space
 - Or it may be impossible
Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:
 \[
 \sum_i \text{step} \left(w^T f_i(y_i) - \max_{y \neq y_i} w^T f_i(y) \right)
 \]
- This is the “zero-one loss”
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway
- Maximum entropy and SVMs have other objectives related to zero-one loss

Margin

Linear Separators

- Which of these linear separators is optimal?

Classification Margin (Binary)

- Distance of \(x_i\) to separator is its margin \(m_i(y)\)
- Examples closest to the hyperplane are support vectors
- Margin \(\gamma\) of the separator is the minimum \(m\)

Classification Margin

- For each example \(x_i\) and possible mistaken candidate \(y\), we avoid that mistake by a margin \(m_i(y)\) (with zero-one loss)
 \[
 m_i(y) = w^T f_i(y_i) - w^T f_i(y) \]
- Margin \(\gamma\) of the entire separator is the minimum \(m\)
 \[
 \gamma = \min \left(w^T f_i(y_i) - \max_{y \neq y_i} w^T f_i(y) \right) \]
- It is also the largest \(\gamma\) for which the following constraints hold
 \[
 \forall i, y \quad w^T f_i(y_i) \geq w^T f_i(y) + \gamma f_i(y) \]

Maximum Margin

- Separable SVMs: find the max-margin \(w\)
 \[
 \max_{||w||=1} \gamma \quad \ell_i(y) = \begin{cases} 0 & \text{if } y = y_i^+ \\ 1 & \text{if } y = y_i^- \end{cases} \]
 \[
 \forall i, y \quad w^T f_i(y_i) \geq w^T f_i(y) + \gamma f_i(y) \]
- Can stick this into Matlab and (slowly) get an SVM
- Won’t work (well) if non-separable
Why Max Margin?

- Why do this? Various arguments:
 - Solution depends only on the boundary cases, or support vectors (but remember how this diagram is broken!)
 - Solution robust to movement of support vectors
 - Sparse solutions (features not in support vectors get zero weight)
 - Generalization bound arguments
 - Works well in practice for many problems

Max Margin / Small Norm

- Reformulation: find the smallest \(w \) which separates data
 \[\max \frac{1}{\|w\|^2} \quad \forall i, y \quad w^T f_i(x_i) \geq w^T f_i(y) + \gamma \xi_i(y) \]
- \(\gamma \) scales linearly in \(w \), so if \(\|w\| \) isn’t constrained, we can take any separating \(w \) and scale up our margin
 \[\gamma = \min_{\|w\| \leq 1} \frac{1}{\|w\|^2} \quad \forall i, y \quad w^T f_i(x_i) \geq w^T f_i(y) + \xi_i(y) \]
- Instead of fixing the scale of \(w \), we can fix \(\gamma = 1 \)
 \[\min \frac{1}{2}\|w\|^2 \quad \forall i, y \quad w^T f_i(x_i) \geq w^T f_i(y) + \xi_i(y) \]

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables \(\xi \) can be added to allow misclassification of difficult or noisy examples, resulting in a soft margin classifier

Maximum Margin

- Non-separable SVMs
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:
 \[\min \frac{1}{2}\|w\|^2 + C \sum \xi_i \quad \forall i, y \quad w^T f_i(x_i) + \xi_i \geq w^T f_i(y) + \xi_i(y) \]
- \(C \) is called the capacity of the SVM – the smoothing knob
- Learning:
 - Can still stick this into Matlab if you want
 - Constrained optimization is hard; better methods!
 - We’ll come back to this later

Notice other choices of how to penalize slacks!
Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:
 \[P(y|x, w) = \frac{\exp(w^T f(x))}{\sum_y \exp(w^T f(y))} \]
 - Make normalization
 - Maximize the (log) conditional likelihood of training data
 \[L(w) = \log \prod_i P(y_i|x_i, w) = \sum_i \log \left(\frac{\exp(w^T f(y_i))}{\sum_y \exp(w^T f(y))} \right) \]
 \[= \sum_i \left(w^T f(y_i) - \log \sum_y \exp(w^T f(y)) \right) \]

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked
 - Regularization (smoothing)
 \[\min_{w} \sum_i \left(w^T f_i(y_i) - \log \sum_y \exp(w^T f_i(y)) \right) - \lambda ||w||^2 \]
 \[\min_{w} \lambda ||w||^2 - \sum_i \left(w^T f_i(y_i) - \log \sum_y \exp(w^T f_i(y)) \right) \]

Maximum Entropy

Loss Comparison

Log-Loss

- If we view maxent as a minimization problem:
 \[\min_{w} \frac{1}{2} ||w||^2 + \sum_i \left(-w^T f_i(y) + \log \sum_y \exp(w^T f_i(y)) \right) \]
- This minimizes the “log loss” on each example
 \[-\left(w^T f_i(y) - \log \sum_y \exp(w^T f_i(y)) \right) = -\log P(y_i|x, w) \]
- One view: log loss is an upper bound on zero-one loss

Remember SVMs...

- We had a constrained minimization
 \[\min_{w} \frac{1}{2} ||w||^2 + C \sum \epsilon_i \quad \forall i, \ y_i = w^T f_i(x) + \xi \]
 \[\epsilon_i \geq w^T f_i(x) + \xi \]
- ...but we can solve for \(\xi \)
 \[\forall i, \ y_i \geq w^T f_i(x) + \xi \]
 \[\epsilon_i = \max \left(w^T f_i(x) + \xi \right) - w^T f_i(x) \]
- Giving
 \[\min_{w} \frac{1}{2} ||w||^2 + C \sum \epsilon_i \left(\max \left(w^T f_i(x) + \epsilon \right) - w^T f_i(x) \right) \]
Hinge Loss

- Consider the per-instance objective:
 \[\min_w \: \frac{1}{2} \|w\|^2 + \sum_i \max(0, 1 - y_i(x_i^T w)) \]

- This is called the "hinge loss"
 - Unlike maxent/log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with subgradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)

Max vs “Soft-Max” Margin

- SVMs:
 \[\min_w \: \frac{1}{2} \|w\|^2 + \sum_i \max(0, 1 - y_i(x_i^T w)) \]

- Maxent:
 \[\min_w \: \frac{1}{2} \|w\|^2 - \sum_i \left(y_i \log \frac{e^{x_i^T w}}{\sum_j e^{x_j^T w}} \right) \]

- You can make this zero
 - But not this one

Loss Functions: Comparison

- Zero-One Loss
 \[\sum_i \max(w^T f_i(x_i) - \max_j w^T f_j(y_j)) \]

- Hinge
 \[\sum_i \left(y_i (x_i^T w) - \max_j (x_i^T w_j) \right) \]

- Log
 \[\sum_i \left(w^T f_i(x_i) - \log \sum_j e^{x_i^T w_j} \right) \]

Separators: Comparison

Conditional vs Joint Likelihood

Example: Sensors

- Raining
 - Reality: \(P(+,+,r) = 3/8 \) \(P(+,+,s) = 1/8 \)
 - Predictions: \(P(r|+,+) = 9/10 \) \(P(s|+,+) = 1/10 \)

- Sunny
 - Reality: \(P(-,-,r) = 1/8 \) \(P(-,-,s) = 3/8 \)
 - Predictions: \(P(r|-,-) = 9/10 \) \(P(s|-,-) = 1/10 \)
Example: Stoplights

Reality

<table>
<thead>
<tr>
<th>Lights Working</th>
<th>Lights Broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(g,r,w) = 3/7</td>
<td>P(r,g,w) = 3/7</td>
</tr>
<tr>
<td>P(r,r,b) = 1/7</td>
<td></td>
</tr>
</tbody>
</table>

NB Model

<table>
<thead>
<tr>
<th>Working?</th>
<th>NS</th>
<th>EW</th>
</tr>
</thead>
</table>

NB FACTORS:

- P(w) = 6/7
- P(r|w) = 1/2
- P(g|w) = 1/2
- P(b) = 1/7
- P(r|b) = 1
- P(g|b) = 0

Example: Stoplights

- What does the model say when both lights are red?
 - P(b,r,r) = (1/7)(1)(1) = 1/7 = 4/28
 - P(w,r,r) = (6/7)(1/2)(1/2) = 6/28 = 6/28
 - P(w|r,r) = 6/10!
- We’ll guess that (r,r) indicates lights are working!

- Imagine if P(b) were boosted higher, to 1/2:
 - P(b,r,r) = (1/2)(1)(1) = 1/2 = 4/8
 - P(w,r,r) = (1/2)(1/2)(1/2) = 1/8 = 1/8
 - P(w|r,r) = 1/5!
- Changing the parameters bought accuracy at the expense of data likelihood