Natural Language Processing

Berkeley

11 i
N L P

Classification |
Dan Klein — UC Berkeley

e

Classification

= Automatically make a decision about inputs
= Example: document —> category
= Example: image of digit — digit
= Example: image of object — object type
= Example: query + webpages — best match
= Example: symptoms — diagnosis

= Three main ideas
= Representation as feature vectors / kernel functions
= Scoring by linear functions
= Learning by optimization

Classification
Some Definitions
INPUTS X; close the
g/é\;}IDIDATE y(X) {door, table, ...}
CANDIDATES Yy table

*
TRUE 4
OUTPUTS y@ door

o f(xy) 1001000100000]

Features

“close” in x A y="door” |
X ,="the” A y="door”
X.="the” A y="table” y occurs in x
Feature Vectors

= Example: web page ranking (not actually classification)

X; = “Apple Computers”

Apple

)=1[03500...]

)=1[08421..]

Block Feature Vectors

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

bd ... win the election ...

<=
“f(X)” /[J_ 0 1‘&
“win” “election”
<L

£(SPORTS) =[1 0100000000 0]

. win the election ..

f(POLITICS) =[000010100000]

. win the election ...

f(OTHER) =[000000001010]

Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way s

= Example: a parse tree’s features may be the productiogs™p
present in the tree

£

= Different candidates will thus often share features
= We'll return to the non-block case later

Linear Models

Linear Models: Scoring

]
= Inalinear model, each feature gets a weight w

.... win the election ...
F(POLITICS)= 0 0 0 0 1 0 1 0 0 0 0 0]
win the election

fSPORTSY=[1 o 1 0o 0 0 0 0 0 0 0 0]
w=[1 1-1-2 1-1 1-2-2-1-1 1]

= We score hypotheses by multiplying features and weights:

score(y,w) = w ' £(y)

win the election ..

FPOLITICSY=[0 0 0 0 1 0 1 0 0 0 0 0
w=[1 1-1-2 1-1 1-2-2-1-1 1]

win the election

seore(POLITICS, w)=1x141x1=2

Linear Models: Decision Rule

= The linear decision rule:

prediction (--winte eecion.. W) = arg max wa(y)
yEY(x)

.QC{J?‘E(:‘:'T’{?;(}I?’C'T'.N‘{, w)=1x14+(-1)x1=0
... win the election ..
score(POLITICS, w) = 1x14+1x1=2
.. win the election

score(OTHER, w) = (-2) x 14+ (-1)x 1= -3

... win the election ...

prediction(..vintodeion.., w) = POLITICS

= We've said nothing about where weights come from

Binary Classification

= |mportant special case: binary classification

= Classes are y=+1/-1 w
BIAS : -3

f(x,—1) = —f(x,+1) free : 4
money : 2

f(x) = 2f(x,+1)
= Decision boundary is
a hyperplane

wTE(x) =0 1= HAm

Multiclass Decision Rule

= |f more than two classes: w'f(y1)
biggest

= Highest score wins

= Boundaries are more
complex

= Harder to visualize

wf(ys)
biggest

w ' f(y2)
biggest

prediction(x;, w) = arg maxw ' f;(y)
yYEY

= There are other ways: e.g. reconcile pairwise decisions

Learning

Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now

How to pick weights?

= Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

= The ideal: the weights which have greatest test set
accuracy / F1 / whatever
= But, don’t have the test set
= Must compute weights from training set

= Maybe we want weights which give best training set
accuracy?
= Hard discontinuous optimization problem
= May not (does not) generalize to test set

= Easy to overfit Though, min-error
training for MT
does exactly this.

Minimize Training Error?

= Aloss function declares how costly each mistake is
Li(y) = £y, ¥])

= E.g. 0 loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:
; T
min Zéi (arg)r,’naxw fi(y)>
k2

= This is a hard, discontinuous optimization problem

Linear Models: Perceptron

= The perceptron algorithm
= [teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights w

= Visit training instances one by one w
= Try to classify f *
§ = argmaxw f(y) i) £(5)
YEV(X) y

= If correct, no change!
= |f wrong: adjust weights

w—w+ f(y;)
w—w—f(y) f(y/)

Example: “Best” Web Page

w=[1l 2 0 0 ..]

x; = “Apple Computers”
fi(j=—— = |)=[03500..] wif=103 ¥
=5 iy
67 T |)=[08421..] wif=88 y;
. 7

w—w+f(y;) - £(F)
w=[15 1 2 1 ..]

o
/
/
+ + yd
rad
&
/
.'/I
+ b7 // o [s]
/// 2
L / (e} o
P 4

*. Perceptrons and Separability

= Adata set is separable if some Separable
parameters classify it perfectly .
+
P e,
= Convergence: if training data —— .
separable, perceptron will separate -

(binary case)

= Mistake Bound: the maximum Non-Separable

number of mistakes (binary case)

related to the margin or degree of *
+

separability

20
Examples: Perceptron
= Non-Separable Case
3 + Q/'/
5 _’//
2 + /6/ [+
) P 7
3 Ao o
Ll /'//
22

Issues with Perceptrons

training

= Overtraining: test / held-out accuracy
usually rises, then falls
= Overtraining isn’t the typically discussed
source of overfitting, but it can be
important

test
held-out

accuracy

iterations

= Regularization: if the data isn’t
separable, weights often thrash around
= Averaging weight vectors over time can
help (averaged perceptron)
= [Freund & Schapire 99, Collins 02]

= Mediocre generalization: finds a “barely” -
separating solution = =

Problems with Perceptrons

= Perceptron “goal”: separate the training data

vivy #y wifi(y) > wfi(y)

1. This may be an entire
feasible space

2. Or it may be impossible

Margin

Objective Functions

= What do we want from our weights?
= Depends! —_
= So far: minimize (training) errors:

3 step (waxy:-‘) - max waz-(y>)

i

= This is the “zero-one loss”
= Discontinuous, minimizing is NP-complete
= Not really what we want anyway
= Maximum entropy and SVMs have other
objectives related to zero-one loss

Linear Separators

= Which of these linear separators is optimal?

27

Classification Margin (Binary)

Distance of X; to separator is its margin, m;
Examples closest to the hyperplane are support vectors
Margin y of the separator is the minimum m

Classification Margin

= For each example X; and possible mistaken candidate y, we avoid
that mistake by a margin m;(y) (with zero-one loss)

mi(y) = w fi(y}) - w £(y)
= Margin y of the entire separator is the minimum m
7= min (WG - maxw 1))
i y#EY;
= |tis also the largest y for which the following constraints hold

Vi,vy w () > wE(y) +4(y)

Maximum Margin

= Separable SVMs: find the max-margin w

0 ify=y*

max - Li(y) =) 4

lIwli=1 ! {1 ify #y}
¥

Yivy wlE(yD) = wiE() + 95

= Can stick this into Matlab and (slowly) get an SVM
= Won't work (well) if non-separable

Why Max Margin?

= Why do this? Various arguments:

Solution depends only on the boundary cases, or support vectors (but
remember how this diagram is broken!)

Solution robust to movement of support vectors

Sparse solutions (features not in support vectors get zero weight)

Generalization bound arguments

Works well in practice for many problems

Support vectors

Max Margin / Small Norm

= Reformulation: find the smallest w which separates data

. max -
oA s ey
) - T * T "
vi,y wo E(y)) 2w L(y) +4(y)

= yscales linearly in w, so if | |[w] | isn’t constrained, we can
take any separating w and scale up our margin

v o= min [w (D) - wE)/G)
LYFY;
= Instead of fixing the scale of w, we can fixy =1
min 1wl |2
w2

iy w iy = w () + 16(y)

Soft Margin Classification

i,
H
i
i
i
i

= What if the training set is not linearly separable?

= Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier

Note: exist other

| XQ"% M a Xl mum M a rgi N | choices of how to

penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

minl||w||2+c-,?s,
wi 2 =

; T v Y4k Tg. .
Wiy, w G(y])4+e = w i(y) + 60y)

= Cis called the capacity of the SVM — the smoothing

knob
+
. +
Learning:
= Can still stick this into Matlab if you want +

= Constrained optimization is hard; better methods!
= We'll come back to this later

Maximum Margin

4 + +
ast
3 + e}
25}
+ o o
5 o]
1 o o

Likelihood

Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)
= Use the scores as probabilities:

Plylx w) — &PW () Make
WIS Y rexp(wTE(y) Rosifidfize

= Maximize the (log) conditional likelihood of training data

Y

exp(wTfi(y})) \}

Y, exn(w ! £0v))
2y EXRPAW TINY)

— —
L(w) =log [| P(yilxi;w) = > _log |

=y (wai(yf) —log " exp(wai(y))>
i y

Maximum Entropy |l

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= ... in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max E(W'f.-(y?)—IUQZEXD(w'f.-(y)))—*' w|/?

m“i,n k| |w Q—Z (w TRy — Iog%—' exp(w ' fr-(_y))>

Maximum Entropy

Loss Comparison

Log-Loss

.

= |f we view maxent as a minimization problem:

I'Ililn k||w |2+£ w E(vi) — log ¥ exp(w fi(¥))
\ ¥ /

= This minimizes the “log loss” on each example

| w i fi(y]) ~ log ¥ exp(w ' £(y))] = —log P(Y_f\xnw)

!

Remember SVMs...

step (an-(y;) — max w*fr-(y))
YFEY]

= One view: log loss is an upper bound on zero-one loss

= We had a constrained minimization
1
min 5wl 2 +oXk
iy, wR(yD) +& = w) + 4Gy
= ..but we can solve for §;

Viy, &= w E(y)+L0y) - w i(y])
vi, & = max (w "f(v) + Lly)) —w "i(y7)

= Giving

min SIIwli? + €3 (max (L) + 60)) — w L))

H | nge LOSS Plot really only right

in binary case

= Consider the per-instance objective:

i g e . W
I"Illl'l Ellwi| +L l\.lT'II“.X |w iv) + 6w

= This is called the “hinge loss”

= Unlike maxent / log loss, you stop
gaining objective once the true label
wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient
decent (e.g. Pegasos: Shalev-Shwartz et
al 07) wlti(y)) - max (wTh()

Loss Functions: Comparison

= Zero-One Loss
> step (w' fi(y!) — maxw' f.-(.v))

= Hinge

N : wl k(v max w TF(y) + £i(u)) | [1%

" log ‘

SN w Ry —log ¥ exp (w' fi(¥)) |
=\ y

witi(yD) - max (w':(v)

Conditional vs
Joint Likelihood

Max vs “Soft-Max” Margin

= SVMs:

min Kllwll? E{w £(v:) — max (w E'.{}']+r'.[-:)_'}

You can make this zero
= Maxent:

min k|lw 2=y (\\ f;(vi) —log ¥L‘xp (w' (¥)

... but not this one
= Very similar! Both try to make the true score better
than a function of the other scores
= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”

Example: Sensors

Reality
Rainin Sunny

g6 A

P(+,+,r) =3/8 P(,-r)=1/8 P(+,+,s)=1/8 P(-,-s)=3/8

NB Model NB FACTORS:

- = P(s) =1/2
Raining?

PREDICTIONS:
s P(r,+,+) = (5)(34)(34)
= P(+|s)=1/4 s P(s,+,+) = (%) (%) (%)

@ @ " PEIN=3/4 L p(rl+,4) = 9/10
= P(sl+,+)=1/10

Example: Stoplights Example: Stoplights

Reality = What does the model say when both lights are red?
Lights Working Lights Broken = P(b,rr) =(1/7)(1)(2) =1/7 =4/28

= P(w,r,r) =(6/7)(1/2)(1/2) =6/28 =6/28

= We'll guess that (r,r) indicates lights are working!

P(grw) =3/7 P(rgw) =3/7 P(rnb) = 1/7
= |magine if P(b) were boosted higher, to 1/2:
NB Model NB FACTORS: = P(b,rr) = (1/2)(1)(1) =1/2 -4/8
@ L " PO " Plwrr) =(1/2)(1/2)(1/2) =1/8 =1/8
= Prlw)=1/2 = P(rb) =1 = P(w]|r,r)=1/5!

= Plglw)=1/2 = P(g|b) =0 = Changing the parameters bought accuracy at the
@ @ expense of data likelihood

